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Presentation Notes
Key Points
Ten year vision
Operational
Weather similar to, but harder than climate due to time constraints
Prediction capabilities implies the entire system from observations to delivery of information
Survey current technologies and modeling 


2019-2022 Strategic Goals

GOAL 1 GOAL 2 GOAL 3

Reduce the impacts Harness cutting-edge Evolve the NWS to excel
of weather, water, science, technology, and in the face of change
o ) - engineering to provide through investmentin
the best observations, our people, partnerships,

Red u Ce forecasts, and warnings. and organizational

impacts B Cutting-edge
Science &

STRATEGIC PLAN QRREEI Technology

3
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Core Principles
Our people drive our success; we are dedicated to our science-based service to the Nation.
We provide the best forecasts possible, connecting them to decisions that reduce impacts.

We cannot do it alone; teamwork and partnerships are essential for success.

’
NOAA S We strive for excellence, continuously improving our science and engineering for mission performance.
National Weather Service Weather Prediction In the Next Decade




HPC & NWP

A

John von Neumann posing with the
ENIAC computer, 1946

photo courtesy of NOAA
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NCEP Operational Forecast Skill

36 and 72 Hour Forecasts @ 500 MB over North America
[100 * {1-S1/70) Method]

—e—36 Hour Forecast ——72 Hour Forecast

300 /
) (._QJ
200
B 1BM IBM  IBM GDG 1BM CYBER CRAY CRAY 1BM IBM IBM 1BM
701 704  7g90 7004 6600 360195 205 YMP C90 spP P690 P655+  Power 6

100 —+—+—— ' ‘ ‘ R T '

00 'l'i ¢!ll l!I l !!Il!!! l'!l! lIllllllll
Resolution (KM): 300 100 . 59 30 15
CPUs:: 2 4 10 100 1000 10000
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Presentation Notes
Key Points
In 1950 the first weather forecast was produced.  It took over a day to produce a 24 hour forecast.
Computing has been an integral part of weather prediction since then.
The plot shows a steady increase in accuracy as model resolution has increased from 500 KM to 15 KM. 
A skiil score of 100 represents a perfect forecast

-----------------------------
Further details:  in April 1950, Jule Charney and John von Neumann utilizing the ENIAC produced the first weather forecast from NWP techniques. The first weather forecast was only for a 24-hour period, and it took over one day to produce a result. Therefore, the calculation process took longer than the actual weather to occur! Along the way, computing power has increased and NWP techniques have grown more robust.

In 1977, a 36-h forecast of the 500 mb had a skill score of 50 (100 is a perfect score), while the 72-h forecast of the same field has a skill score of 26. In 1990, the skill score of a 72-h forecast finally reached the level of the skill score of a 36-h forecast in 1977. Fast-forward to the current time, and the National Centers for Environmental Prediction (NCEP) has improved on the 36-h and 72-h forecast by producing skill scores of 82 and 68, respectively. Are those scores perfect? Hardly, but are they much improved from the 23 skill score produced by the 36-h forecast in 1955.

REF: https://www.weather5280.com/blog/2014/09/24/the-abc-of-numerical-weather-prediction/


NWS Weather Forecast Models (2019)

constrained by HPC

Higher resolution means
smaller domain and
shorter forecasts

* Global: Global Forecast System (GFS) (28 KM)
* Weeks: 0 - 16 day forecasts, 4x/ day

e Regional: North American Model (NAM) (12KM)
* Days: 84 hours, 4x/day

e Regional: High Resolution Rapid Refresh (3KM)
e Hours: 36 hours, 24x/day

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade
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3 main weather prediction models at the NWS


Global Weather System Components

Global Climate System Components

10-100s of members

Improved
Weather
Prediction

sa|quiasu]

Is a tradeoff between
* Computing
» Scientific Accuracy = kg
* Time-to-solution |

1 KM

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade >



Intel Processor Clock Speed (MHz)

Computational Challenges

1000

* Processors are not getting faster
* Doubling of resolution requires 8X more processors

30486

80386

 ESPC HPC Working Group: 2016 - :
* NOAA, NASA, DoE, DoD Navy, NCAR EV

* Discuss HPC challenges, limitations for weather & climate - ‘
applications

01

“HPC architectures are developing in the wrong direction for state-
heavy, low computational intensity (Cl) Earth system applications.”

