

Advancing U.S. Operational Weather Prediction Capabilities in the Next Decade (with Exascale HPC)

Mark Govett

NOAA Earth System Research Laboratory

Global Systems Division

Boulder Colorado

NCEP Seminar

May 21, 2019

and the second

Carpones de 15

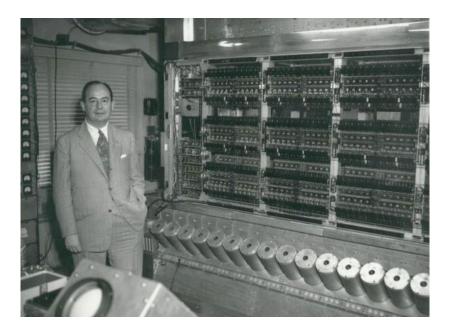
2019-2022 Strategic Goals

We cannot do it alone; teamwork and partnerships are essential for success.

We strive for excellence, continuously improving our science and engineering for mission performance.

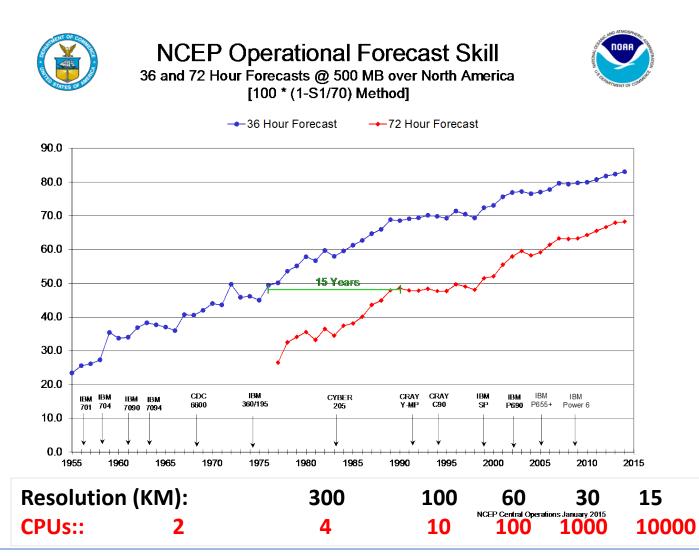
NOAA'S National Weather Servicedvancing U.S. Operational Weather Prediction in the Next Decade

HPC & NWP



John von Neumann posing with the ENIAC computer, 1946

photo courtesy of NOAA



NWS Weather Forecast Models (2019) constrained by HPC

Higher resolution means smaller domain and shorter forecasts

- <u>Global</u>: Global Forecast System (GFS) (28 KM)
 - Weeks: 0 16 day forecasts, 4x / day
- <u>Regional</u>: North American Model (NAM) (12KM)
 - Days: 84 hours, 4x/day
- <u>Regional</u>: High Resolution Rapid Refresh (3KM)
 - Hours: 36 hours, 24x/day

Atmosphere Total Ozone [Dobson] 00712.0022+000Hrs

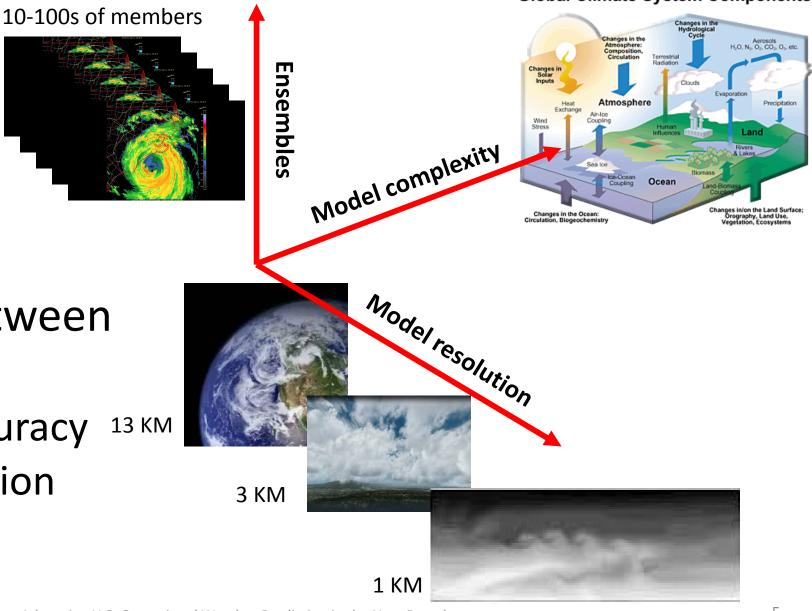
HRRR

NAM

Global Weather System Components

Global Climate System Components

Improved Weather Prediction



is a tradeoff between

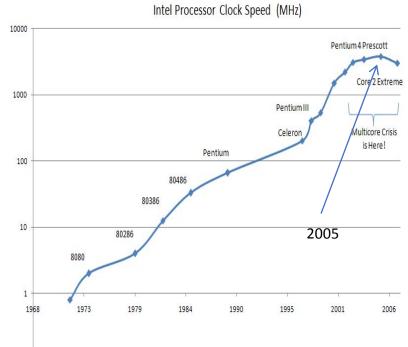
- Computing
- Scientific Accuracy 13 KM
- Time-to-solution

Computational Challenges

- Processors are not getting faster
 - Doubling of resolution requires 8X more processors
- ESPC HPC Working Group: 2016 -
 - NOAA, NASA, DoE, DoD Navy, NCAR
 - Discuss HPC challenges, limitations for weather & climate applications

"HPC architectures are developing in the wrong direction for stateheavy, low computational intensity (CI) Earth system applications." "NWP applications average less than 2% of peak performance, constrained by their ability to perform sufficient calculations for each expensive access to memory."

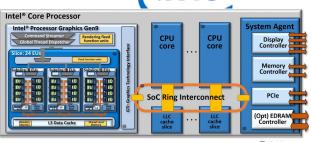
Carman, et al. "**Position Paper on High Performance Computing Needs in Earth System Prediction**." National Earth System Prediction Capability (ESPC) program. April 2017. <u>https://doi.org/10.7289/V5862DH3</u>

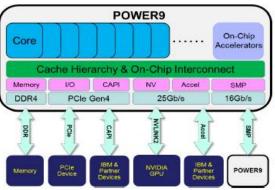


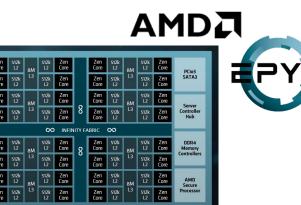
(intel)

Processor Technologies

- CPU, GPU TPU, FPGA, ARM
- Diversity
 - Processor
 - Clock speed, energy consumption
 - 10's to 1000's of cores
 - Single, double, half precision
 - Memory
 - Size, speed, type
- Burden on compilers, libraries
 - Portability
 - Performance
 - Interoperability

