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MODERN NWP: DYNAMICAL CORE + PARAMETERIZATIONS

e Dynamical core: equations for conservation
of mass, energy and momentum ...

e Large-scale air currents

 Numerical approximation can be evaluated
for order of accuracy, stability, ...

e Operational Models Rely on
Parameterizations

e Clouds and precipitation

e Influence of the earth’s surface

o Parameterizations are evaluated empirically!
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ADVANTAGES OF DEEP-LEARNING WEATHER PREDICTION

NWP is very compute intensive

» Difficult to produce many simulations of likely future states (large ensembles)

« DLWP
e Reduces the time required for each forecast by 2-3 orders of magnitude

e Allowing alarge number O(1000) of ensemble members
» Potentially better defining the probable distribution of future atmospheric states

« Better estimating the chances of extreme events
e Can replace empirical NWP-style parameterizations with "holistic’ machine learning.

» Potentially crucial for the S2S forecasting problem
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OUR DLWP STRATEGY

« Like NWP, create forecasts by recursively stepping forward in time

« Use just a few variables and coarse resolution to characterize the atmospheric state

 It's a starting point for DLWP

» Limitations on atmospheric predictability suggest the space-time resolution
required for NWP likely introduces more degrees of freedom than necessary to

characterize the atmospheric state

e For convergence: Az < 200 m if Ax < 15 km (Skamarock et al., 2019)
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THE POTENTIAL OF DLWP

e Predicting 500 hPa height
using only 500 hPa height
data

« Machine learning beats basic
equation-based NWP

e Colorfill shows error

Neural net learned to do better than
the incomplete dynamical model.
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ADDING BAROCLINITY DATA (THICKNESS)
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Weyn, et al., 2019: Can machines learn to predict weather....
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INTENSIFICATION DETERMINED BY SINGLE-LEVEL DATA ?7??

RN

e cold - -‘,: '4;‘} .
7 warm

Hoskins et al., 1985: On the use and significance of isentropic potential vorticity maps

500 hPa heights don’t obviously determine upper and lower level phasing
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DLWP BUILDING BLOCKS: CONVOLUTIONAL NEURAL NETWORKS

« Same filter coefficients multiply
the input data at every point

e 3x3 horizontal stencil

* Learn many sets of these filter
coefficients (64/128/256)
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DLWP BUILDING BLOCKS: CUBED SPHERE GRID

« Convenient for 3x3 spatial
stencil

e« Train identical filters for

e 4 equatorial-centered
faces

e 2 polarfaces

e sense of rotation
reversed between polar
faces
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U-NET ARCHITECTURE: NO GEO-SPECIFIC TRAINING

mmmd 3x3 convolution
=) 2x2 average pooling

mmmd 2 %2 up-sampling
m==> sKkip connection

70x10

3x3

20x20 Domain of dependence (cells)
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OUR FIELDS ARE 2D ON SPHERICAL SHELLS

* 4 prognostic variables

DURRAN

e 1000-hPa height

e 500-hPa height

e 300-700-hPa thickness
e 2-m temperature

3 prescribed fields

e TOA incoming solar radiation e 48 x 48 points on each face of the cube

e |and-sea mask
¢ topographic height

sphere (figure is 20x20)

e ~200 x 200 km quasi-uniform over the
globe
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INITIAL CONDITION: FREE RUNNING 195 DAY SIMULATION

July 4,2017 Climatology

e Loss function

« MSE every 6 hrs
over 1 day
¢ Time step: 12 hrs
* No physical constraints

500 hPa height (dm)

500 510 520 530 540 550 560 570 580

Blue contour: 540 dm Black contours: 1000 hPa height
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YOU BE THE DISCRIMINATOR! FREE RUNNING 195 DAY SIMULATION

Simulation

Climatology

Blue contour: 540 dm 500 hPa height (dm) Black contours: 1000 hPa height
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ANIMATION: FREE-RUNNING 1-YEAR FORECAST

Valid: 2017-07-04 06:00 Z

6-hour DLWP forecast verification climatology
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NEAR-SURFACE PREDICTIONS WITHOUT A BOUNDARY-LAYER
PARAMETERIZATION

» Model with 7 spherical shells of data
» Total column water vapor
e« 150 x 150 km horizontal resolution
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COMPARE DAILY TEMPERATURE CYCLES

¢ 2-m temperature
e 2 paired sites
¢ Amazon & ocean
» Australia & ocean
» 2-day forecast

e I|nitialized March 11, 4

2018 at 00 UTC \
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2-M TEMPERATURE FORECASTS
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+ Little temperature variation over oceans (land-sea mask)

e Without sea-surface temperature input!

e Larger diurnal variations over Australia than the Amazon

« Total column water vapor?
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Valid: 2017-09-07 06:00 Z