“NWP applications average less than 2% of peak performance,
constrained by their ability to perform sufficient calculations for each
expensive access to memory.”

Carman, et al. “Position Paper on Hisgh Performance Comgutin Needs in Earth
System Prediction.” National Earth System Prediction Capa 111ty%ESPC) program.
April 2017. https://doi.org/10.7289/V5862DH3

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade 6
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Intel® Core Processor

Intel® Processor Graphics Gen9
. Command Streamer
. Global Thread Dispatcher,

‘Slice: 24 EUs

Processor Technologies

10 Subsystem TrustZone
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* CPU, GPU TPU, FPGA, ARM -

54 Coresxr:

‘GTi: Graphics Technology Interface
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Cloud Accelerators
100GE

* Processor

* Clock speed, energy consumption -
e 10’s to 1000’s of cores

* Single, double, half precision
* Memory "
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. T Nt P32 Fps
* Size, speed, type
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Compute Nodes

e Standard is a dual-socket CPU

* Increasing complexity, more processors
e CPU: 100’s of cores
e GPU: 10000 — 80000 cores

Every GPU-to-GPU
at 300 GB/sec

NVIDIA DGX-2: 16 Tesla V100 GPUs, (81K GPU, 10K Tensor cores)
1.5 TB DDR4 RAM, 500 GB HBM2, 10kW power
300 GB/s NVLINK
PCle Gen3, 8x EDR IB / 100 Gigabit Ethernet

Summit Node (DoE / ORNL)

12.5GB/s

|:|<f>

n
> POWER9
EL S CPU

16GB/s
NVMe
/ PCle Gﬁn 41/0

\_/ \_/
i N
<o < POWER9 [
<=>[EEE] (= CPU <=>[EEH)

“

W’ﬁﬁééﬁ%ﬂﬁmﬁﬁ'ﬁﬁgéﬁ%ﬂ

V100 V100 V100 V100
GPU GPU GPU GPU
% X

V100 V100
GPU GPU

% 4 i é

DOE Summit node:
IBM Power9 CPU, 6 V100 GPUs, 30K GPU cores
512 GB DDR4 RAM, 96 GB HBM2
NVLINK, 50GB/s bandwidth per link
PCle Gen 4 (16GB/s) for inter-node, I/O

Summit System: 4600 nodes, 27K GPUs

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade
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Presentation Notes
Nodes have become more complex and more powerful
Summit has Power processors with 6 attached GPUs / node connected by NVLINK
DGX-2 has 16 GPUs connected with NVLINK and NVSWITCH
Staying within a node brings the potential for very good performance gains.


Application Performance — Single Node
MPAS model developed at NCAR

MPAS

Model for Prediction Across Scales

1.2

adopted by IBM Weather Company MPAS Performance
e GPU is 3X faster than CPU (Volta versus ' 1%‘2L<M.gt”d
Broadwell) s o

Lower is better

dynamics - SP dynamics - DP physics - DP
W Broadwell CPU m®P100 GPU V100 GPU

* Directive-based, performance portable

Runtime (sec)
o
(@)}

o
N

0.

N

o

R.Loft, Sept 2018, ECMWF HPC Workshop

5/21/19 Non-uniform Icosahedral Grid _ -
Advancing U.S. Operational Weather Prediction in the Next Decade 9



FV3 Performance — Single Node

* Designed for CPU, ,
* 10% of CPU peak Cube-sphere
* Efficient use of cache memory grid

* Slower on GPU
* Not performance portable 0.0
* Code changes slowed down CPU 0.70

0.60

FV3 Performance
dynamics routines

Lower is better

* Inefficiencies gose
* Limited fine-grain parallelism £ 030
* Non-uniform cube-sphere grid 20
i | al _m _=
* Pervasive edge & corner calculations 0.00 - =
C_

. SW yppm xppm del6 vt xtp_u ytp_v
* Ongoing efforts to address GPU mHaswell CPU  m Pascal GPU

performance Cha”enges M. Govett, June 2018, PASC Symposium

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade 10



Inter-node Communications

* Inter-connect required for large HPC systems
* Weakness in system deployments

* MPlI communications
* Pack message buffer
* Inter-process communications
* Unpack message buffer