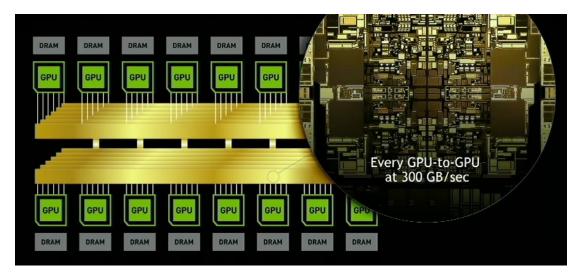






Compute Nodes

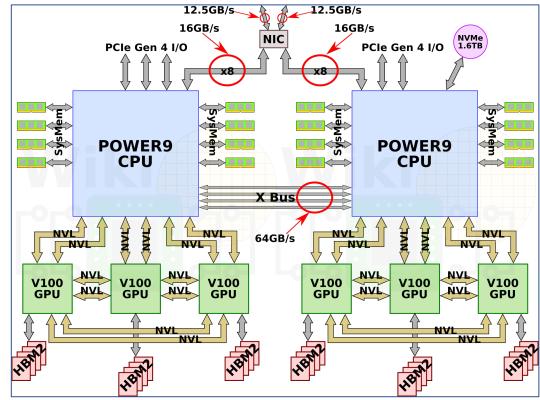
- Standard is a dual-socket CPU
- Increasing complexity, more processors
 - CPU: 100's of cores
 - GPU: 10000 80000 cores



NVIDIA DGX-2: 16 Tesla V100 GPUs, (81K GPU, 10K Tensor cores)

- 1.5 TB DDR4 RAM, 500 GB HBM2, 10kW power
- 300 GB/s NVLINK
- PCIe Gen3, 8x EDR IB / 100 Gigabit Ethernet 5/21/19
 Adv

Summit Node (DoE / ORNL)



DOE Summit node:

- IBM Power9 CPU, 6 V100 GPUs, 30K GPU cores
- 512 GB DDR4 RAM, 96 GB HBM2
- NVLINK, 50GB/s bandwidth per link
- PCIe Gen 4 (16GB/s) for inter-node, I/O

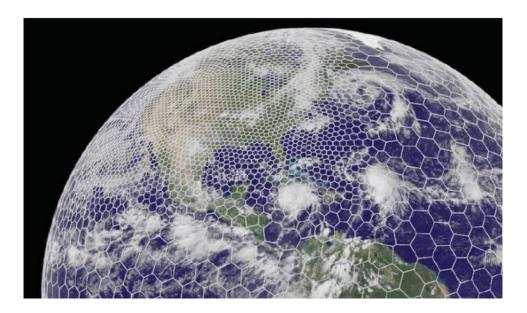
Summit System: 4600 nodes, 27K GPUs

Advancing U.S. Operational Weather Prediction in the Next Decade

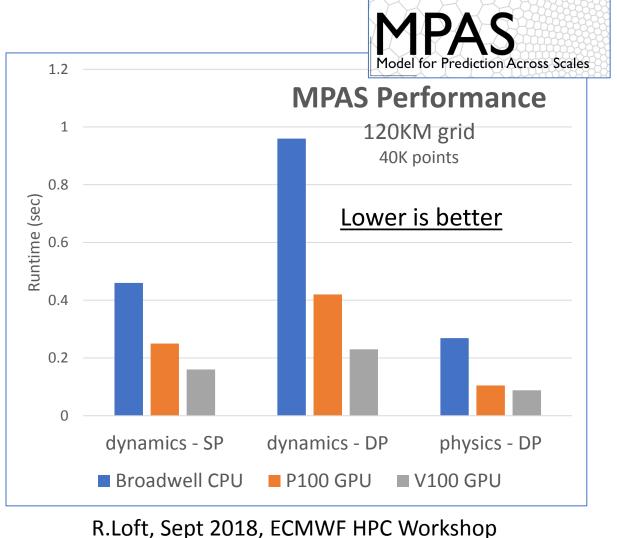
Application Performance – Single Node

MPAS model developed at NCAR adopted by IBM Weather Company

- GPU is 3X faster than CPU (Volta versus Broadwell)
- Directive-based, performance portable

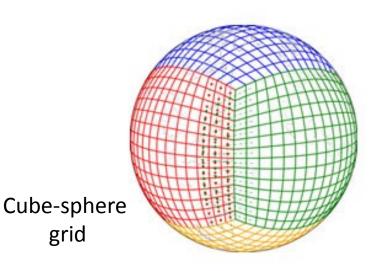


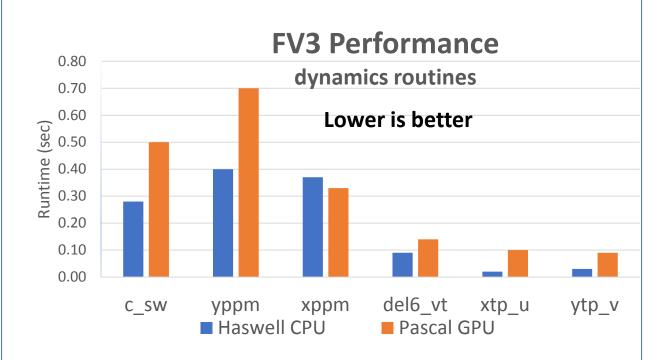
5/21/19



FV3 Performance – Single Node

- Designed for CPU,
 - 10% of CPU peak
 - Efficient use of cache memory
- Slower on GPU
 - Not performance portable
 - Code changes slowed down CPU
- Inefficiencies
 - Limited fine-grain parallelism
 - Non-uniform cube-sphere grid
 - Pervasive edge & corner calculations
- Ongoing efforts to address GPU performance challenges

