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Background

* Production 4-km NAM CONUS nest had 3
failures (aborted runs) associated with
Hurricane Joaquin (20150929 - 20151002)

— Needed to run “BMJ lite” for stability
(small amount .

of deep convection) !
e There was also a
failure in the 3-km

real-time parallel
NAM nest
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Summary of Model Changes
(aka “Joaquin changes”)

. Update moist processes every other time
step (sfc layer, land sfc, PBL, & microphysics
for all domains; GWD & convection in
parent only)

. Advect specific humidity every time step
(rather than every other time step)

. Calculate cloud condensation every time
step to remove supersaturations

. Mix out superadiabatic layers that form in
strong updrafts



Numerical Instability (1 of 3)
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3-km/60 L (30 hPa top) NMMB run over small domain

* Moist physics called every other time step (from 1 every 4)
* Moisture variables advected every other time step
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Numerical Instability (2 of 3)
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Large instabilities at 880 — 950 hPa
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Numerical Instability (3 of 3)

* Numerical instability was eliminated when

— Advecting moisture fields every time step

— Did not require updating moist physics every time step
Left: Instability appeared

along the outer edge of a
local wind maximum.

Wind Speed (m/s) at z=48 at 06:00 fest w at z=48 at 06:00 fest

Right: It developed at the
leading edge of modest
descent. Vertical motions
were generally weak and
well behaved.
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The instability led to the L ¥ .....
model failures. -
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Advecting Specific Humidity Every Time Step

* Advecting all “scalars” (TKE, Q, Q_,,, Q,, Q.
Qg) required at least a 20% increase in
computing resources

— Code was restructured so that only Q can be
advected every time step, the other variables can
be advected every other time step

— Code infrastructure was made more efficient
— Led to a smaller (<10%) increase in computing cost



Noisy Temperature Profiles (1 of 6)
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* But high-frequency oscillations T T
(noise?) remained even in runs et
where all fields were advected and D en%
moist processes were updated K Ay .

every time step (right; 5-min skew-Ts
from 32 h 30 min to 33 h 30 min).

* Also seen in other runs for o
different cycles with different

physics options (next slide).

 QOscillations are transient.
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Noisy Temperature Profiles (2 of 6)
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Noisy Temperature Profiles (3 of 6)
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Noisy Temperature Profiles (4 of 6)

31h 50m T_advh (deg C/5 min) 31h 50m T_adwv (deg C/5 min) 31h 50m T_vtoa (deg C/5 min)
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* E-W cross sections centered on profiles (every 5 min)
e Large oscillations in 5-min T changes by Vadv



Noisy Temperature Profiles (5 of 6)

e Oscillations primarily due to Crank-Nicolson (CN)
vertical advection (Vadv)
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“Unfortunately, the Crank-Nicholson scheme does a very poor job at ddvecting
wave-forms with sharp leading or trailing edges.... It turns out that alljcentral
difference schemes for solving the advection equation suffer from a similar
problem.” (Left figure & notes from Prof. Richard Fitzpatrick, Univ. Texas)
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http://farside.ph.utexas.edu/teaching/329/lectures/node93.html

Noisy Temperature Profiles (6 of 6)

* The following changes were tested
— Adjustments to CN off centering

— Minimum TKE (function of height) increased by 10x from
surface to model top

— Run with different versions of shallow convection
— Horizontal averaging (filtering) of vertical velocity
— T, Q adjustments(only this was successful)

* T adjust: mix out all superadiabatic layers (I >T')

* Q adjust: remove supersaturations w/r/t water by
cloud condensation every other time step when moist
physics are not called

* Tens of thousands of profiles were analyzed from 5-min
forecast output at locations where domain-maximum
values occurred in updraft velocities, surface rainfall rates,
lapse rates, and supersaturations



Temperature Adjustments

Rules

1. Only mix layers above the surface layer of a convective
boundary layer (let’s refer to as “elevated” layers)

2. Between highest & lowest unstable (00/0z<0) layers:

a. Mix (average) ©,,,,0,, &0, , if

NO,,,,<c&AB, <& £=-0.01°C|— B
b. Mix 0,,, & 0, only if B A9k+1/z =0, ,,-0,
Aek+1/z <& & AD,. 1/2 2 6
c. Mix 0, & 6, , only if )
Aek+1/z 2e& A0, ), <€ — A6,,,,=6,-0,,
3. Iterate until all layers have been 5
stabilized k-
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Most Extreme Examples (1 of 6)
(2015100206 - Joaquin)
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Most Extreme Examples (2 of 6)
(2015100206 - Joaquin)

With T,Q filter
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NOTE

* Areas of modest supersaturations
are due to internal GrADS s
interpolation.

* Supersaturations are not found

when relative humidity is written
to NMMB history files. l

* Moist absolutely unstable layers
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Most Extreme Examples (3 of 6)
(2013052000 — Moore, OK tornado)

Without T Q filter
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Most Extreme Examples (4 of 6)
(2016070100 — WPC Case)
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Most Extreme Examples (5 of 6)
(2016070100 — WPC Case)
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Most Extreme Examples (6 of 6)
(2016070100 — WPC Case)
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Summary (1 of 2)

* Several steps have been taken to make the NMMB
model more stable in response to forecast failures
with Hurricane Joaquin, and to improve forecast
soundings from the parallel NAM CONUS nest

* Although experimental runs initialized from the
operational NAM (surprisingly) did not show a
dramatic impact on QPF, we have seen noticeable
improvements in real-time parallel NAM CONUS
nest QPF



Summary (2 of 2)

* Improved QPF due to:

12-36 h QPF EQTS (20160722-20160821)

—Increasing CONUS nest e NAM
resolution from4km = == == = = NAMX
( ) to 3 km (NESTX) s S T T -:----NESTX

— Data assimilation ] R e N
changes (Carley et al., | R
Liu et al.) o

— Microphysics changes
(Aligo et al.)

— And the changes
described in this talk

(See Rogers et al. overview) 15 361, QpF Bias (20160722-20160821)
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