* Scalability a big challenge for H

application performance

100Gb/s

Dual-socket
CPU

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade

100Gb/s

Dual-socket
CPU

11
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Presentation Notes
Relative to processing power, the system interconnect is relatively slow
In addition, MPI is a relatively heavy-weight communications process that requires synchronization generally by all processes.  That means processes will always wait for the slowest communications to complete
Optical interconnect technologies are on the horizon that will overcome this bottleneck but we’re not there yet


Application Scalability

2.5 KM ICON
13 fcst days / day

Targeting global 1-3 KM resolution

* NICAM, ICON, MPAS, IFS, FV3, ... -
e ECMWEF Scalability Programme (2014 - ) s 0 :
 Scaling, /0, compilers, algorithms i

ang scaling on PizDaint

1.0 KM IFS (NH)
31 fcst days / day

8 mij |
Minutes / forecast da
trans/ates to Y

180 forecast days / day

Many thanks to
Thomas Schulthess &
Maria Grazia Giuffreda !

10

1920 2400 2880 3360 3840 4320

PizDaint XC50 nodes (x12 == cores)

4800 5280

L ECMWF EUROPEA N CENTRE FOR MEDIU

M-RANGE WEATHER FORECA 5TS

Nils Wedi, ESCAPE Project Presentation
ECMWEF HPC Workshop, Sep 2018

Based on the Piz Daint, Swiss
Cray XC50 Haswell, Aries
interconnect, ~5000 nodes

5/21/19

== |FSTCo0 1279 (9km, 137
levels, double precision)

—#+=|FSTCo 1279 (9km, 137
levels, single precision)

IFS TCo 1999 (5km, 137
levels, single precision)

~#—|FSTCo 3999 (2.5km, 62
levels, single precision)

=& |CON R2B8 (10km, 137

13 levels, double precision)
8 ICON R2B9 (5km, 137
levels, double precision)
=& |CON R2B10 (2.5km, 62
levels, double precision)
480 960

#nodes (Broadwell; 1node=32cores (IFS)/ 36cores (ICON))

CE, DYAMOND project, 2017

lon on Piz Daint (CPU only)

/ mPHYSICS+RAD

hmple: TC07999 L62 (~1.25km)

4880 MPI tasks x 12 threads

69 FC/day ~ 0.19 SYPD
single precision / FLT
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Scalability is a big concern
The ECMWF launched the scalability program in 2014.  They and a number of European partners have supported several well-funded efforts to look at application scalability, I/O, compilers and algorithms
The have also been assessing the ability to run at 3KM or finer scales.
The metric used in these plots is number of days per day.  This is more of a climate metric.  For weather prediction, the metric used is number of days per hour
The benchmark for operational models is 10 days in 1 – 1.5 hours which translates to 200-240 days per day


FV3 Scalability Projections

Perfect scaling: 2X increase in resolution requires 8X more compute cores

DYAMOND model configurations (32-bit, Cray XC40)

Ax deep Conv | big_At (sec) L2E (sec) Acoustic Cores needed to meet
(km) (Slow physics) (intermediate physics) (sec) NWP requirement*
(Fast-physics) (estimated, minimal I/O)
C768_L63* 13 ON 225 225 18.75 3,000
C768 L63 13 OFF 225 225 18.75 3,000
C1536_L91 6.5 OFF 225 112.5 9.375 30,000

C3072_L91 3.25 OFF 225 56.25 4.5 240,000

*Assumed NWP requirements: 10 days forecast in less than 100 min.