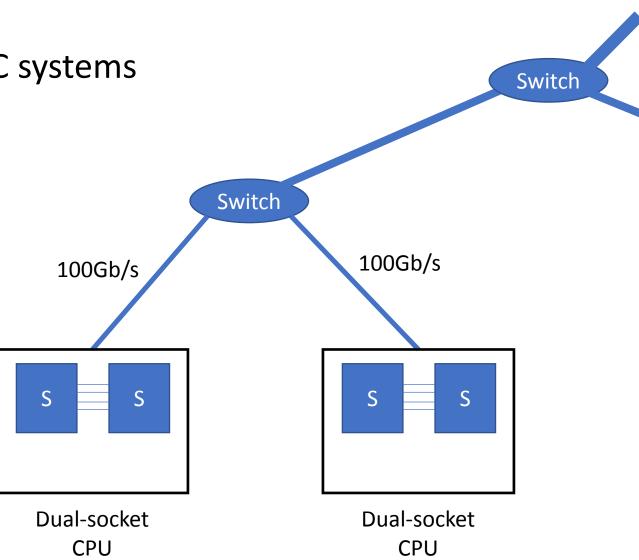


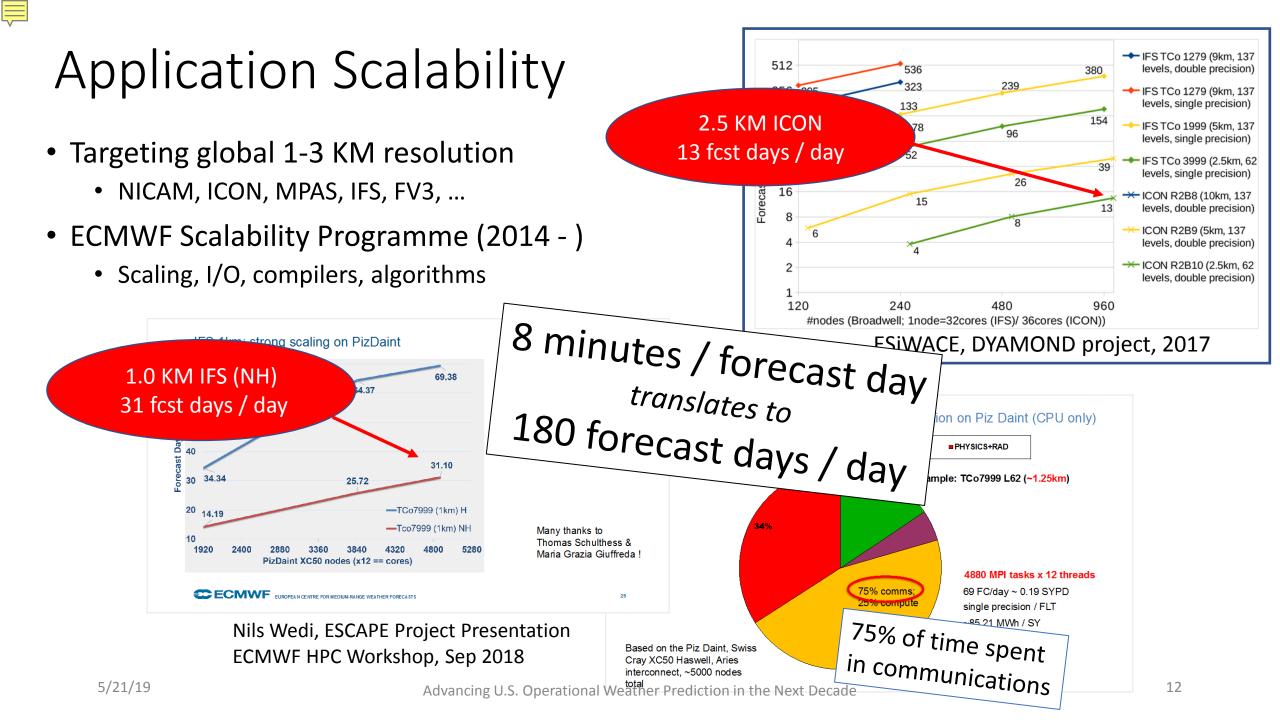


M. Govett, June 2018, PASC Symposium

Inter-node Communications

- Inter-connect required for large HPC systems
 - Weakness in system deployments
- MPI communications
 - Pack message buffer
 - Inter-process communications
 - Unpack message buffer
- Scalability a big challenge for application performance





FV3 Scalability Projections

<u>Perfect scaling</u>: 2X increase in resolution requires 8X more compute cores

	∆x (km)	deep Conv	big_∆t (sec) (Slow physics)	L2E (sec) (intermediate physics)	Acoustic (sec) (Fast-physics)	Cores needed to meet NWP requirement* (estimated, minimal I/O)
C768_L63*	13	ON	225	225	18.75	3,000
C768_L63	13	OFF	225	225	18.75	3,000
C1536_L91	6.5	OFF	225	112.5	9.375	30,000
C3072_L91	3.25	OFF	225	56.25	4.5	240,000
			1	I I		

FV3GFS Scaling - Estimate

3 KM resolution, 5 day forecast Weak Scaling to increase resolution

Operational Requirement: 10 day forecast in 1.25 hours (5 days in 2250 seconds)

	Actual Performance		Estimated Performance	
Resolution	28 KM	13 KM	6.50 KM	3.25KM
Time Step	225 sec	112.5 sec	56 sec	28 sec
CPU Nodes	64	256	1024	4096
CPU cores	1536	6144	24576	98304
Total Time	1094	1916	3357	5880
Dynamics	560	792	1120	1584
Communications	440	710	1146	1851

Runtimes in seconds for a 5 day forecast, NOAA theia system with 24 core Haswell nodes 5/21/19

Advancing U.S. Operational Weather Prediction in the Next Decade

FV3GFS Scaling - Estimate

3 KM resolution, 5 day forecast Strong Scaling to reduce runtime

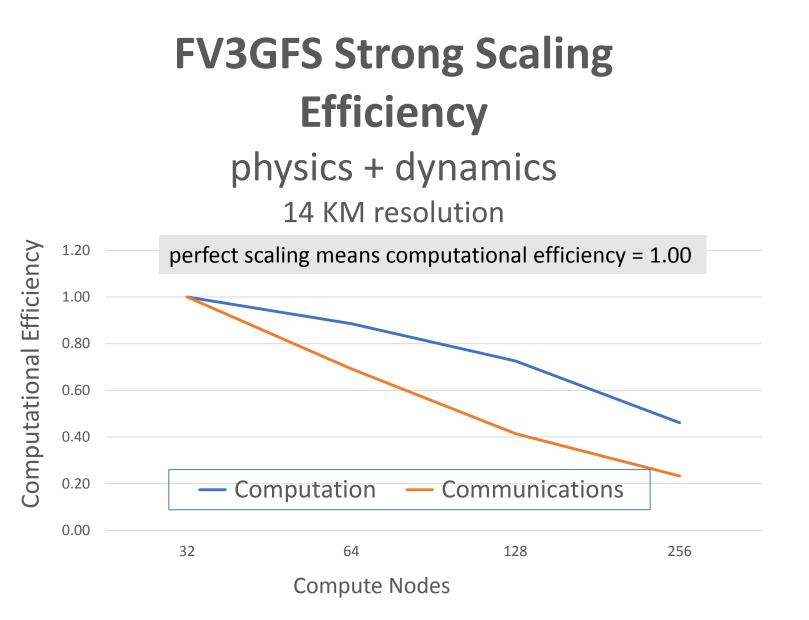
Operational Requirement: 10 day forecast in 1.25 hours (5 days in 2250 seconds)

Tile Size / MPI	48 x 48	24 x 48	24 x 24
CPU Cores	98,304	196,608	393,216
Total Time	5880	3962	2095
Dynamics	1584	1275	643
Communications	1851	1390	801
Estimated perform	ance, NOAA theia syste	em: 27,000 cores, 24 F	laswell cores / node

- 393,216 cores = 16,384 CPU nodes
- **30% of runtime is for inter-process communications** 5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade

Scaling Factors

- Computation
 - Parallelism
 - Algorithms
 - Model grid
- Communications
 - Frequency
 - Data volume
 - Overlapping



Summary on Computational Issues

- Traditional computing is not sufficient to run existing global operational models (ICON, IFS, FV3) at cloud-permitting (3KM) or finer scales
- GPU processors can help
- Scalability remains a big concern

Data Challenges

Data is only useful if it's used **Observations Data Assimilation** Prediction Output Distribution Dissemination

Observations

- We have more data than we can use
 - GOES, JPSS, cubeSats, nanoSats
 - Radar, balloons, ships, planes
- Tremendous potential
 - Autos, cell phones, sensors, ...

