Misrepresentation of Model Performance by RMSE:
From Mathematical Proof to Case Demonstration

Fanglin Yang

Environmental Modeling Center
National Centers for Environmental Prediction
Camp Springs, Maryland, USA

GCWMB Bi-weekly Briefing, November 4, 2010




RMSE Has long been used as a performance metric for model evaluation. In
this presentation | will show mathematically that RMSE can at times
misrepresent model performances. A normalized RMSE is proposed, however,

the normalization is not always effective.
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S M 3 z
Root-Mean Squared Error (E) = ~ \/m—nz;1 (F n T A )

Where, F is forecast, A is either analysis or observation, N is the total number of
points in a temporal or spatial domain, or a spatial-temporal combined space.

E ? =
7Ly N Mean
2 2 2 2
B RGO a2 gl O REEME 5o squared
error
where
g? = i_nzN;l (F . |:_)2 gl = i_nZN;l (An - X) Variances of forecast & analysis



Es 'S E s + Enﬁ Mean Squared Error: MSE

2 - b el .
Bl = (F B ) MSE by Mean Difference

E§ = U? = Uj — 20 ;0 R | MSE by Pattern Variation

Discussion:
» Total MSE can be decomposed into two parts: the error due to differences in the
mean and the error due to differences in pattern variation, which depends on

standard deviation over the domain in question and anomalous pattern correlation
to observation/analysis.

« If a forecast has a larger mean bias than the other, its MSE can still be smaller if it
has much smaller error in pattern variation, and vice versa.

« If two forecasts are verified against different analyses/observations, differences in
analysis variance and mean complicate the interpretation of forecast MSE.

* Model performance evaluation should include both E ,ﬁ and E s

The following pages present characteristics of E § , and the concept of normalized MSE.



A: Given the same mean difference, will a forecast wit h smaller variance
always give smaller MSE?  The answer is no.

OF? .
a_zzo-f—ZO'aR:O —=E, -min if 5, =0,R
Ot

Case 1) R =1, perfect pattern correlation Eﬁ(min) =0 wheno, =0

a

One can see that if a forecast having either too
large or too small a variance away from the
analysis variance , its error of pattern variation
increases.

R=1 = E’=(o,-0,)’

If R=1, E. does not award smooth
forecasts that have smaller variances .
It is not biased.




Case 2) R =0.5, imperfect pattern correlation

E-(min)=0 wheno, =050,

In this case, if one forecast has a better

variance ( g, - O,

) than the other

( o, - 0.50,), the former will have a
larger E . than the latter. Good
forecasts are actually penalized.

In general, iIf 0 <R <1,

variances closeto RO,

E 5 awards

smooth forecasts which have smaller

2
E p
o;
02507 _
| > 0O f

050, O,
worse better
forecast forecast
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Case 3) For cases where R<O,

E-(min)=0; wheno, =0

E. Increase monotonically with ~ T

In this case, E, always awards
smoother forecasts that have
smaller variances .




B: Will MSE normalized by analysis variance be unbiased ?
E?/ol=E2/cZ+E2/0l| [ERLEE=102RAEAE " N =0 ula,
R Assume
-1.0 -0.8 —-0.6 -04 —-0.2 0.0 0.4 0.6 0.8 1.0 5
00 |1.00 1.00 1.04 1.00 1.00 1.00 1.00n00 | E, =0
02 144 136 12§ 120 1.12 o.@64 |
04 |1.96 1.80 164 148 1.32 0.5236 |
06 [256 232 204 1.84 1.60 1.12 : A -1
0.8 [324 292 260 228 196 164 132 1§00 & EFZ)/O'aZl
A 10 |400 360 32d 28 240 200 1.60 1RO o
1.2 | 484 436 3.85{ 340 292 244 196 148 1.00 0.5204 ? R
14 |576 520 4.64 408 352 296 2.40 184 128 07216 | A1
2 2
16 | 676 612 54§ 4.84 420 356 292 2.:28 1.64 1.0036 | Ep/a‘a l
18 |7.84 7.2 64Q 568 496 424 352 280 208 13864 |
20 |9.00 820 7.4d 6.60 580 500 420 340 2.60 1.8000 |