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade Sllde, S.J. Lin, DYAMOND presentation



FV3GFS Scaling - Estimate

3 KM resolution, 5 day forecast
Weak Scaling to increase resolution

Operational Requirement: 10 day forecast in 1.25 hours (5 days in 2250 seconds)

Actual Performance Estimated\Performance
Resolution | 28KM | 13kM |  6.50KMm 3.25KM
Time Step 225 sec 112.5 sec 56 sec 28 sec
CPU Nodes 64 256 1024 4096
CPU cores 1536 6144 24576 98304
Total Time 1094 1916 3357
Dynamics 560 792 1120 1584
Communications 440 710 1146 1851

Runtimes in seconds for a 5 day forecast, NOAA theia system with 24 core Haswell nodes
5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade 14
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Presentation Notes
Weak scaling maintains the workload per processor, which increasing the number of processors and resolution
A doubling of model resolution in the horizontal means 4X the compute.
Also notice the time step is cut in half to maintain accuracy of the solution
Runs were made for 28KM and 14KM resolution, and a linear extrapolation was done for the higher resolutions.
The operational requirement is for a 10 day run in 1.25 hours or 2250 seconds for 5 days.  You can see the Total Time gradually increases from 1916 seconds to 5880 seconds for the 3KM model.  
In order to decrease the time, we need to add more processors.


FV3GFS Scaling - Estimate

3 KM resolution, 5 day forecast
Strong Scaling to reduce runtime

Operational Requirement: 10 day forecast in 1.25 hours (5 days in 2250 seconds)

Tile Size / MPI 48 x 48 24 x 48 24 x 24

CPU Cores 98,304 196,608 393,216

Total Time 5880 3962

Dynamics 1584 1275 643
Communications 1851 1390 301

Estimated performance, NOAA theia system: 27,000 cores, 24 Haswell cores / node

e 393,216 cores = 16,384 CPU nodes
* 30% of runtime is for inter-process communications

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade 15
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Adding more processors to the same problem is called strong scaling.
Here we use interpolation on the workload per processor to extrapolate the runtime
You can see the number of processors require to run the FV3GFS at 3KM resolution is estimate to be almost 400K compute cores, or 16K nodes.
Also note that 30% of the runtime is spent doing interprocessor comms.
This is an estimate, and some models will do better.  This can be optimized but the message is clear.  We need to address the limitations in computing in a more significant way.



Scaling Factors

* Computation
* Parallelism
* Algorithms
* Model grid

* Communications
* Frequency
e Data volume
* Overlapping

1.20

1.00

0.80

0.60

0.40

0.20

Computational Efficiency

0.00

FV3GFS Strong Scaling

Efficiency

physics + dynamics
14 KM resolution

perfect scaling means computational efficiency = 1.00

— Computation — Communications

32 64 128 256

Compute Nodes

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade 16
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Efficiency is a measure of how well the application scales
1.0 efficiency would mean it scales perfectly
In this plot we can see that both the computation and communications are not very efficient.  That means more compute resources are needed.
Scaling factos
Parallelism:  how much loop-level parallelism is available to the application
Algorithms:  how efficient are they
Grid: Are there special case calculations needed for some areas of the grid
Frequency:  how often comms are done per time step
Data volume: how much data is communicated (bandwidth constraint)
Overlapping:  how much of the comms can be overlapped with computation



Summary on Computational Issues

* Traditional computing is not sufficient to run existing global
operational models (ICON, IFS, FV3) at cloud-permitting (3KM) or
finer scales

* GPU processors can help
* Scalability remains a big concern



Data Challenges

Data is only useful if it’s used

Observations
Data Assimilation
Prediction
Output
Distribution
Dissemination



Observations

* \We have more data than we can use

* GOES, JPSS, cubeSats, nanoSats
e Radar, balloons, ships, planes

* Tremendous potential
e Autos, cell phones, sensors,

Ground-Based
Instruments

o © National Doppler Radar Sites
Select radar location and click.
Requires Java/Javascript

7 Space-Based
Q g Instruments

N GPS satellites '+ s
R '.‘ y \ 5 “ * :

Occultations .-
2

i i = . S .
AT ‘E& .+ ' B alamy stock photo
Advancmg u.S. Operat|onal Weather Prediction in the Next Decade




Geostationary Operational
Environmental Satellite (GOES)

o |

@
GOES West GOES East

e 2012-201K - SE
— Scans every 3 hours, '
— 4 spectral bands @ 4KM
— 1 visible band @ 1KM

water vapor image

— 14 spectral bands @ 2KM resoluti
— 2 visible bands @ 0.5KM resolution
— High-res nest every 30-60 seconds

et e

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade



Data Assimilation Calculations

* Estimate model error, observation error
* Interpolate model to observation

* Adjust nearby grid points, other model
« Complex, computationally expensive fields (winds, temp, ...)

