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Self introduction 
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Strongly coupled DA – the ultimate goal 

Observations 

Data 
Assimilation 

Analysis 

(Earth system) 
Coupled Model 

Background 

In strongly coupled DA, the coupled state is estimated consistently 
using observations from every subsystem of the earth. 
All available constraints are brought together. 



Data assimilation with ensemble Kalman filter 
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Less uncertain 
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Ensemble forecast estimates 
background error covariance, 
with which we can constrain 
both observed and 
unobserved quantities 



Covariance localization 

5 Figure courtesy Hamill (2006) 

An observation 

The observation influences 
faraway analysis (shading), 
which is often detrimental 

Influence of the observation is 
limited to its neighborhood, and 
analysis is often improved 

Localization 



Localization based on the type of variable 
• Variable localization (Kang et al., 2011) 

› Localize the analysis depending on the observation/analysis variable types 
› By not assimilating CO2 observations into some dynamical variables 

(and vice versa), analysis accuracy improves in experiments with dynamics-carbon 
coupled model 

• How can we optimize localization for coupled Earth system models with 
growing complexity? 
› We may use physical intuitions as Kang et al. 
› We want a metric of relevance between 

each analysis variable and observation 
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Atmosphere 
T 
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Precip. 
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Localization and strongly coupled DA 
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Common problem 
What kind of observations are most relevant to 
each variable’s analysis? 

› How to prioritize observations? 
› When is strongly coupled DA beneficial? 

Localization 
Assimilate select 

observations 
(e.g., only within 2000 km) 

Strongly coupled DA 
Assimilate more 

observations 
 (e.g., atmospheric observations 

to ocean analysis) 



Importance of localization 
for strongly coupled DA: example 
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Travis Sluka (2018) 
Using vertical and variable 
localization ... is vital when using 
a limited ensemble size. 
 

Their suggestion: assimilating 
atmospheric observations only to 
the mixed layer 

Relative RMS of observation minus background 
(strongly vs weakly coupled) for ocean temperature 



Outline 
0.   Introduction 
1. Correlation-cutoff method and experiments with 9-variable coupled 

model 
2. Localization modeling with neural networks – successful assimilation 

experiments with global atmosphere-ocean coupled model 
3. Sudden and major change of dynamics found in coupled chaotic 

systems 
4. Summary and future directions 
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Outline 
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Yoshida, T., and E. Kalnay, (2018). Correlation-Cutoff Method for Covariance 
Localization in Strongly Coupled Data Assimilation. Monthly Weather Review, 
doi:10.1175/MWR-D-17-0365.1. 

0.   Introduction 
1. Correlation-cutoff method and experiments with 9-variable coupled 

model 
2. Localization modeling with neural networks – successful assimilation 

experiments with global atmosphere-ocean coupled model 
3. Sudden and major change of dynamics found in coupled chaotic 

systems 
4. Summary and future directions 



Mean squared error correlation for localization 
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Correlation-cutoff method 
Assimilate only observations whose background error is (on average) strongly 
correlated with the analysis variable’s background error 

Reduction of analysis 
error variance by single-
observation assimilation 

Relative accuracy of 
the observation to 

the background 

Squared background error 
correlation between the analysis 

variable and observable 



Model: Peña and Kalnay (2004) 

• Three chaotic Lorenz models with different timescales are coupled with each other 
• Shows chaotic coupled oscillations like ENSO in Ocean and Tropical Atmosphere 
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Ocean (slow) 
Tropical atmos. 

(fast) 
Extratropical atmos. 

(fast) 

Figure: Peña and Kalnay (2004) 



1. Run an EnKF DA cycle (offline cycle) 
2. Calculate background ensemble correlation 

for each pair of model variables and time 
3. Calculate its temporal mean squared 
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Obtain offline error statistics 
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Strong background error correlation exists 
only within each subsystem and between 
“tropical atmosphere” and “ocean” 



Different localizations for strongly coupled DA 
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Mean squared background 
error correlations 

Guided 
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 Weakly coupled 
(each subsystem is 
individually analyzed)  

Strongly coupled 
(observations are 
mutually assimilated)  



Experimental settings (9-variable model) 
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Observations 3 of 9 variables (𝑦𝑦𝑒𝑒,𝑦𝑦𝑡𝑡,𝑌𝑌) are observed at the end of 
each assimilation window (every 8 timesteps; 0.08 
nondimensional time units) 
Observation error of 1.0 for atmosphere, 5.0 for ocean 

