NCEP Air Quality Forecast System
Upgrades for the Summer 2005

Jeff McQueen, Pius Lee, Marina Tsildulko, Geoff DiMego
Bert Katz, Geoff Manikin and Sarah Lu

*R NOAA/NCEP
Environmental Modeling Center

Rohit Mathur, Daiwen Kang, Shoicai Yu and Hsinn-Mu Lin
NOAA/ARL and EPA/ASMD
Forecast Domains (2005)

1. Eta-CMAQ
2. WRF-CMAQ

CONUS “5x” Domain

Northeast Domain

East “3x” Domain

- 259 grid cells
- 268 grid cells
Upgraded Air Quality Forecasting
Configuration for Operational NE US Domain

- **NE Domain**: 48 hour forecasts of ozone (O_3) : 06 and 12 UTC runs
- 12 km 166x142x22 top at 100 mb
- Optimized PREMAQ/CMAQ codes
- New NAM landuse definitions for deposition effects
- Updated emissions inventories:
 - Project 2002 point and area source inventories for 2005
 - Updated Mobile Emissions using MOBILE6 inventory
 - Simplified Temperature dependency on mobile emissions
- **Real-time Verification**
 - BUFR O3 and CMAQ output evaluated
 - with VSDB/FVS system
Current Air Quality Forecasting

Experimental Expanded Domain Configuration

- **Eastern US**: 48 hour forecasts of ozone (O_3) : 06 and 12 UTC runs
 - 3x expanded domain (East of Rockies, 268x259x22) run in parallel
 - Same Configuration as NE US Run except:
 - Convective Cloud Mixing from cloud top = 0
 - Additional processors (~65) used on Production machine
 - 12 z Available by 16:10 UTC
Current Air Quality Forecasting

Research Aerosol Domain Configuration

- **Eastern US**: 24 hour forecasts of O₃ & Aerosols:
 - 12 UTC run only
 - Same system as operational except
 - 3x expanded domain (East of Rockies) run
 - 24 hr cycling
 - 33 processors on Development Machine (less (less reliability, 8x5)
 - Available by 21 UTC
Current Physics Coupling w/ NCEP NAM

<table>
<thead>
<tr>
<th>Current Capability</th>
<th>Met Model (Eta, WRF/NMM)</th>
<th>AQ Model (CMAQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core/Dynamics</td>
<td>Rotated Arakawa E grid</td>
<td>Arakawa C Grid</td>
</tr>
<tr>
<td>Clouds</td>
<td>Full Ferrier Cloud Microphysics</td>
<td>Eta cloud water for aqueous chemistry</td>
</tr>
<tr>
<td>Convective mixing</td>
<td>Betts-Miller Janjic</td>
<td>Entrainment from top turned off</td>
</tr>
<tr>
<td>Radiation</td>
<td>GFS*</td>
<td>Derived from Eta RH for photolysis</td>
</tr>
<tr>
<td>PBL</td>
<td>Mellor-Yamada TKE</td>
<td>Eta PBL hgt for Pleim-Xiu 1st order K</td>
</tr>
<tr>
<td>Land Surface</td>
<td>NOAH common</td>
<td>Eta canopy conductance terms for Pleim-Xiu LSM</td>
</tr>
<tr>
<td>Run</td>
<td>NAM-CMAQ (3x, Conus)</td>
<td>WRF-CMAQ</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Domain</td>
<td>Interp to CMAQ C grid</td>
<td>Common Rotated E grid</td>
</tr>
<tr>
<td>Vertical Coordinate</td>
<td>Interpolate to CMAQ σ</td>
<td>Common WRF/NMM σ-P</td>
</tr>
<tr>
<td>Photolysis</td>
<td>Surface Eta Radiative Scaling</td>
<td>3-D Radiative fluxes</td>
</tr>
<tr>
<td>PBL</td>
<td>Eta PBL height into P-X</td>
<td>NAM TKE/Kh to drive mixing</td>
</tr>
<tr>
<td>Clouds Aqueous Mixing</td>
<td>Eta cloud water, Eta convective cloud base/top</td>
<td>NAM cloud water, graupel & ice Axisymmetric Convective Model (ACM) mixing extended for conv.</td>
</tr>
<tr>
<td>LBCs</td>
<td>GFS above 6 km, Static below</td>
<td>GFS above 6 km, static below Higher top, improved vertical resolution near tropopause</td>
</tr>
</tbody>
</table>
NAM Verification
August 2004

Temperature

Downward SW
RETROSPECTIVE TESTING

Runs: P. Lee, M. Tsidulko
Analysis: R. Mathur, D. Kang, J. Pleim,…

- 2004 Base: 2004 Operational run
- S0: Reflects changes due to Eta-X
- S1: S0 + photolysis attenuation based on Eta radiation fields
- S3: S0 + Mixing from above clouds turned-off
- S5: S1+S3
Analysis Time Periods

- **12Z July 16, 2004 – 12Z July 25, 2004**
- **12Z August 4, 2004 – 12Z August 13, 2004**
- **12Z August 8, 2002 – 12Z August 20, 2002**
Max 8-hr O_3 Mean Bias Spatial Distribution: July 21, 2004

2004 Base

S0

S1

S3

S5
Slight tendency to under-predict

O3 increased regionally,
Over-predict at low range
Performance Summary for 2002 Retrospectives
Comparison of S3 and S4 CMAQ Configuration

S0: Reflects changes due to Eta-X
S1: S0 + photolysis attenuation based on Eta radiation fields
S2: S0 + ACM-type cloud mixing
S3: S0 + Mixing from above clouds turned-off
S4: S1+S2
S5: S1+S3
Performance Summary: August 6-18, 2002

Max. 1-Hr.