* Improve initial state of the forecast model
e Variational, ensemble, hybrid approaches

e ~3X lower resolution than prediction model
P HRRR: 3 KM resolution, 2M temperature

GOES-15: 4 KM resolution IR, 1 KM visible

Data Thinning: currently use 1% of data

OBSERVATIONS: GOES-15 Data MODEL BACKGROUND STATE




Data Assimilation: Computational Issues

* 3D Ensemble Based Assimilation
 Computational & I/0 limitations AD-Var trajectories —
* Only afford 10’s of members
e 3-10X lower resolution than model

e 4D Variational Assimilation

* Higher accuracy

 TL & ADJ are required Otservation
e ~3X slower than 3DVAR methods ! | .

\\— Observation

—————— e ————

- First guessas "

09:00 12:00 15:00 18:00 21:00

* Hybrid EnKF & 4DVAR solutions Ensemble analysis and forecast cycle

* IFS, UK-Met, ...

5/21/19

Image courtesy of M.Bonavita (ECMWF)

Time furcl
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Data Distribution

* Diverse user requirements
* Global, regional, local
* Observations & products

® NWS AW|PS AWIPS WorI;station
* NOAA network is saturated NWS Forecast Offices
o Everyone gets same dat Hurricane P.re.diction Center
Storm Prediction Center
National Water Center
Aviation Weather Center
Fire Weather Centers

»
>

State, Local, Public =S
data center model output 1€ - Floods, fire, winds, hail, ... FAA Air Traffic Control

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade 23



Model Output: 14KM to 3KM resolution

e Each 3D variable: pressure, temperature, moisture, winds, ....

Resolution Vertical Levels | Number of Grid Total Cells Increase Per field
(KM) Cells (Millions) (Billions) in Cells storage (SP)

1GB
21 GB

14 (1x) 64 (1x) 0.25
3.5 (4x) 128 (2x) 56.6 (16) 5.4

* Model output:
14KM - 10 model fields, 6 hourly output, 10 day forecast

3KM - 10 model fields, 3 hourly output, 10 day forecast

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade

21x

per run

400 GB

21.8TB

(52X)
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State of Operational NWP (2019)

* Exceedingly difficult to run operational 3KM
* HPC

* No expected increase in processing speed
* Limited increases in memory speed

* Parallelism & scalability limitations

e Operational time-to-solution constraints

* Data
* Too much data to process

* Too many observations to use ﬁ
* Too large to distribute 3 M

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade 25
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Forecaster

|/

-

= Assimilation Al L e ’ . Stakeholders
Processing

Advancing Weather Prediction
in the next decade

Utilize new technologies
Improved models
Better data handling
Manage software complexity

Advancing U.S. Operational Weather Prediction in the Next Decade
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Technology Convergence

Machine Learning

SuperComputing

= ]
¥

5/21/19



#1 Improve Model Performance

Evaluate models (algorithms, grids, integration) for
scientific accuracy AND computational efficiency

Incorporate parallelism at all levels X

Minimize inter-process communications

scientific

|mprove |/O capabilities accuracy

>
computational

Re-architect, rewrite model software efficiency

design




Weather Prediction Models

- dynamics -

* What are the best models, approaches for emerging HPC
* Algorithms, grids, time-step, physics, etc.
* Computational efficiency, scalability, portability

Finite-volume Cube-sphere SISL A-grid, C-grid, D-grid FV3GFS
Finite-volume Icosahedral HEVI A-grid NICAM

Finite-volume lcosahedral HEVI C-grid MPAS, ICON
Finite-element Cube-sphere SISL C-grid LFRIC
Spectral-element Cube-sphere HEVI No staggering NUMA, Neptune, KIM
Spectral Polar HEVI No staggering IFS, GFS

G.Mengaldo, et.al.,Current and Emerging Time-integration Strategies in Global Numerical Weather
and Climate Prediction, https://doi.org/10.1007/s11831-018-9261-8

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade 29



Dwart Development with GeoFLOW

Duane Rosenberg, Bryan Flynt, NOAA ESRL, 2018-2019

GeoFLOW is an application framework to simplify dwarf
development in order to evaluate computational efficiency vs
scientific accuracy of various approaches

C++ objects to define communications, grid, discretization &
time-stepping operators

Evaluate for 1-3KM global resolution on CPU, GPU, ARM, ...