GPS satellite

Space-Based

Instruments

Occultations

Ground-Based Instruments

National Doppler Radar Sites Select radar location and click. Requires Java/Javascript

- 2012-2017: GOLY 1 90 ES-14, GOES-15 Scans every 3 hours, 10 bit precision gused

 - 1 visible band @ 1KM



- - Scan every 15 minutes, 14 precision
 - 14 spectral bands @ 2KM resolution
 - 2 visible bands @ 0.5KM resolution
 - High-res nest every 30-60 seconds

water vapor image

GOES West

137.2°w

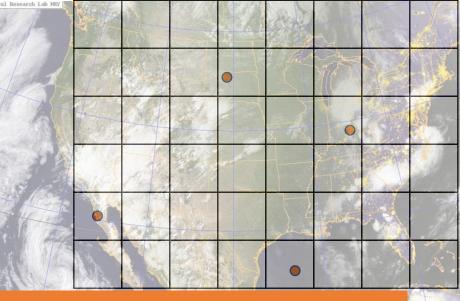
GOES East

75.2°w

Data Assimilation

- Improve initial state of the forecast model
 - Variational, ensemble, hybrid approaches
- Complex, computationally expensive
 - ~3X lower resolution than prediction model

GOES-15: 4 KM resolution IR, 1 KM visible <u>Data Thinning</u>: currently use 1% of data

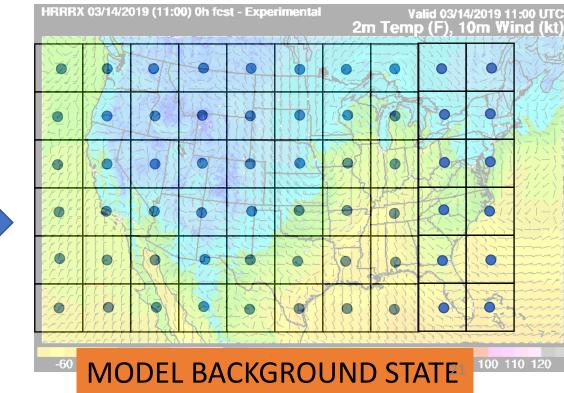


OBSERVATIONS: GOES-15 Data

Calculations

- Estimate model error, observation error
- Interpolate model to observation
- Adjust nearby grid points, other model fields (winds, temp, ...)

HRRR: 3 KM resolution, 2M temperature

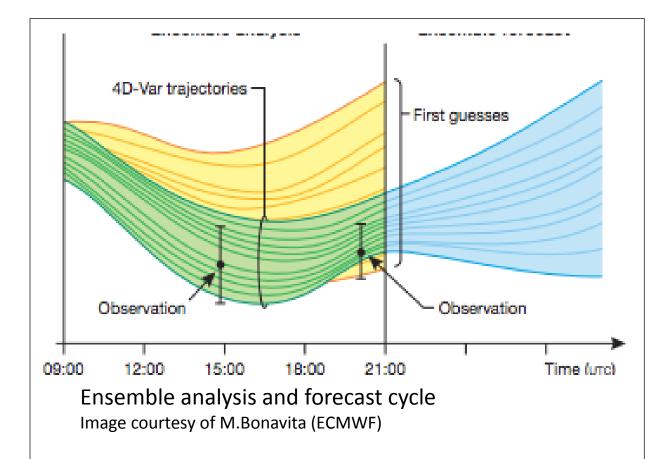


vancing U.S. Operational Weather Prediction in the Next Decade

update

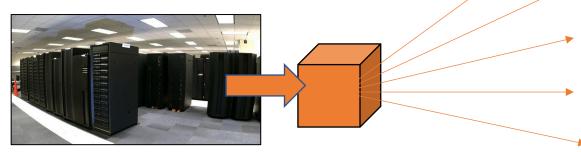
Data Assimilation: Computational Issues

- 3D Ensemble Based Assimilation
 - Computational & I/O limitations
 - Only afford 10's of members
 - 3-10X lower resolution than model
- 4D Variational Assimilation
 - Higher accuracy
 - TL & ADJ are required
 - ~3X slower than 3DVAR methods
- Hybrid EnKF & 4DVAR solutions
 - IFS, UK-Met, ...



Data Distribution

- Diverse user requirements
 - Global, regional, local
 - Observations & products
- NWS AWIPS
 - NOAA network is saturated
- Everyone gets same data



AWIPS Workstation

NWS Forecast Offices Hurricane Prediction Center Storm Prediction Center National Water Center Aviation Weather Center Fire Weather Centers

State, Local, Public - Floods, fire, winds, hail, ...

NWS office

data center

model output

Advancing U.S. Operational Weather Prediction in the Next Decade

users

Model Output: 14KM to 3KM resolution

• Each 3D variable: pressure, temperature, moisture, winds,

Resolution (KM)	Vertical Levels	Number of Grid Cells (Millions)	Total Cells (Billions)	Increase in Cells	Per field storage (SP)
14 (1x)	64 (1x)	3.5 (1)	0.25	1x	1 GB
3.5 (4x)	128 (2x)	56.6 (16)	5.4	21x	21 GB

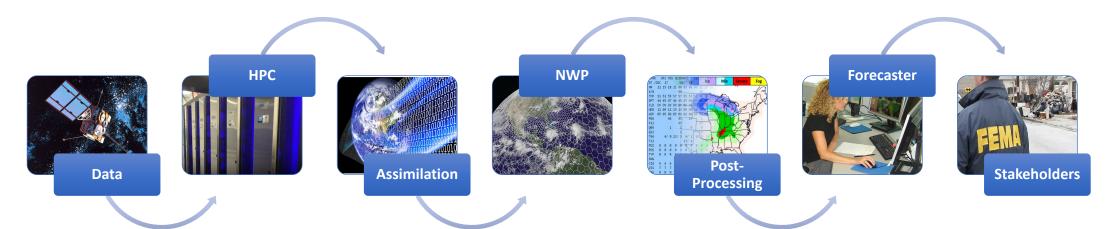
 Model output: 	<u>per run</u>
14KM - 10 model fields, 6 hourly output, 10 day forecast	400 GB

3KM - 10 model fields, 3 hourly output, 10 day forecast 21.8 TB (52X)

State of Operational NWP (2019)