Assimilation 
algorithm 

Local ensemble transform Kalman filter (LETKF) 
Every 8 timesteps 

Ensemble size 4, 6, or 10 

Covariance inflation Adaptive multiplicative inflation 

Localization 5 different ways as explained 

Experiment length 75,000 timesteps (last 50,000 timesteps are verified) 



Result: analysis RMS error 
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• Localization with the correlation-cutoff method achieved 
smallest error in essentially all experimental settings and 
components 

• Standard strongly coupled DA has larger error than  
weakly coupled DA when the ensemble size is insufficient 

Be
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Standard strongly coupled 
Adjacent 
Correlation-cutoff 
Atmos-coupling 
Weakly coupled 
Obs error (atmos) 
Obs error (ocean) 



Conclusion (Correlation-cutoff method with a 9-variable model) 

• The mean squared ensemble correlation helps to estimate the 
relevance between each analysis variable and observation 
› We can selectively couple the analysis only where the background errors are 

well-correlated: correlation-cutoff method 

 
• The correlation-cutoff method is tested with a 9-variable coupled model 

› Achieved better analysis accuracy than weakly coupled DA and standard strongly 
coupled DA, especially for limited ensemble sizes 
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Outline 
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0.   Introduction 
1. Correlation-cutoff method and experiments with 9-variable coupled 

model 
2. Localization modeling with neural networks – successful assimilation 

experiments with global atmosphere-ocean coupled model 
3. Sudden and major change of dynamics found in coupled chaotic 

systems 
4. Summary and future directions 



Localization in general (observation space) 
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Localization function in observation space 𝑔𝑔 ∘ 𝑓𝑓 

Localization weight 
  𝜌𝜌𝑖𝑖𝑖𝑖 (0 ≤ 𝜌𝜌𝑖𝑖𝑖𝑖 ≤ 1) Nonlinear 

regression 𝑓𝑓 
Increasing 
function 𝑔𝑔 

(cutoff function) 

Expected squared 
 background 

error correlation 
between (𝑥𝑥𝑥𝑥,𝑦𝑦𝑗𝑗) 

Some multivariate function 

Attributes of analysis variable 𝑥𝑥𝑖𝑖 
› Latitude/longitude/altitude 
› Analysis variable type 

 

Attributes of observable 𝑦𝑦𝑗𝑗 
› Latitude/longitude/altitude 
› Observation type 



Correlation-cutoff for a global coupled model 
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This can be done with 
neural networks and data 

from ensemble DA 

Localization function in observation space 𝑔𝑔 ∘ 𝑓𝑓 Attributes of analysis variable 𝑥𝑥𝑖𝑖 
› Latitude/longitude/altitude 
› Analysis variable type 

 

Attributes of observable 𝑦𝑦𝑗𝑗 
› Latitude/longitude/altitude 
› Observation type 

Localization weight 
  𝜌𝜌𝑖𝑖𝑖𝑖 (0 ≤ 𝜌𝜌𝑖𝑖𝑖𝑖 ≤ 1) Nonlinear 

regression 𝑓𝑓 
Non-decreasing 

function 𝑔𝑔 
(cutoff function) 

Expected squared 
 background 

error correlation 
between (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) 

I will first show the capabilities of neural networks 
and then data assimilation experiments 

Univariate 
function 

to be specified 



Toy “correlation functions” for demonstration 
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Multivariate error correlations 
under geostrophy 

Schematic from Kalnay (2003) 

Maps x, y to “correlation” 



Regression to “correlation functions” 
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Minimal neural networks, with 
appropriate predictors, 
can reproduce spatially extended 
“correlation functions” 
from noisy training data 

Superimposed numbers are RMS 
regression error to validation dataset 

𝑟𝑟 = 𝑥𝑥2 + 𝑦𝑦2  

𝜃𝜃 = arctan (𝑦𝑦/𝑥𝑥) 



Fast Ocean Atmosphere Model (FOAM; Jacob 1997) 

• Low-resolution, affordable global 
atmosphere-ocean coupled model 

• Simple processes of sea ice, land, and river 
are also modeled and coupled 

• Despite its efficiency, it reproduces realistic 
climatology and natural variabilities 
including ENSO 
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El Niño naturally appearing as the 
first empirical orthogonal function 
of monthly global SST 



Fitting error statistics of FOAM-LETKF 

24 

 
 

.............. 