Max. 8-Hr.
<table>
<thead>
<tr>
<th>Run</th>
<th>Today</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>Sept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational</td>
<td>NE U.S</td>
<td>East U.S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>East U.S.</td>
<td>CONUS (Eta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developmental (EMC)</td>
<td>CONUS (Eta)</td>
<td>CONUS (WRF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research (EMC)</td>
<td>PM East US</td>
<td>PM East US (WRF)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Developmental Testing

WRF-CMAQ (East U.S)

- WRF/NMM tests
 - Test common vertical Sigma coordinate
 - Test common horizontal rotated E grid coordinate
- Improved Radiation Coupling for Photolysis
 - Sfc and 3d radiative fluxes
- Improved Cloud Coupling for cloud mixing & aqueous chemistry
- Improved PBL coupling for mixing
- Improved Emissions
- Improved LBCs
 - Improved vertical resolution near tropopause
 - Raised CMAQ model top
- Full bundle tests
Verification Tasks

• Implement near real-time ozone FVS verification system at NCO:
 – Statistics for RMSE, Bias, Correlations for full and sub regions
 – Contingency stats: Accuracy, POD, FAR, CSI, Threat scores for hrly, 8hrly, daily max

• Detailed evaluations of Eta/WRF met. forecasts
 – Compare ozone errors with Temperature, RH, winds, PBL height, cloud cover, sfc flux errors

• Explore additional mesonets
 – Ozone: rural networks(ETOS…)
 – Aerosols: AIRNOW, AERONET, IMPROVE, CASTNET?
 – Lidars: REALM
 – Satellite case studies for CMAQ-aerosols :
 • GASP, MODIS, AURA/OMI&TESS
FVS O3 Real-Time Verification

Daily Maximum Ozone Bias
Hysplit fire smoke

- Jan. 2005
 - Upgraded Hysplit for volcanic ash, radiological releases
 - web visualization
- Sept. 2005
 - Hysplit smoke w/ NESDIS HMS source locations retrospective & real-time tests
 - USFS smoke emission system (w/o NetCDF)
 - Retrospective tests
 - Real-time parallel tests
 - GASP, MODIS AOD verification performed by NESDIS
Hysplit fire smoke verification

1 hr avg PM2.5 conc 0-5000 m

NESDIS Fire Location and Visible Plume
Data Assimilation/Global System Tasks

- **CMAQ data assimilation:**
 - Plan for surface ozone assimilation
 - Correlate sfc ozone w/ precursors (Nox VOCs)

- **GFS: Improved chemistry for regional LBCs**
 - **Ozone:**
 - Include tropospheric product/loss rate terms
 - Test reduced ozone chemistry (U.Wisc-RAQMS)
 - Begin testing assimilation of AURA/OMI
 - CMAQ LBC impact studies
 - **Aerosols:**
 - Include NASA-GOCART reduced biomass burning/dust and emission processes
 - Begin testing assimilation of MODIS & AURA/TESS
 - CMAQ LBC impact studies
Summary

- Retrospective and real-time results show improvements
 - Mean daytime bias reduced from ~17 to 5 ppb
 - Mean daytime rmse reduced from 22.8 to 14.5 ppb
 - However, still general overprediction in day, poorer performance at night,
 - Temporary Fix of over-mixing from downward entrainment of strat(gfs) ozone

- FY05 Focus
 - Improved dynamics/physics coupling
 - Begin assimilation
 - Improve verification
Air Quality Forecasting
User Access

- **NE, and East Domain**:
 - **Public**: NDGD and TOC ftp server
 - *Surface ozone predictions*
 - **State Forecasters**: HPC web site
 - *Sfc O3 & met plots*
 - *Daily (2pm) conference calls*
 - *HPC forecasters trained*

- **Experimental Domain (Conus & WRF O3)**:
 - **Focus group**: EMC web site
 - *Expanded met plots (pbl hgt, sw rad, ventilation index....)*
 - *Sfc & upper level O3 and precursers plots (NOx, NOy, CO, SO2)*

- **Research (Aerosols)**
 - *Sfc PM, AOT*
NCEP Graphical Products

Predicted Sfc Ozone
(1, 8h, max)

Eta cloud cover

Eta PBL hgt
Potential short-term collaboration projects

• Evaluation of NCEP WRF-CMAQ ozone & aerosol simulations
 – *Experimental & rural obs networks (eg: ETOS, AERONET, REALM lidar network)*
 – *GOES/MODIS satellite evaluation*