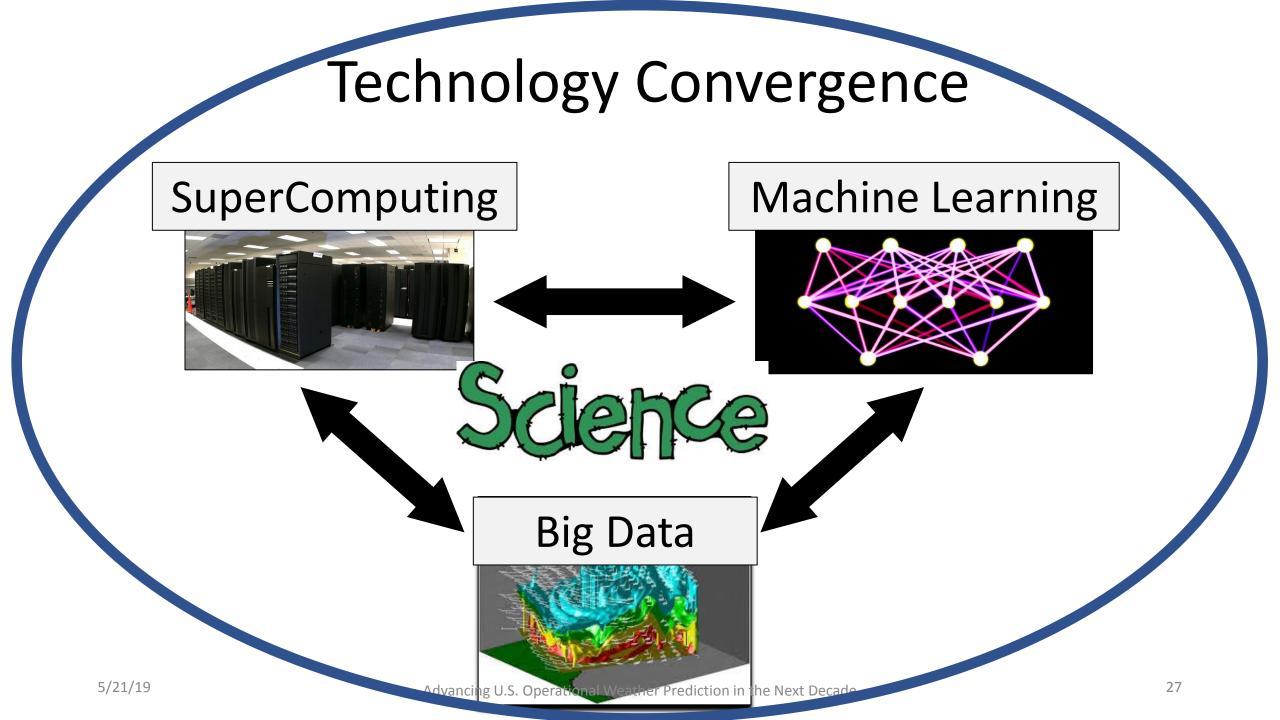
- Exceedingly difficult to run operational 3KM
- HPC
 - No expected increase in processing speed
 - Limited increases in memory speed
 - Parallelism & scalability limitations
 - Operational time-to-solution constraints
- Data
 - Too much data to process
 - Too many observations to use
 - Too large to distribute

3 KM



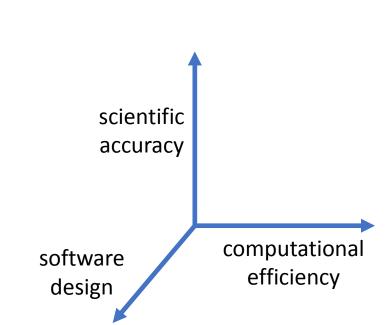
Advancing Weather Prediction in the next decade

Utilize new technologies Improved models Better data handling Manage software complexity



#1 Improve Model Performance

- Evaluate models (algorithms, grids, integration) for scientific accuracy <u>AND</u> computational efficiency
- Incorporate parallelism at all levels
- Minimize inter-process communications
- Improve I/O capabilities
- Re-architect, rewrite model



Weather Prediction Models - dynamics -

- What are the best models, approaches for emerging HPC
 - Algorithms, grids, time-step, physics, etc.
 - Computational efficiency, scalability, portability

Model Type	Horizontal Grid	Time-Step	Staggering	Models
Finite-volume	Cube-sphere	SISL	A-grid, C-grid, D-grid	FV3GFS
Finite-volume	Icosahedral	HEVI	A-grid	NICAM
Finite-volume	Icosahedral	HEVI	C-grid	MPAS, ICON
Finite-element	Cube-sphere	SISL	C-grid	LFRiC
Spectral-element	Cube-sphere	HEVI	No staggering	NUMA, Neptune, KIM
Spectral	Polar	HEVI	No staggering	IFS, GFS

G.Mengaldo, et.al., Current and Emerging Time-integration Strategies in Global Numerical Weather and Climate Prediction, https://doi.org/10.1007/s11831-018-9261-8

Dwarf Development with GeoFLOW

Duane Rosenberg, Bryan Flynt, NOAA ESRL, 2018-2019

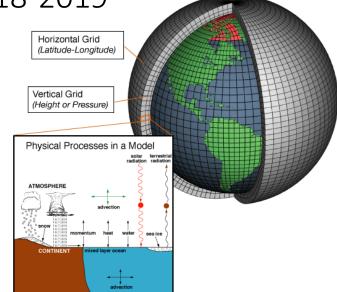
- GeoFLOW is an application framework to simplify dwarf development in order to evaluate computational efficiency vs scientific accuracy of various approaches
- C++ objects to define communications, grid, discretization & time-stepping operators
- Evaluate for 1-3KM global resolution on CPU, GPU, ARM, ...

Icosahedral Finite Volume (IFV)

- Low order/low accuracy
- 2D, 3D control volumes
- Icosahedral grid
- Deep communication
- staggered (Arakawa) centering •
- Explicit time step

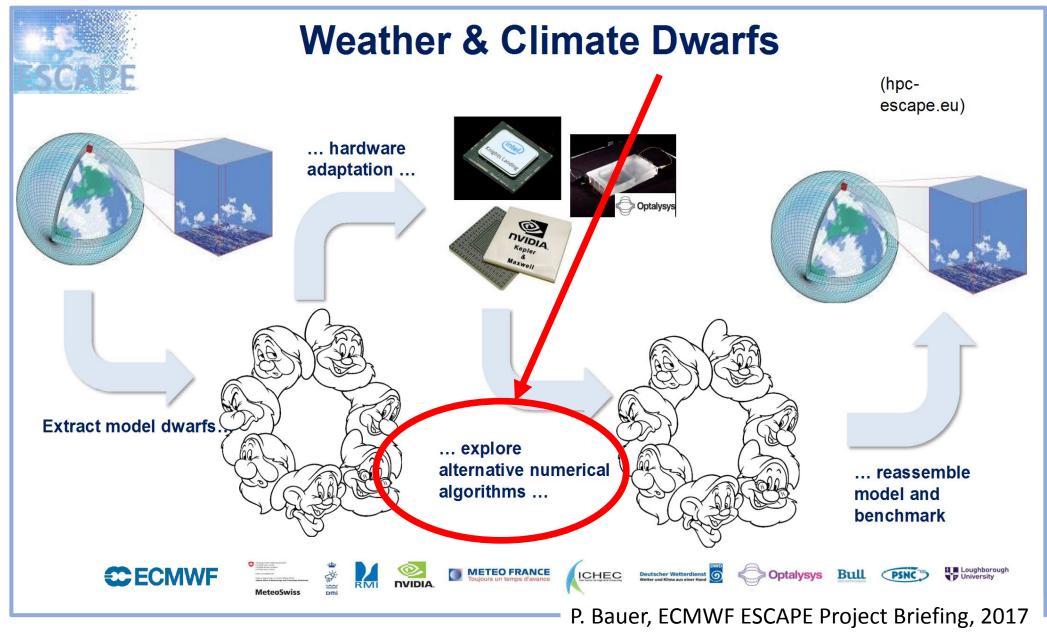
Spectral Element (CG, DG)