......... 

Predictors 
- Distance 𝑟𝑟 
- Anl. level 𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎 
- Obs. level 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜 
- Anl. latitude 𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎 

Predictand 
(squared) 
background 
error correlation 

30 hidden 
units (tanh) 

Training data 
1. Run 1-year weakly coupled 

LETKF cycle (offline cycle) 
2. For each pair of analysis 

variable and observation types, 
8×106 training data are 
randomly sampled from the 
offline cycle 

Neural networks 
For each analysis variable and 
observation types, a two-layer 
neural network is trained 

Squared correlation is used for correlation-cutoff, but regression 
to raw error correlation is also shown for demonstration 

10 types of analysis variables/observations: 
Ps, T, Q, U, V (atmosphere) 
Ptop, T, S, U, V (ocean) 
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Correlation-cutoff method for FOAM 
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Localization function in observation space 𝑔𝑔 ∘ 𝑓𝑓 
Attributes of analysis variable 𝑥𝑥𝑖𝑖 

› Analysis variable type 
› Latitude 𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎 
› Altitude 𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎 

Attributes of observable 𝑦𝑦𝑗𝑗 
› Observation type 
› Horizontal distance 𝑟𝑟 (from 𝑥𝑥𝑖𝑖) 
› Altitude 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜 

Localization weight 
  𝜌𝜌𝑖𝑖𝑖𝑖 (0 ≤ 𝜌𝜌𝑖𝑖𝑖𝑖 ≤ 1) Nonlinear 

regression 𝑓𝑓 
Increasing 
function 𝑔𝑔 

(cutoff function) 

Expected squared 
 background 

error correlation 
between (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) 

Estimated <B-corrij
2> 
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Neural networks 
discussed so far 



DA cycle experiments (OSSE) 
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Cross-localization 
used for Control 

(Frolov et al., 2016) 

Cutoff Control 

Localization 

Correlation-cutoff 
as in previous slide.  

No observations beyond 
3000 km and 16 levels 

are evaluated 

Horizontally 
1000 km (atmos) and  

400 km (ocean), 
vertically 3 

model levels 

Analysis 64-member strongly coupled LETKF with 
incremental analysis update. 24-hourly 

Covariance 
inflation 

Relaxation to prior perturbations, 
30% (atmos) and 90% (ocean) 

Analysis 
variables 

Atmosphere: T, Q, U, V, Ps 
Ocean: T, S, U, V, Ptop 

Period One model year (from January 1) 
(first 30 days are omitted from evaluation) 

Simulated 
Obs. network 



Control vs Cutoff  Vertical level - RMSE (time/space average) 
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Atmosphere: smaller error everywhere 

Better 
(smaller error) 

T Q 

U V 

T S 

U V 

Ocean: larger error 

Black: Control 
Red: Cutoff 

Solid: Background (24h forecast) – Truth 
Dotted: Analysis - Truth 



From Control vs Cutoff comparison 
• Neural is consistently better than Control in the atmosphere 

› If the training data is accurate, the correlation-cutoff method works as 
expected 

• Ocean, especially in deeper ocean, Cutoff is worse than Control 
› Since the 1-year offline experiment is not long enough for deep ocean to provide 

sufficiently independent samples, two tunings are made: 
• Ocean analysis below ~2300 m (unobserved depth) is turned off 

• Further, localization weights to ocean analysis variables are halved 

› Cutoff-tuned experiment 
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Vertical level - RMSE (time/space average) 
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Black: Control 
Red: Cutoff-tuned 

T Q 

U V 

T S 

U V 

Better 
(smaller error) 

Atmosphere: remains better Ocean: now comparable to Control, 
improvements near surface 

Solid: Background (24h forecast) – Truth 
Dotted: Analysis - Truth 
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Background (24h Forecast) errors 

Psurf 
(hPa) 

Tsurf 
(K) 

Qsurf 
(g/kg) 

Usurf 
(m/s) 

Vsurf 
(m/s) 

U250hPa 
(m/s) 

V250hPa 
(m/s) 

SST 
(K) 

SSS 
(PSU) 

SSH 
(m2/s2) 

Usurf 
(cm/s) 

Vsurf 
(cm/s) 

Atmosphere Ocean 

RMSECutoff-tuned – RMSEControl 



Conclusions (localization modeling with neural networks) 

• Correlation-cutoff method works well in global atmosphere-ocean DA 
› We employed neural networks for a generic nonlinear regression method 
› Substantial improvement in the atmosphere for every level and variables. 