Ideally, for a given correlation R, the normalized error should always decrease as the ratio
of forecast variance to analysis variance reaches to one from both sides. In the above table
only when R is close to one (highly corrected patterns) does this feature exist. For most other
cases, especially when R is negative, the normalized error decreases as the variance ratio
decrease from two to zero. In other words, the normalized error still favors smoother
lysis variance (the truth). 8

forecasts that have a variance smaller than the ana




C. Mean-Squared-Error Skill Score (Murphy, MWR, 1988, p2419)

B2/ 07 W=AE 2Y.g 5t 0%

E2/02=1-2RA+A° A=0, /o,

MSESS =1-E?/0?=2AR-A>-E2 /o’ Assume | E: =0
R
-10 -08 -06 -04 -02 00 0.2 0.4 0.6 0.8 1.0
00 |000 000 0.0 1 000 000 0.0p 000  0.000.00]
02 |-044 -036 -028 -020 -0.12 od2 o020 0.28036l J 1
0.4 |-096 -0.80 -064 -048 -0.32 -0.16 032 048064l -
06 |-156 -132 -108] -084 -060 -036 -0.12 0.600.84 | MSESS
08 |-224 -192 -160l -128 -096 -064 -032 0bo 0.640.96I
A 10 |-300 —260 -—2201 —180 -140 -100 —060 —d.20 0.60 R
12 |-384 -3.36 288 _240 -192 -144 -096 -048 000 —0.4B96A
14 | -476 -4.20 —3.64: ~3.08 -252 -196 -1.40 —(%.84 ~0.28 0.28.84 -1
1.6 |-576 -512 -448 -384 -320 -256 -192 -}28 -064 0.0064 MSESS
1.8 |-684 -612 -540] -468 -3.96 -324 -252 -}80 -108 -0.3636]
20 |-800 -720 -6.40] -560 -480 -400 -320 -340 -1.60 —0.8000|

The best case is MSESS=1 when R=1 and Lambda=1. For most cases, especially when R
Is negative, MSESS decreases monotonically with Lambda. Therefore, MSESS still favors

smoother forecasts that have a variance smaller tha  n the analysis variance.
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Summary |

Conventional RMSE can be decomposed into Error of M ean Difference
(Em) and Error of Patter Variation (Ep)

Ep is unbiased and can be used as an objective meas  ure of model
performance only if the anomalous pattern correlation R between
forecasts and analysis is one (or very close to one )

If R<1, Ep is biased and favors smoother forec asts that have smaller
variances.

Ep normalized by analysis variance is still biased a  nd favors forecasts
with smaller variance if anomalous pattern correlat lon is not perfect.

An ideal normalization method is yet to be found.

A complete model verification should include Anomalous Pattern
Correlation, Ratio of Forecast Variance to Analysi s Variance, Error of
Mean Difference, and Error of Pattern Variation . At NCEP EMC, only

RMSE has been used as a metric to verify tropical v ector wind. RMSE can
at times be misleading, especially when different f  orecasts are verified
against different analyses, and/or the anomalous pattern correlation
between forecast and analysis is low.

E ~=aBE

2
p m p
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Vector Wind Stats So far the deviations are for scalar variables. For vector wind,

the corresponding stats are defined in the following way.

e e

Define Vii=u,i+tv,j Va=u,it+tv,ij
1d = o 1 - Ry
Then MSE: EZZ—Z@fn _Van)zz—zel Van) 6/fn _Van)
nn=1 nn=1
1Y 18 2 O
= _Z (u?n +V?n)+_z (uzin +V§n)__z (ufnuan +anvan)
nn=1 nn=1 nn=1
=A+B-2C
l N
where A = iZN‘, (U?n +V?n) B = EZN: (Uazn +V§n) C:_Z(ufnuan anvan)
n =1 n =1 nn:l

A, B, and C are partial sums in NCEP EMC VSDB database

Anomalous Pattern Correlation:

1i(vm-\7m)-(zn-\7an i[( =y, ~Ua )+ v N e

n

R= n=

N

leN:(an—anj &Z(van vanj \/Z[ ~us [ +{v, ~ve) ]DZ[ (U~ f +(y —Va)2]

n n=1 n= |




Vector Wind Stats

1 N — = — =
EZZ—Z[(an_Vf)_(Van_V
nnzl
_1 N . _: 2 lN .
—anz“l(an ij +nnZ::l(Van
2 N — p— — =
_—Z(an_vf)°(van_va)
nnzl
= _:n\-leN‘(‘v_"n—
+2(Vf Y T [ n4\ f
:af+aj—20faaR+(Jf—Ja)2+(\7
=E;+E;
where

MSE by Mean Difference

P 2 2

E,=0;+0,-20,0,R
1N . — 2 N

U?Z—Z(an—ij— Z
nn:l n=1

MSE by Pattern Variation

Variance of analysis
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Case Demonstration:

Impact of Analyses on Tropical Vector Wind RMSE
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Each experiment is verified against its own
analysis.
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Both experiments are verified against the
same analysis , which is the mean of the

two experiments. .
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Impact of Analyses on Anomaly Correlation
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Using different analysis has
little impact on anomaly
correlation for all variables
except for winds at initial
forecast time
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Summary li

Using different analysis has  significant impact on the
RMSE of winds . Its impact on the RMSE of height and
temperature is smaller.