Horizontal Grid
(Latitude-Longitude) |™.

Vertical Grid )
(Height or Pressure) |~

asanunss’

Physical Processes in a Model

lcosahedral Finite Volume (IFV)

Spectral Element (CG, DQG)

Low order/low accuracy
2D, 3D control volumes
lcosahedral grid

Deep communication

staggered (Arakawa) centering .

Explicit time step

High order/high accuracy

2D, 3D elements

Cube-sphere grid

Shallow communication
Un-staggered centering

Explicit & semi-implicit time step

llllllllllll

HHHHHHHHHH

Focus Areas

5/21/19
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Advection
+ Convection

+ Radiation
+ ...
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Weather & Climate Dwarfs

(hpc-
escape.eu)

... hardware
adaptation ...

... reassemble

model and
benchmark
-c ECMWF ; R.d I_S%A ) TquLE\ngeﬁz@!!;EE £ I’CH EC Deutscher Wetterdienst E @ Opt alysys B ull @ :.= b?‘?\?:rbs?&wgh
MeteoSwiss ﬁ ¥ N

P. Bauer, ECMWF ESCAPE Project Briefing, 2017
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Shallow Water Dwart: A-grid versus C-grid staggering
Yonggang Yu, Ning Wang, Jacques Middlecoff, NOAA ESRL, 2018-2019

Evaluate performance, scaling and scientific accuracy

A-grid C-grid

* Develop shallow water model for A-
grid and C-grid with identical design,
grid construction, optimizations, ...

* Replicate published dynamical core
idealized test results for A-grid
(NICAM), C-grid (MPAS)

* OpenMP, OpenACC, MPI parallelization

* Performance & scaling comparison at
1-3 KM resolution

* CPU, GPU, ..




. Advection Dwarf
Scaling Patterns - dynamics only -

28 KM resolution

* Computation 120
* Good parallelism 1.00
* lcosahedral grid
. . . 0.80
e Efficient algorithm
>
* Communications g 7%
* Minimal frequency % 0.40
 Low data volume £ B
, S 0.20
* Some overlapping
g— 0.00
o) 20 40 80 160
@)
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Weather Prediction Models
* 2/3 of model source code physics - . i =

COUDs &

* Convection, radiation micro-physics, surface =2 o5
& boundary layers, gravity & orographic b s
wave drag

* Computationally expensive, complex
interactions

* less parallelism than dynamics
* Good potential for ML / DL (~100X faster)

 Combine physics & dynamics
e Radiation + dynamics
e Convection + dynamics

5/21/19 Advancing U.S. Operational Weather Prediction in the Next Decade 34



#2 Improve Data Assimilation
Performance

scientific
accuracy

>
computational

efficiency

software
design

5/21/19 35
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Joint Effort for Data Assimilation Integration (JEDI)

FV3 (GSI+GOES :
(NéAA/N ASA) ) A Next-Generation Hodloaordos
Unified
MPAS Data Assimilation e
(NCAR) System (AMSU-A)

NEPTUNE ; s T :
Ll JEDI il
LFRic e Aerosols
(UKMO) (AOD)
MOMG6 Sea Ilce
(JCSDA/NOAA) (fraction, thickness)
Slide, courtesy of JEDI project team, 2019




inning

intelligent th
* Select more observations in one area (severe weather)

Assimilation

and less in another (clear sky) determined by

- Ensemble uncertainty
- ML feature recognition

HRRR: 3 KM resolution, 2M temperature
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Feature Detection — Typhoons
Christina Kumler, Jebb Stewart, NOAA ESRL/GSD, 2018-2019

* |[dentify typhoons from satellite data
* Accurate ldentification
* Early detection — prior to formation

* Training - 6 years of data
* Model output, satellite
* 11.5 hours (CPU) - 3 minutes (GPU)
e 5weeks(CPU) - 3 hours (GPU)

* Inference
* 1lsecond (CPU)  -0.04seconds (GPU) g







Use of Machine Learning for Improved Initial Soil Moisture

State in RAP/HRRR
Isidora Jankov, Jebb Stewart, Lidia Trailovic, NOAA ESRL/GSD, 2018-2019

CPC

Calculoted Soil Moisture (mm)
APR 15, 2018

HRRR

soil moisture field from CPC and HRRR for April 15,

2018

similar features in the two data sets

over Southeast U.S., CPC has higher values with a
spatial pattern not present in HRRR

potential room for improvement in HRRR
representation of soil moisture.

