

Improvements to Ozone Forecast Guidance for the National Air Quality Forecast Capability

NWS/NCEP/EMC & NOAA/OAR/ARL - EPA

October 2, 2007

NCEP/EMC

Pius Lee

Marina Tsidulko

Youhua Tang

Ho-Chun Huang

Sarah Lu

- System design and implementation
- PBL & Chem Verification
- Regional In-line testing & LBC
- Global dust/smoke system DT&E (NASA, NESDIS)
- Global data assimilation and feedback testing (NASA, NESDIS)

Brad Ferrier, Mike Ek – WRF retrospective run Eric Rogers, Hui-Ya Chuang – NAM products Jeff McQueen – EMC AQ model team leader EPA AQ Forecast team (Mathur, Kang, Lin, Yu...)

NOAA-EPA AQF system

- North American Model (NAM)
 - NAM 3D VAR Data Assimilation (sat radiances, radar winds, raob, ACARS, surface met)
 - WRF-Non-hydrostatic Mesoscale Model (NMM)
 - 12 km 60 NMM hybrid sigma pressure levels
 - June 2007: Changes to landuse & roughness to address moist biases in Pac NW

•CMAQ V4.6

- CB4 gas-phase chemistry w/ Euler Backward Iteration (EBI) solver
- Simplified aqueous phase chemistry
- PPM horizontal advection
- AERO 3 for aerosol developmental run

•Emissions: PREMAQ (SMOKE)

- Point, area: NEI 2001 projected to 2007 with DOE EGU estimates
- Mobile: Temperature dependence from MOBILE-6 estimates
- **Biogenic**: PREMAQ BEIS 3
- Wild Fire Smoke (PM run only): 2001 inventory

Forecast Domains (2005-2007) 48 h forecasts at 06 and 12Z

4

NAM-CMAQ Coupling

Run	NAM	CMAQ-Op (3X)	СМАQ-Ехр (5Х) &
		(retired Sept. 18, 07)	CMAQ-Dev (5X PM)
Domain	Rotated Lat-Lon E grid	Interp to Lambert-Conf. C grid	Interp to Lambert-Conf. C grid
Vertical Coordinate	NMM Hybrid (60L)	Interp to Sigma-P (22L)	Common NMM Hybrid coord (22L)
Radiation/ Photolysis	Lacis-Hansen Bulk	Re-compute radiation & clouds from NAM RH	NAM Sfc Radiation for Photolosis Scaling
PBL	Mellor-Yamada- Janjic (MYJ) local TKE	NAM PBL height & RADM Eddy diffusivities	Asymmetric Convective Mixing -2 (1 st Order closure for daytime PBL)**
Clouds Aqueous	Ferrier cloud water, graupel/ice	NAM cloud water	NAM cloud water, graupel/ice
Convective Cloud Mixing	Betts-Miller-Janjic Mass Adjustment	RADM-2 Walcek(1980)	Asymmetric Convective Model (ACM) mixing
Land Surface	NOAH LSM	Canopy resistance from NOAH LSM	Canopy resistance from NOAH LSM

EMC Web Products

1h, 24h avg hrly & Max PM & Profiles (Pius Lee)

UNITED STATED

Daily 8hr max Ozone Biases Op vs Exp over Eastern U.S.

Both Op and Experimental Runs improved in 2007
For Operational run, NAM improvements partially responsible

Regional Performance, 1-h O3 Experimental Run Bias Reduced in 2007

California Performance 8h Max ozone pred vs obs (M. Tsidulko)

NAM vs RTMA 10 m Winds July 3rd 5 PM, 36 hour Forecasts

NAM

RTMA

LA Basin: NAM Temps are warmer; winds are stronger & more westerly

NAM 2m Dew point Errors SW Coast (green)

Dry bias can increase photolysis & ozone production can decrease deposition of pollutants over veg

Mid-Atlantic 8 h Max Performance July 10, 2007

Very Similar performance between operational and experimental

NAM 30 h Precip Forecast July 10, 2007

NAM Precip Prediction

River Forecast Center 3 hrly total Precip Analysis

NAM convective precip started earlier than predicted in Mid-Atlantic

Exp 8h Max Texas Performance August 11, 2007

Exp – Op Ozone Difference 12 Z August 10, 2007 Forecast

Cross-Section 0, Difference (ppbv) (5X-3X) and Temperature (K) over Over_Lon=-95W at 14UTC, 8/10/2007

17

Summary

Overall results

- Experimental run biases are improved
 - NAM changes from 2006 to 2007 also have a positive impact (as Operational run biases improved)
- Skill scores are improved at lower levels and comparable at higher thresholds
- Experimental run provides previously unavailable guidance to Western U.S.

California O3 forecasts improved

- Better performance in San Joaquin Valley
- Underprediction in LA urban area
- Some Overprediction in Sacramento Valley & downwind of LA
 - NAM onshore winds near LA often too strong
 - Upward lofting partially due to inconsistent NAM and CMAQ daytime unstable PBL physics (Vertical resolution may also have an impact)
 - Impact of aerosols & forest fires on ozone production (Stockwell, et al. 2002)

• 5X overprediction along coastal urban areas

- ACM-2 stable, marine PBL mixing may be too weak
 - Produces pollutant reservoir off-shore that can impact coastal urban areas (Houston, Long Island Sound, Lake Michigan...)

• Implement more consistent boundary layer and cloud mixing schemes

- Internal boundary layer processes near coastal regions
- Continue inline testing (WRF-Chem)

• Increase focus on chemical data assimilation in Global GSI

- coordination with AQF ESRL/GSD data assimilation, NESDIS, NASA...

•LA Basin/ Houston

- NMM high resolution experiments in coordination with ESRL/ PSD NMM study
- Test impact of aerosols/forest fires in California

More complete chemistry

– CB05 more heterogeneous chemistry with aerosols

Improved boundary conditions

- GFS-GOCART, HYSPLIT
- Spatially & Temporally varying Lateral Boundaries (currently static)
- Reduced gas phase chemistry (eg: RAQMS, Goloff & Stockwell, 2002) for ESMF/GFS

<u>Experimental/Developmental Runs:</u> Significant underprediction in upper Mid-West

Deposition Velocity

- Added Mesophyll component for O3, NO, NO2
- STATUS: Implemented inexper/dev runs on July 22
- Minor impact on forecast
 Increased photochemistry in Midwest

<u>Plume Rise</u>

- <u>STATUS</u>: Corrected in exper/dev run on July 22
 - minor impact

2006-2007 Systems NAM/WRF-CMAQ 12 km runs

System	Domain	Vertical coupling	Runs	LBCs
<u>Old Operational</u> 32p, 45 min	Eastern U.S. (3X)	22L Loose: interp from WRF	48 h forecasts at 06 and 12 Z	GFS ozone at model top; Same static boundaries below
<u>Experimental</u> (Current Ops) 65p, 70 min	CONUS (5X)	22L Tight: Common hybrid	48 h forecasts at 06 and 12 Z	Clean, static profiles
<u>Developmental</u> 127p, 150 min	CONUS w/ PM (5X)	22L Tight: Common hybrid	48 h forecasts at 06 Z	Clean, static profiles