Verification

» 4-day single model
forecast

e 150x 150 km
resolution

« 7 prognostic variables
e Showing

 1000-hPa height
(black)

e 500-hPa height
(color fill)

500 510 520 530 540 550 560 570 580
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DIAGNOSING PRECIPITATION WITHOUT A CLOUD-
MICROPHYSICS PARAMETERIZATION

» 6 spherical shells of data
e« 150 x 150 km horizontal resolution
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CLOUD AND PRECIPITATION PROCESSES: UNDERLYING PHYSICS

Continental-nuclei lce nuclel Marmme-nudei
walter vapor waler vapor water vapor

Nucleation Nucleation Nucleation
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from Dudhia, Overview of WRF Physics
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WSM6 PARAMETERIZATION OF CLOUD AND PRECIPITATION PROCESSES IN NWP

6 variables

(single moment)
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Water vapor
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Snow size distribution

Intercept parameter

nye (M=) = 2 X 10° exp[0.12(T, — T)]

Slope parameter

A= (mpsngs/ pg )

Hong and Lim, 2006
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DEEP LEARNING DIAGNOSTIC PRECIPITATION TEST — 1

Valid: 2018-01-04 12:00 Z
» Precipitation is diagnosed

from the ERAS analysis of

e 1000-hPa height
 500-hPa height

e 300-700-hPa thickness

e 2-m temperature

e 850-hPa temperature

e Total column water vapor

 Inthe spirit of Larraondo et
al., 2019

e U-net: 1000, 800, 400 hPa
height
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DEEP LEARNING DIAGNOSTIC PRECIPITATION TEST — 2

Same

e U-net architecture

e 6 2D variables

Training loss is a function of
Rasp & Thuerey (2021)

In(p + ¢) — In(e)

When do we need microphysics?
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Valid: 2018-10-10 06:00 Z

Derived precipitation
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ENSEMBLE PERFORMANCE

« DLWP vs European Centre for Medium Range Weather Forecasts (ECMWF)

« 208 forecasts over 2-year period
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COMPARING KEY MODEL ATTRIBUTES

Comparison of Key Attributes of Our DLWP Ensemble and Those of the State-of-the-Art ECMWF Ensemble for

Extended-Range Forecasting

DLWP ECMWF
Atmospheric fields 6 spherical shells 819 spherical shells
Horizontal resolution 150 km 18 km (36 km after day 15)
Atmospheric physics 3 prescribed inputs Many physical parameterizations
Coupled models None Ocean, wave, and sea ice models
Initial condition perturbations 10 (ERAS5 uncertainty) 50 (SVD/4DVAR)
Model perturbations Perturbed CNN weights Stochastic physics
Ensemble members 320 (+control) 50 (+control)
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ENSEMBLE PERFORMANCE: DETERMINISTIC LEAD TIMES
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forecast day

DLWP ensemble: 32 stochastically perturbed models x 10 initial conditions = 320 members
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ENSEMBLE PERFORMANCE: S2S LEAD TIMES

Anomaly correlation coefficient of the ensemble mean
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Persistence is computed as the 2-week-averaged anomaly just prior to the initialization

Black bar: 95% confidence interval. Black dots: best and worst forecast.
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PROBABLISTIC SCORES OF ENSEMBLE FORECASTS

Verification

!

« Continuous ranked probability score
(CRPS)

CRPS(P,x, )=

>N
« Evaluates the integrated square error 3 °°f o 2
5 [P -P.(0)] dx )
between the forecast and observed 2 o f _
. of o q o o 08 F /
cumulative probability distribution g
©
e Reducesto mean absolute error for a : M Py (z)
-
deterministic forecast =
. . . 02
« Dimensional score, lower is better.
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CRPS: DLWP vs CURRENT ECMWEF S2S ENSEMBLE

» Global, annual average

e DLWP & ECMWEF tied in week
4 and weeks 5-6

« Both ensembles beat
persistence and climatology
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CONCLUSIONS

 DLWP has the potential to revolutionize weather forecasting, echoing of the impact
produced by the introduction of NWP in the 1950’s

» Data-driven Al-based weather prediction has been enabled by advances in
algorithms and hardware.

 DLWP may be particularly appropriate for sub-seasonal forecasting.
» DLWP can learn dynamics and physical parameterizations at the same time.
 Integrated approach to Earth-system modeling for sub-seasonal & seasonal forecasts
o The speed of DLWP allows use of much larger forecast ensembles O(1000).
e Large well-calibrated ensemble would
« Better define the probable distribution of future atmospheric states
o Better capture extreme events.

¢ 320-member ensemble of 1-month forecasts stepped forward with 12-hr time step
(and 6-hr resolution) requires ~2 seconds on one NVIDIAV100 GPU
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