• Assimilation of AIRNOW ozone data into CMAQ initial conditions

• Improved cloud mixing, aqueous chemistry PBL coupling with WRF-CMAQ

• Testing of WRF-Chem on-line system to offline WRF-CMAQ forecasts
Real-Time Verification

EMC FVS time-series binned by FHR

RMSE

Bias
Real-Time Verification
EMC FVS forecast by sub-region

BIAS 1x vs 3x
NE, SE US

BIAS 1x vs 3x
E. Canada, APL US
Retrospective Tests

Eta-CMAQ (East U.S)

- Upgraded Eta Met. Driver tests (S0)
 - 1 km NOAH Landuse, soils
 - Improved cloud-radiation effects
 - 2 mb top, improved precip assimilation

- Improved Radiation Coupling for Photolysis (S2)
 - Sfc radiation flux scaling

- Improved Cloud Coupling for cloud mixing and aqueous chemistry?
 - Use graupal, ice fields for aqueous
 - Use convective cloud base/top for mixing

- Improved PBL coupling for mixing
 - Use 3-D TKE Kh fields

- Improved Emissions
- Improved LBCs
- Full bundle tests
- Begin Real-time Parallels
Operational Requirements

Driven by NCEP Operational Meteorological Model (Eta-12 and WRF/NMM)

- **I/O Formats:**
 - *Only machine binary, GRIB and BUFR, disk space limitations*

- **Time Requirement:**
 - *12 Z 48 hour forecast available by 17:25 Z (1:25 pm EDT)*
 - *06 Z 48 hour forecast available by 13:00 Z (9 am EDT)*
 - *65 IBM Power 4 procs available*
 - *12 Z start after Eta is complete (14:30 Z)*

- **Robustness:**
 - *Thoroughly tested & evaluated with retrospective and real-time experimental runs*
 - *Available to NWS Gateway, NDGD: 99% reliability, 24x7 NCEP support*
 - *Accuracy: 90% exceedence hit rate*
Summer 05 Planned NCEP Runs

<table>
<thead>
<tr>
<th>Run</th>
<th>To EMC</th>
<th>To NCO</th>
<th>Real-time runs</th>
</tr>
</thead>
</table>
| **Operational**
(3x East U.S.) | 2/1/05 | 3/15/05 | 5/1/05 |
| **Experimental**
(CONUS U.S.) | 3/15/05 | 5/1/05 | 6/1/05 |
| **Developmental**
(CONUS-WRF) | 6/1/05
If WRF/NMM is running real time | 7/15/05 | 9/15/05 |
| **Research**
(Aerosols) | Real-time:
Winter 05
Retrospect:
Summer 05 | | |
| **Fire Smoke**
(Hysplit-I) | 12/31/04 | 2/1/05 | 3/1/05 |
| **Bluesky-hysplit-II** | 3/1/05 | 5/15/05 | 7/1/05 |
Air Quality Forecasting
2004 Verification (1x and 3x)

- **NCEP EMC FVS System:**
 - 1 and 8 hour O3 averages
 - RMSE, Bias, STD, correlation coefficients Time series by fhr and day, subregion
 - using EPA AIRNOW O3 network began 7/12/04
 - FHO contingency exceedence stats (POD, FAR, threat scores)
 - Began 8/1/04

- **NWS/MDL**
 - Daily Spatial obs vs predicted exceedence maps
 - Contingency exceedence stats since June 1

- **NOAA/OAR/EPA**
 - Retrospective evaluations (8/12-19, 2003)
 - RT:Similar Stats except stations averaged over CMAQ grid points

ICARRT web page: sfc & UL ozone timeseries vs observations
Implementation Tasks

• Transfer parallel experimental system to Operations:
 - Complete agreed upon Charter w/ NCO
 - Provide additional Eta/WRF fields from Postprocessors
 - * Transfer upgraded CMAQ to EMC
 - Add internal documentation, refine scripts, adjust IO & dataset names
 - Support GRIB2 hrly gridded outputs
 - Perform 2002/2004 retrospective tests w/ upgraded Eta or WRF
 - Perform real-time parallels w/ updated emissions files
 - System evaluation against AIRNOW w NCEP FVS
 - Prepare estimates of cpu/disk resources for NCO
 - Prepare Job Implementation Form (JIFs) requests to NCO:
 - Send out Change Notices, update web page change logs

• Maintain/improve operational graphics, verification plot web pages
 - May require additional output to GRIB files
Real-Time Verification

EMC FVS 36 h forecast time-series by day

RMSE

Bias
ICARRT Evaluation

Observed Wind Profiles

Model ETA/CMAQ_12km Ozone Profiles

NOAH/CTL Surface Chemistry

ADI
NE DOMAIN Retros. Evaluation
1 Hr Avg ozone Errors (8/12-19, 2003)

RMSE

Mean Bias
Real-Time Verification

NWS MDL Evaluation

Predicted vs Obs Exceedence

[Map of the United States with various data markers and a bar graph showing the number of 8-hour average exceedances forecasted and observed from 07/23/2004 to 07/29/2004.]

Ozone Exceedances
Eight Hour Average, Threshold = 85 ppb
Midnight To Midnight EDT 06/04/2004
3X Model Data