- High order/high accuracy
- 2D, 3D elements
- Cube-sphere grid
- Shallow communication
- Un-staggered centering
- Explicit & semi-implicit time step



Focus Areas Advection + Convection + Radiation +

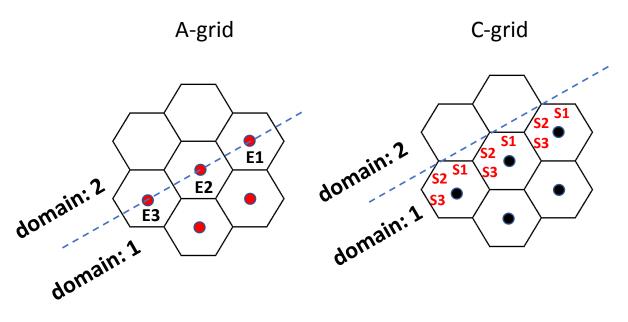
. . .



Shallow Water Dwarf: A-grid versus C-grid staggering Yonggang Yu, Ning Wang, Jacques Middlecoff, NOAA ESRL, 2018-2019

Evaluate performance, scaling and scientific accuracy

- Develop shallow water model for Agrid and C-grid with identical design, grid construction, optimizations, ...
- Replicate published dynamical core idealized test results for A-grid (NICAM), C-grid (MPAS)
- OpenMP, OpenACC, MPI parallelization
- Performance & scaling comparison at 1-3 KM resolution
 - CPU, GPU, ...

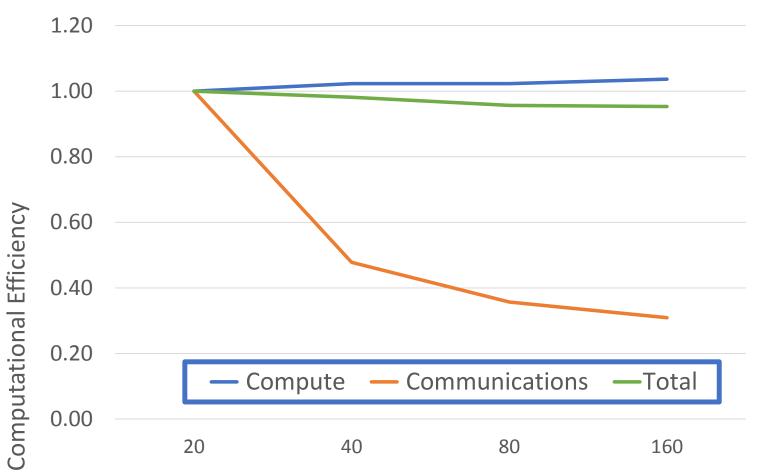


Scaling Patterns

- Computation
 - Good parallelism
 - Icosahedral grid
 - Efficient algorithm
- Communications
 - Minimal frequency
 - Low data volume
 - Some overlapping

Advection Dwarf

- dynamics only -28 KM resolution

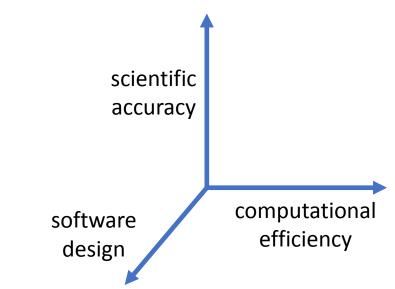


Weather Prediction Models

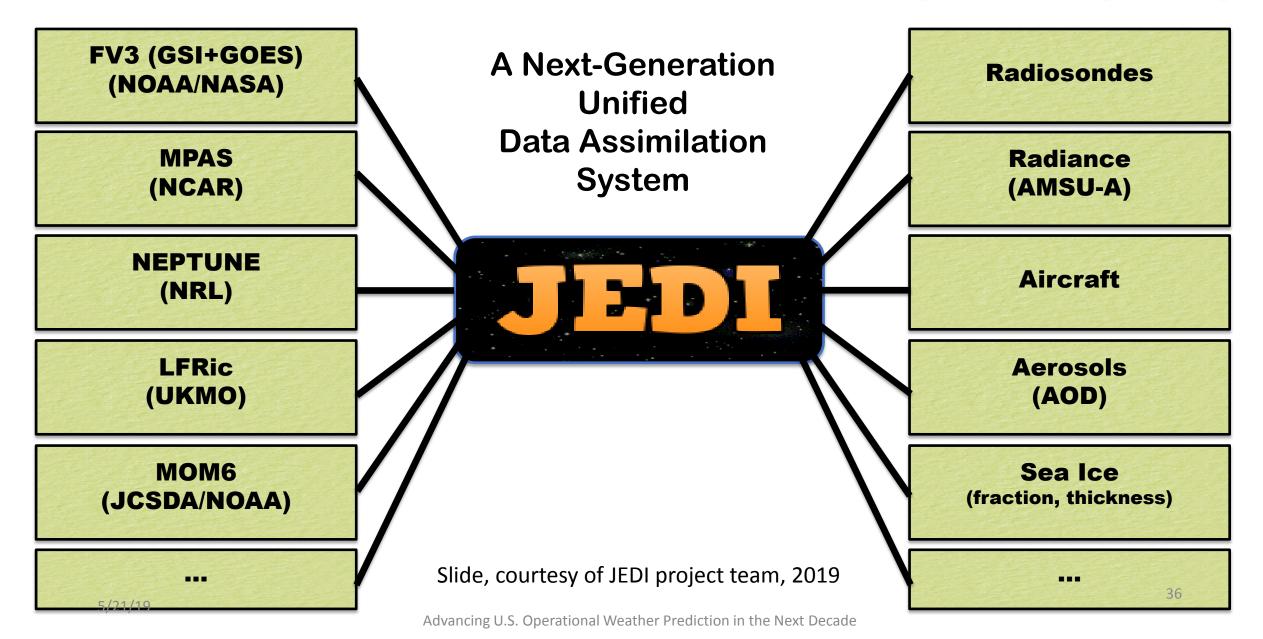
- physics -

- 2/3 of model source code
 - Convection, radiation micro-physics, surface & boundary layers, gravity & orographic wave drag
- Computationally expensive, complex interactions
 - less parallelism than dynamics
 - Good potential for ML / DL (~100X faster)
- Combine physics & dynamics
 - Radiation + dynamics
 - Convection + dynamics

