A New Measure of Ensemble Central Tendency

Jie Feng, Jing Zhang

School of Meteorology, the University of Oklahoma, Norman, OK, USA

Acknowledgements: Zoltan Toth, Malaquias Peña, Sai Ravela, Xiaqiong Zhou, Yuejian Zhu Funded by DTC Visitor Program

07/02/2019 EMC seminar

Outline

- Background
 - Pros and cons of traditional arithmetic ensemble mean (AM)
- Motivation
 - How to improve AM?
- Feature-based mean (FM)
 - Technique and method
- Compare AM and FM
- Summary and discussion

Arithmetic Ensemble Mean

https://severe.worldweather.wmo.int/TCFW/RAIV_Workshop2016/12 _EnsemblePredictionSystems_EricBlake.pdf

Advantage

- AM without exception performs better than the control
- In the past two decades, AM gained significant use in weather forecasting

- AM offers a nonlinear filter of unpredictable forecast features across ensemble members
 - $\circ~$ RMSE below that of individual forecasts

Disadvantage

How to improve AM?

Schematic

How to estimate and adjust the position displacement?

Fundamental tool : Field alignment (Ravela, S., 2007a, b, 2012)

- DTC Code Repository
- Variationally estimate a smooth 2D displacement vector btw two displaced fields
- Adjust one field by these displacement vector

Peña et al. 2017

Figure 1. GEFS control member forecast and the GFS analysis valid at September 6, at 12Z. A star and dot in panel (a) indicates the analyzed vs. forecast central position of Hurricane Katia.

1. Compute DV btw En_i and each of the *N* members by using FA technique

 Compute DV btw En_i and each of the N members by using FA technique
Calculate the average (**D**_i) of these DVs

4. Repeat 1-3 for each member of the ensemble

Data and experimental setup

Data : GEFS operational forecast data with 1°×1° resolution, randomly selected 20 members Sample: 10/01 – 10/25 2013 with 24-hr interval, totally 25 cases Lead time: 10-day forecasts with 24-hr interval Variable: Geopotential height at 500 hPa Verification: Control analysis as a reference

Example of the adjustment of ensemble fields

Sample Mean RMSE and PAC of AM and FM

Solid: ens mean Dash: mean of each member Bar: range of member error

- AM and FM are very similar (bad news!)
 - AM seems to be "effective" to reduce errors
- Mean member error of FM is significantly better than that of AM
 - Probably lower
 - positional errors
 - o But much

smaller spread

AM and FM in one case (7-day lead time)

- Old members have large positional and amplitude deviations
- Trough and ridge in new ones are aligned to similar positions
- FM has much larger amplitude than AM, much closer to ana.

Mean Amplitudes (climatology removed)

Sample mean of grid amplitude for three categories of events (selected by AM)

FM fcst has larger amplitude (or variance) than AM for all three categories
6-10% increase beyond 6 days.

Forecast Skill for Extreme Events (>1.5 StD)

Normalized Power Spectrum of Ens Mean

- AM smooths out small to medium scale features with increasing lead time
- FM fcsts present more medium and small scale features than AM
 - Especially for mediumrange fcsts

Summary

- FM aligns features of individual members to their mean position, then computes the mean amplitude
- FM performs better than AM in predicting extreme events
 - Maximum 6-10% RMSE reduction at 6-8 day lead time
 - Continuous improvements beyond 3 days
- FM shows larger amplitude in forecasts
 - 6-10% beyond 6 days
- FM forecasts recognize more medium to small scale features than AM

Discussion

- Computational efficiency
 - Easy parallel computing
 - Each member is processed in a single core
 - ~ 1 min to calculate the DV btw two fields, e.g. 20 mems = 20 mins & 20 cores for one field and lead time
 - Effective for medium-range forecasts, peak at ~7 day
 - Used for only 4-9 days?
 - Use the DV as a first guess for next lead time
 - Matlab code -> Fortran code?
- Future work
 - Other variables, precipitation, hurricane intensity and track forecasts?
 - Field alignment more or less affects the amplitude, how to make a "clean" position adjustment?

Thank you!

Normalized Power Spectrum of Each Member

- FM members do not loss any scale
 - $\circ~$ Not aligned to AM
 - Probably smaller positional errors