Improvement of RAP/HRRR initial soil state field by using ML
will be performed in two steps:

1) improve correlation between observed surface variables
and soil state (currently used correlation is empirical and
based on limited number of case studies)

2) 2) “nudge” the estimated soil moisture state by utilizing
10.3 micron channel from GOES-16/17 for the CONUS with
a spatial resolution of 2 km and temporal resolution of 5
minutes

The effort will facilitate:

* more general use of the high-resolution GOES-16/17
ABI data set in data assimilation

e expansion of ML use in areas of Numerical Weather
Prediction (NWP) and data assimilation.
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#3 Get Data to End-Users

Advancing U.S. Operational Weather Prediction in the Next Decade
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Big Data Handling

Cloud Services

e Data is too big to move
* Co-locate HPC & data
* On-demand access
 ML/DL driven analytics

‘/

IVIL/DL .
@ &
VERVAERN

B Informatics

information E
|n5|ghts

pixels

- grids )
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5G Wireless & Edge Computing

St
Cons

oooooo

< * Global compute on merged local data

3
Muni

Cloud Services

* Sensor networks, local observations

Boston

"m; S8 | 0 Average Data Rate 25 Mb/s 100 Mb/s
af aiwis Peak Data Rate 150 Mb/s 10,000 Mb/s
- = Latency 50 ms 1ms
e Connection Density 2000 cu km 20,000 cu km
o "y l;gm Edgancing U.S. Operational Weather Prediction in the Next Decade 42



Source code
Scripts
Validation

Documentation Design
Develop

Test
Commit

5/21/19

#4 Improve Software
Architecture and
Development Process

J

Advancing U.S. Operational Weather Prediction in the Next Decade

Refactor

Portability
Performance
Maintainability
Extensibility
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JEDI System Software Architecture

Fortran FMS + FV3

/ MODEL, TLM &
ADJOINT
MODEL FIELDS,
LAYER _ GEOMETRY INCREMENT &
CLASSES COVARIANCE
0 MATRIX B &
S LOCALIZATION
- 5
e Y A Ce g
C++ B
JEDI LAYER  _|
(model agnostic)

Slide, courtesy of JEDI project team, 20194


Presenter
Presentation Notes
JEDI development is a good example of modern software development, using best software practices. 
It has a clean design that allows many groups to work together, while maintaining a separation between the application code and JEDI.
It is a multi-language solution that relies on C++ objects for observation processing, assimilation methods.  
It requires each group to provide and support several model layer classes that interface between the application, and the JEDI system.


Conclusions

* Major challenges in advancing weather prediction capabilities
* Modeling, computing, data handling, software

* New technologies, approaches needed to move beyond current capabilities

* Traditional HPC is not sufficient anymore
* Machine learning, cloud computing, analytics, new HPC

* GSD has begun exploratory development

. . . . ()
* Machine Learning, Cloud computing, GPU computing %E:L F
* Quantify scientific accuracy and computational efficiency { i A L':}
* Tools to deliver information, insights, pixels, grids :;'L . oad A
:Il'l.'l.' x ."I;I
s 25
o TR
—
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(ECMWF) Roadmap for weather & climate computing

| 2016 | 2017 | 2018 | 2019 | 2020 |

. [EPIGRAM[TH
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Novel algarithms and benchmarks Feature applications b y L y
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Slide from: N.Wedi, PASC conference, 2018
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Final Thoughts — A Common Goal

near — term (1-3 years) longer — term (3 — 10 years) l

* Strong commitment to FV3GFS
* Analyze & improve CPU performance
* Further work on adaption for GPU
* Containerize, utilize cloud computing
* Improve netCDF I/O

e Sustained commitment to longer-term research that
enables future operational prediction capabilities

* Modeling, Assimilation, Big Data, Cloud, Al, new HPC
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