#2 Improve Data Assimilation Performance



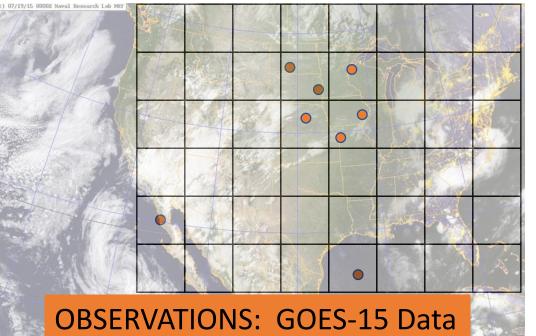
Joint Effort for Data Assimilation Integration (JEDI)

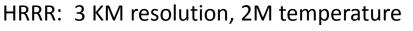


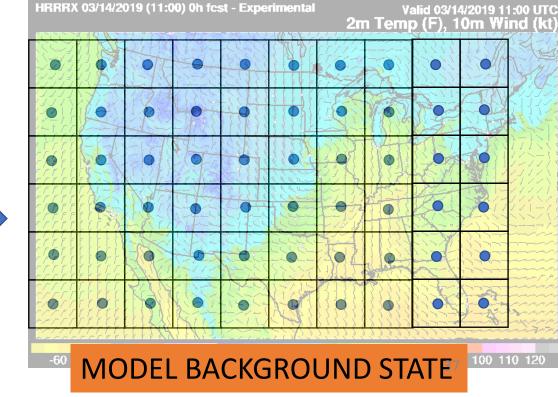
Assimilation: intelligent thinning

- Select more observations in one area (severe weather) and less in another (clear sky) determined by:
 - Ensemble uncertainty
 - ML feature recognition

GOES-15: 4 KM resolution IR, 1 KM visible







vancing U.S. Operational Weather Prediction in the Next Decade

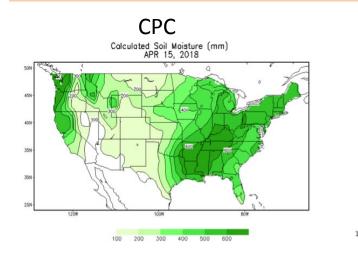
Feature Detection – Typhoons Christina Kumler, Jebb Stewart, NOAA ESRL/GSD, 2018-2019

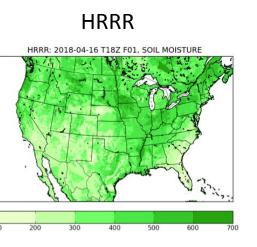
- Identify typhoons from satellite data
 - Accurate Identification
 - Early detection prior to formation
- Training 6 years of data
 - Model output, satellite
 - 11.5 hours (CPU) 3 minutes (GPU)
 - 5 weeks (CPU) 3 hours (GPU)
- Inference
 - 1 second (CPU)

- 0.04 seconds (GPU)

Use of Machine Learning for Improved Initial Soil Moisture State in RAP/HRRR

Isidora Jankov, Jebb Stewart, Lidia Trailovic, NOAA ESRL/GSD, 2018-2019





- soil moisture field from CPC and HRRR for April 15, 2018
- similar features in the two data sets
- over Southeast U.S., CPC has higher values with a spatial pattern not present in HRRR
- potential room for improvement in HRRR representation of soil moisture.

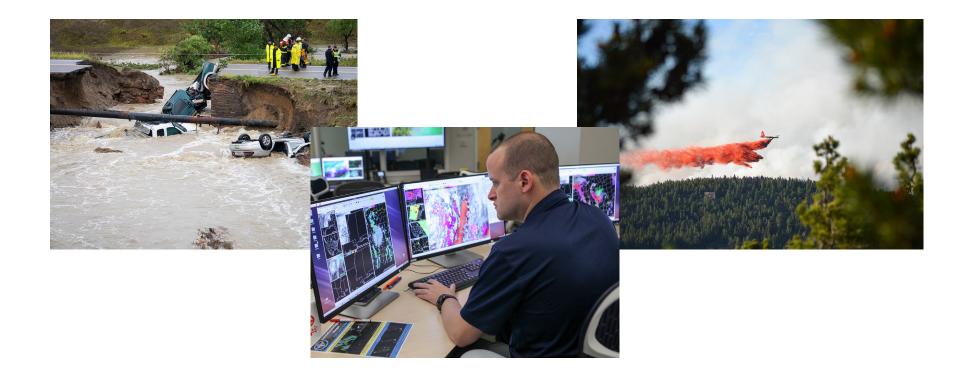
Improvement of RAP/HRRR initial soil state field by using ML will be performed in two steps:

- improve correlation between observed surface variables and soil state (currently used correlation is empirical and based on limited number of case studies)
- 2) "nudge" the estimated soil moisture state by utilizing 10.3 micron channel from GOES-16/17 for the CONUS with a spatial resolution of 2 km and temporal resolution of 5 minutes

The effort will facilitate:

- more general use of the high-resolution GOES-16/17 ABI data set in data assimilation
- expansion of ML use in areas of Numerical Weather Prediction (NWP) and data assimilation.

#3 Get Data to End-Users

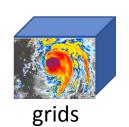


Big Data Handling

- Data is too big to move
 - Co-locate HPC & data
 - On-demand access
 - ML/DL driven analytics