Largest improvement is in the tropics, where variable localization between mass 
and wind fields should be important 

› Internal ocean needed tuning possibly because its timescale is longer than the 
offline experiment 

• Evaluation of neural networks takes ≤10% of analysis time 
› Indirect increase of computation inherent to variable localization exists 

• We have also shown mathematical validity of the method 
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Future directions of correlation-cutoff method 
• Better understanding and representation of ocean 

› Combined with tuned distance-based localization 
› Longer DA cycle used for sampling the training data 
› Detection of “unreliable” statistics used in the training 

• Thorough experiments with smaller models 
› Better cutoff function and its theoretical optimum 
› Dynamic balance of analysis 
› Iterative or online update of localization function 

• Application to more realistic configurations and Earth system models 
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Outline 
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0.   Introduction 
1. Correlation-cutoff method and experiments with 9-variable coupled 

model 
2. Localization modeling with neural networks – successful assimilation 

experiments with global atmosphere-ocean coupled model 
3. Sudden and major change of dynamics found in coupled chaotic 

systems 
4. Summary and future directions 



Lyapunov exponents 

• Atmosphere and ocean are said to be 
chaotic when small error in the initial 
conditions will grow exponentially 

• Lyapunov exponents are the long-term 
average growth rate (or decay rate) of 
errors to the first order 
› Chaotic dynamical systems have positive 

Lyapunov exponents 
› Can be estimated numerically 

35 Figure courtesy Kalnay (2003) 

In phase space 



ENSO-type model of Peña and Kalnay (2004) 
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(fast) 
Tropical 

atmosphere 

(slow) 
Ocean 

𝑥𝑥𝑡𝑡 ,𝑋𝑋: Rotational convective motion 

𝑦𝑦𝑡𝑡 ,𝑌𝑌: Horizontal T difference between 
ascending and descending currents 

𝑧𝑧𝑡𝑡,𝑍𝑍: Vertical T profile distortion 

Each Lorenz subsystem represents 
chaotic convective fluid 

• Convective motion (𝑥𝑥𝑡𝑡,𝑋𝑋) and thermal 
gradients (𝑦𝑦𝑡𝑡,𝑌𝑌) and (𝑧𝑧𝑡𝑡,𝑍𝑍) are coupled 
respectively 

• 𝛼𝛼 = 1 in the original coupled model 

Figure courtesy Barna et al. (2017) 



Uncoupled vs coupled models 
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In uncoupled limit,  
the 6 exponents 
originate from 
atmos/ocean 
 
0.91 (atmos) 
0.091 (ocean) 
two 0’s (atmos/ocean) 
-1.5 (ocean) 
-15 (atmos) 

In coupled limit, the 
model’s 6 exponents 
are 
 
0.32 
0 
-0.47 
-0.79 
-1.8 
-12 

?? 



Series of models coupled incrementally 
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• Sudden change of Lyapunov spectrum at α ~ 0.22 
› (From left to right,) largest positive exponent 

originating from the “Tropical atmosphere” suddenly 
disappears and another near-zero mode appears 

› With α < 0.22, the model is qualitatively like the 
uncoupled model: continuous change of Lyapunov 
spectrum from α = 0, two neutral exponents 
corresponding to temporal translation 

› With α > 0.22, the model behaves as if an integrated 
chaotic system: with single neutral exponent 
corresponding to temporal translation 



Attractors before/after the critical coupling strength 
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α = 0.0 α = 0.2 α = 0.3 α = 1.0 

Bottom: The ordinate ranges shown are xt, yt ∈ [−25,25]; zt ∈ [0,60]; X, Y ∈ [−100,100]; and Z ∈ [−70,130]. 