Using different analysis has  negligible impact on
Anomaly Correlation , except for winds at initial time.

Recommendation: the same analysis should be used

for verification when comparing different models
and/or different experiments.

In the next few slides the same analysis is used for verification.



Case Demonstration: Decomposing MSE of Scalar Variables

The following five components will be examined. All forecasts are verified against
the same analysis, i.e., the mean of the two experiments prul2r and prel3d.

E?=E2+E}
ez =(F-Aaf

E=0c{+0;-20,0,R

>
>

I
=

Total MSE

MSE by Mean Difference

MSE by Pattern Variation

Ratio of Standard Deviation: Fcst/Anal

Murphy’s Mean-Squared Error Skill Score

Anomalous Pattern Correlation
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Case Demonstration: Decomposing RMSE of Vector Wind

The following five components will be examined. All forecasts are verified against
the same analysis, i.e., the mean of the two experiments prul2r and prel3d.

E?=E;+E;

Ez=(-ua)f+(vi-vaf

2 2
s, =0 +to;-20,0,R

M
N
[

MSESS =1-E?/0?=2AR-A*-E2/0?

_ ig[(ufn ~Ur )(uan _aa)+(vf” Vi )(Va” _\_/a)]

o, Lo,

R

Total MSE

MSE by Mean Difference

MSE by Pattern Variation

Ratio of Standard Deviation: Fcst/Anal

Murphy’s Mean-Squared Error Skill Score

Anomalous Pattern Correlation




Decomposing NH HGT RMSE”2, T382L64 GFS, 200907-200909

Total MSE
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» Total RMSE is primarily composed
of EMD in the lower stratosphere

= and EPV in the troposphere.

* HGT generally has high anomalous
pattern correlation.
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» The forecast variance is lower than
that of analysis in the lower
troposphere and stratosphere, and
larger near the tropopause.
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increases with forecast lead timelzg.




Decomposing Tropical Vector Wind RMSE”2, T382L64 GFS, 200907-200909

Total MSE MSE by Mean Difference MSE by Pattern Variation
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: .. - * For tropical Wind, both EMD and
Ratio of Standard Deviation Anomalous Pattern Correlation EPV are concentrated near the

tropopause , and increase with
forecast lead time.
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Decomposing NH HGT RMSE”*2, Comparing T574 to T382, 200907-200909

Total MSE
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* The reduction of total HGT RMSE in
the troposphere comes from EPV
reduction. Both EMD and EPV
increased in the lower
stratosphere.
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» Compare to T382, T574 has larger
forecast variance near the
tropospause, and smaller variance
in the lower troposphere.

» Compare to T382, T574 has better

\ HGT AC in the troposphere and

worse AC in the lower
stratosphere.
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Decomposing Tropical Vector Wind RMSE”2, Compare T574 with T382, 200907-200909

Total MSE MSE by Mean Difference MSE by Pattern Variation
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coming from reduction in both
EMD and EPV. In the lower

stratosphere, EMD increased.

» Compare to T382, T574 has much
weaker wind variance in the
lower stratosphere.

» T574 has better anomalous
pattern correlation in the
troposphere. Therefore, the
reduction in EPV near the
tropopause is credible , and the
wind variance is also stronger’?2




Compared to T382 GFS, T574 GFS has better forecast  skills in the
troposphere.

T574 reduced tropical wind variance in the lower st ratosphere.
Mean tropical wind in the lower stratosphere isals 0 weaker.
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Summary

RMSE/MSE can be at times misleading. Its fairness a s a performance
metric depends on the goodness of mean difference, standard
deviation, and pattern correlation.

If pattern correlation is low, RMSE tends to award forecasts with
smoother fields. The implication is that RMSE sho  uld not be used for
extended NWP forecasts and seasonal forecasts eithe .

The same analysis should be used for verification w hen comparing

different models and/or different experiments. The impact of analysis is
on anomaly correlation than on RMSE, and less on he ight than on
winds.

At NCEP/EMC, RMSE has been almost exclusively used to measure the
performance of tropical wind. A more comprehensiv e verification
should at least include MSE, MSE by Mean Difference , Anomalous
Pattern Correlation , and Ratio of Forecast Variance to Analysis

Variance.

MSE should be used instead of RMSE or standard devi  ation, the
summation of the latter is hard to interpret in mat h terms. 24