insights

ML/DL Analytics



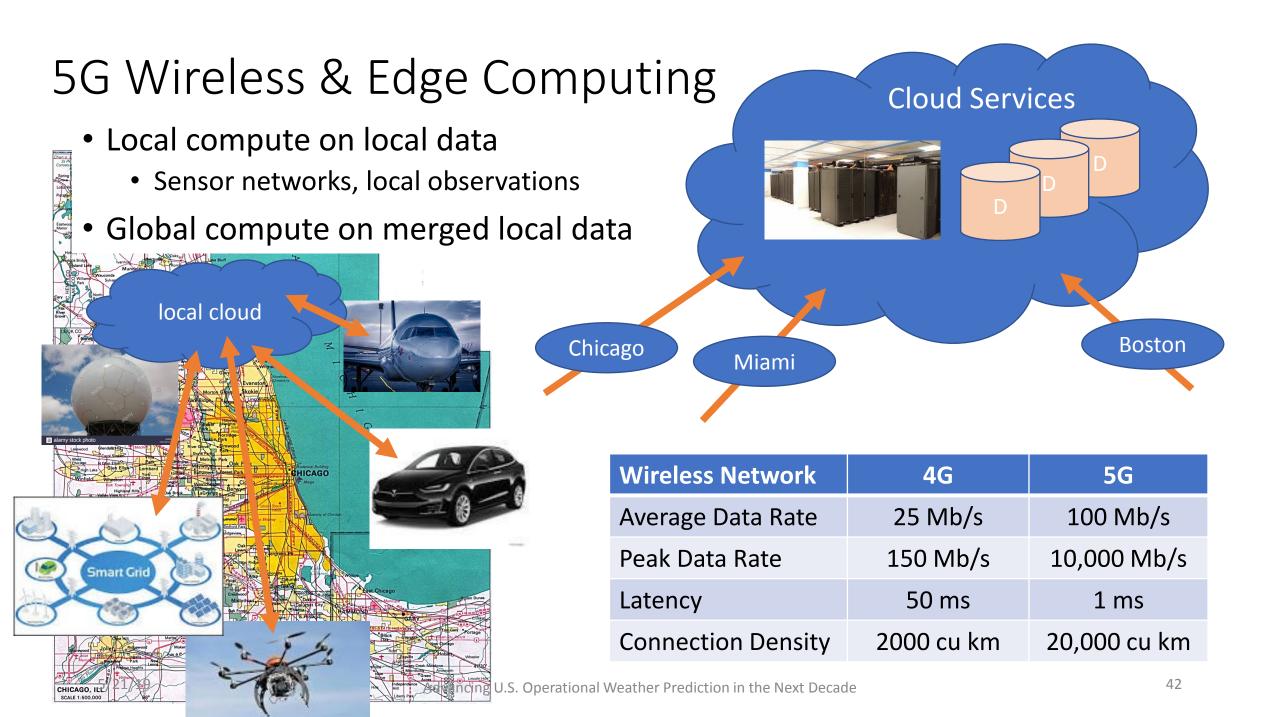
pixels

information

OBSERVATIONS

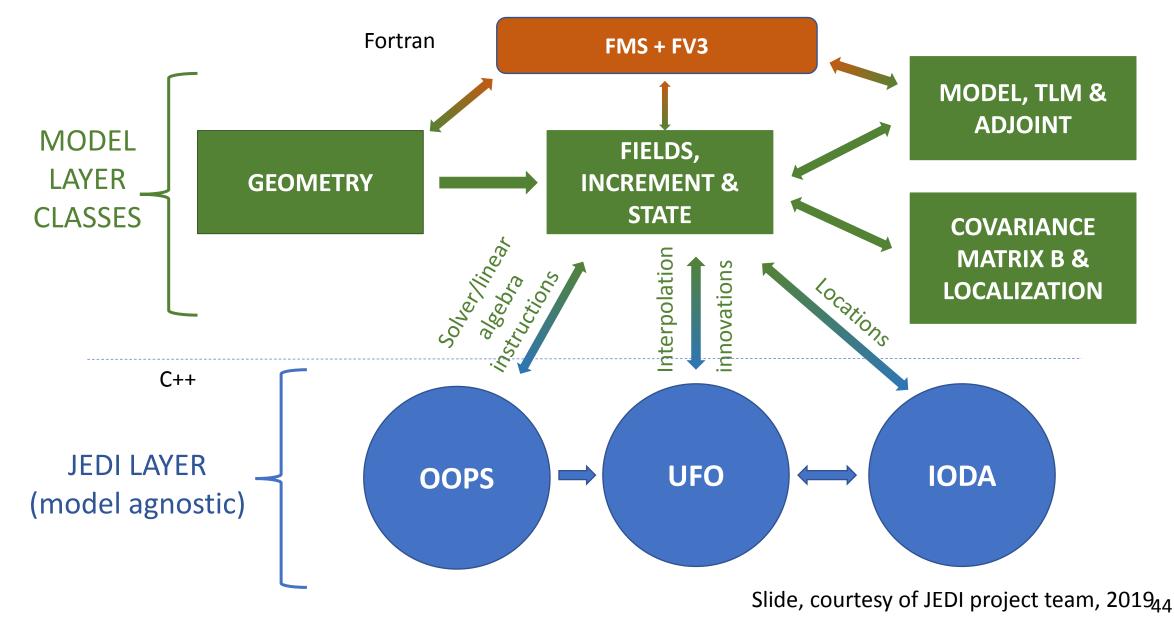
Cloud Services

Informatics



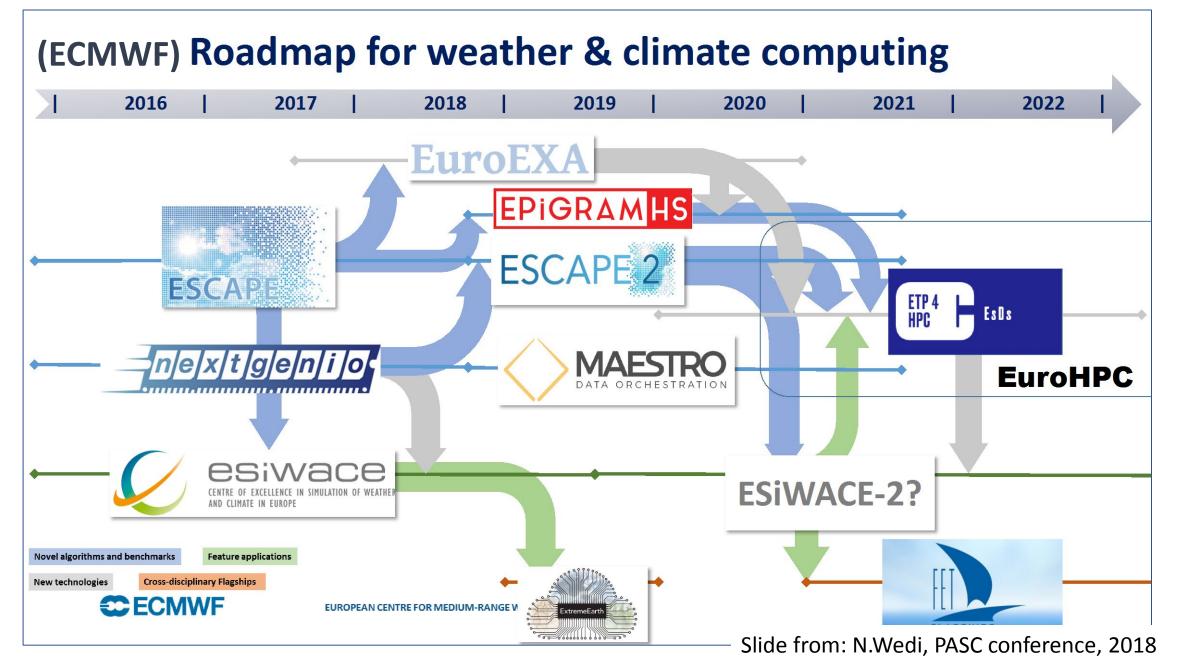


JEDI System Software Architecture



Conclusions

- Major challenges in advancing weather prediction capabilities
 - Modeling, computing, data handling, software
- New technologies, approaches needed to move beyond current capabilities
 - Traditional HPC is not sufficient anymore
 - Machine learning, cloud computing, analytics, new HPC
- GSD has begun exploratory development
 - Machine Learning, Cloud computing, GPU computing
 - Quantify scientific accuracy and computational efficiency
 - Tools to deliver information, insights, pixels, grids



Final Thoughts – A Common Goal

near – term (1-3 years)	longer – term (3 – 10 years)	
OPERATIONS	RESEARCH	

- Strong commitment to FV3GFS
 - Analyze & improve CPU performance
 - Further work on adaption for GPU
 - Containerize, utilize cloud computing
 - Improve netCDF I/O
- Sustained commitment to longer-term research that enables future operational prediction capabilities
 - Modeling, Assimilation, Big Data, Cloud, AI, new HPC