α ~ 0.22 



Discussion – change of dynamics in coupled systems 

• A few parameter bifurcations exist, and we cannot trace Lyapunov 
exponents even if we continuously change the coupling strength 
› Similar to “synchronization of chaos” observed for coupled two or more similar 

dynamical systems 

• This physically means that coupling can qualitatively stabilize some 
modes (and probably also destabilize in other systems) 
› Possibilities for regime changes, for example, the momentum coupling strength 

of mixed and boundary layers depends on vertical stratifications 
› Parameter estimation can be difficult due to discontinuous relationship between 

observed quantity and parameter 
› Severe misrepresentation of uncertainty with mis-specified model/parameter is 

possible 
40 



Outline 
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Summary of thesis 
1. Correlation-cutoff method – experiments with 9-variable coupled model 

› We have obtained the metric of “relevance” between analysis variables and observations 

› Our correlation-cutoff method improved the analysis of coupled 9-variable model 

2. Localization modeling with neural networks – successful assimilation experiments 
with global atmosphere-ocean coupled model 
› Neural network enabled the implementation of the correlation-cutoff method to global 

atmosphere-ocean coupled model with realistic computation cost 

› Proof-of-concept experiments showed improved atmospheric analysis, especially in the tropics 

› We have tuned ocean analysis, and suggestions are made for further improvements 

3. Sudden and major change of dynamics found in coupled chaotic systems 
› Dynamics of coupled model can discontinuously depend on the coupling strength 

› Implications for uncertainty estimate, regime change, and parameter estimation 
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Future directions of coupled DA 
• Apply these methods to strongly coupled CFS-LETKF in collaboration 

with Eugenia Kalnay, Travis Sluka, and UMD-AOSC students 
• Error growth of coupled system should be more thoroughly examined 

› E.g., resolution dependencies of error growth and stability of uncoupled/weakly 
coupled DA cycles 

› We have partially tackled this problem in another collaborative work 
(Penny et al. 2019) 

• Data assimilation does not only improve state estimate but also enables 
› Detection and correction of model error (e.g., Bhargava et al., 2018) 
› Estimation of observation impact on forecasts (e.g., Chen and Kalnay, 2019) 

    ⇒ Coupled DA will provide these by-products for coupled predictions 

43 



Acknowledgements 
• Prof. Eugenia Kalnay for guiding me in every aspect of research 

• Prof. Stephen G. Penny for sharing best knowledge on coupled DA 

• Profs. James A. Carton, Brian Hunt, and Dr. Safa Motesharrei for valuable feedback 

• Ms. Tammy Hendershot for making all the necessary arrangements 

• Prof. Kayo Ide for organizing Weather and Chaos meetings and other events 

• Drs. Yun Liu, Travis Sluka, Sreenivas Pentakota, Cheng Da, and Eviatar Bach for programs and data 

• Drs. Takemasa Miyoshi and Daisuke Hotta for being my role models 

• Drs. Tse-Chun Chen and Kriti Bhargava, Luyu Sun, and Chu-Chun Chang (and people mentioned 
above) for discussions 

• Open source projects and Department of IT for infrastructure 

• Japanese Government, Burgers program, and Ann Wylie Green fund for financial support 

• Many people helped our personal lives in US 

• My wife Rie for patience and encouragements, my son Itsuki for peace of minds 

 44 



Backup slides 
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Localization and assimilation of averaged observations 
(analogy to the superobbing) 

Spatial representation error Temporal representation error 

Relative 
advantages 

Countermeasure 1 
Inflate R matrix so that it includes 
representation error as well as 
instrument error 

Countermeasure 1 
Inflate R matrix so that it includes temporal 
representation error as well as instrument 
error (Equivalent to R-localization of LETKF) 

✓We can use the same 
analysis interval for 
fast/slow systems 
✓Observation network 
can be nonstationary 

Countermeasure 2 
Spatial average of observations 
(superobs) 

Countermeasure 2 
Temporal average of observations 
(Huntley+ 2010, Tardif+ 2014/2015, Lu+ 
2015ab) 

✓ We can save analysis 
cost 

Bottom line: both localization and averaged observations can handle the same problem. 
Images from Janjic et al. (2018) 



Computation cost is acceptable 
• Sampling 

› 1E+9 pairs total for 100 pairs of variable types 
› Several hours with a single processor. Parallelizable 

• Learning 
› 8E+6 samples × 3 epochs for each pair of observation and 

analysis variables 
› Tens of minutes with a single processor. Parallelizable 

• Evaluation of a neural network 
› O(100p) floating point computation for each analysis variable. 

This is less than LETKF’s cost O(k3 + pk2) 
(p: # of local observations, k: ensemble size) 

47 

Except for IO, the 
training cost will be 
almost independent 
of model resolution.  



Why neural network? 
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• We need less prior knowledge 
than other regression methods 
› With recent advancement of its 

methodology, it can be used as an 
almost end-to-end method 

• Fast to evaluate once trained 
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