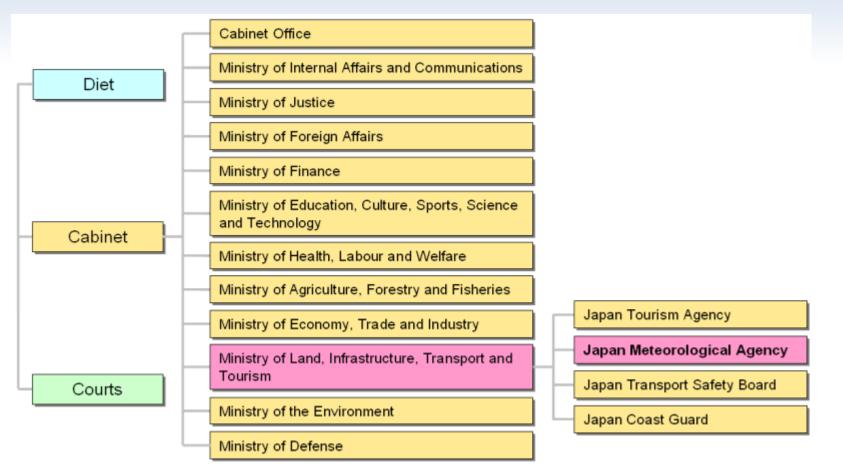


Current development of JMA global NWP system


Teppei Kinami EMC (Visiting scientist from JMA)

EMC seminar 12 February 2019 @ NCWCP, College Park, US

Contents

- Overview of NPD/JMA
- JMA operational NWP
- JMA global NWP
- Future plan

Structure of Japan's Central Government

JMA is an extra-ministerial bureau of

the Ministry of Land, Infrastructure, Transport and Tourism (MLIT)

JMA's total staff ~5,100, budgetary resource ~\$568 million /yr (2018)

気象庁

JMA's Goals

JMA implements its services with the following ultimate goals

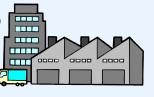
Prevention and mitigation of natural disasters

Provide daily/monthly forecasts

and warnings/Advisories for

- Preparation for disasters
- Evacuation
- Risk management

Safety of transportation

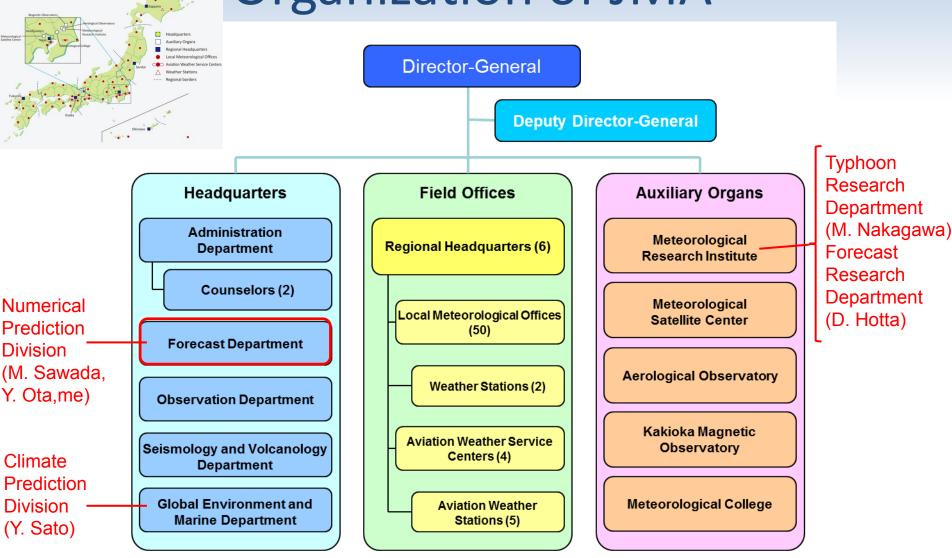

Provide meteorological information to

- Pilot and airline companies
- Road administrators
- Train companies

Development and prosperity of industry

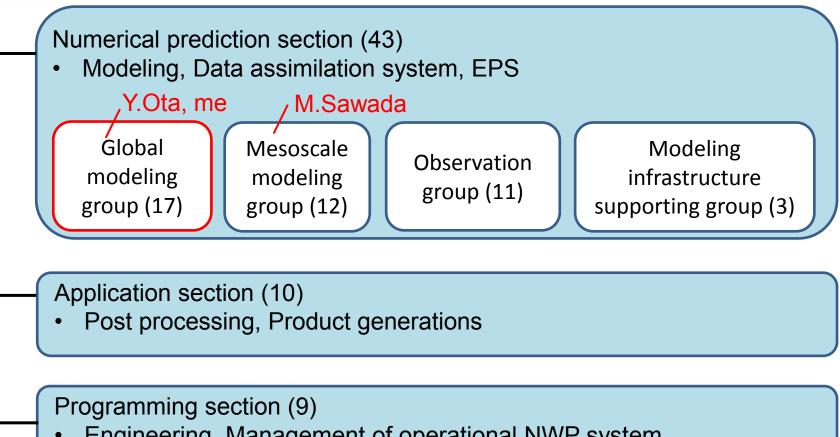
Provide weather forecasts and climatological data to

- Energy companies
- Agriculture
- Other industries



International cooperation

- International data exchange
- Technical support
- Sharing disaster information
- Collaboration to develop technics



JMA Main Offices

Organization of Numerical Prediction Division (NPD)

Administration section

Global modeling group

Global model team (9)

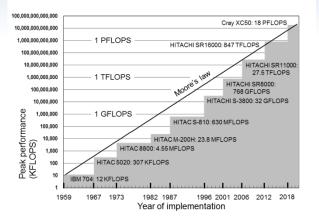
- Development of Global Spectral Model (GSM)

- Global analysis team (2) me
 - Development of Global Analysis system (GA)
- Global EPS team (4) Y. Ota

- Development of Global EPS (GEPS)

- Other works
 - Atmospheric transport model
 - Verification

Contents


- Overview of NPD/JMA
- JMA operational NWP
- JMA global NWP
- Future plan

NITACH

Supercomputer System (2018.6-)

- Supercomputer ... Cray XC50
 - Two independent systems.
 - Main System : Operational NWP
 - Subsystem : Backup and Development

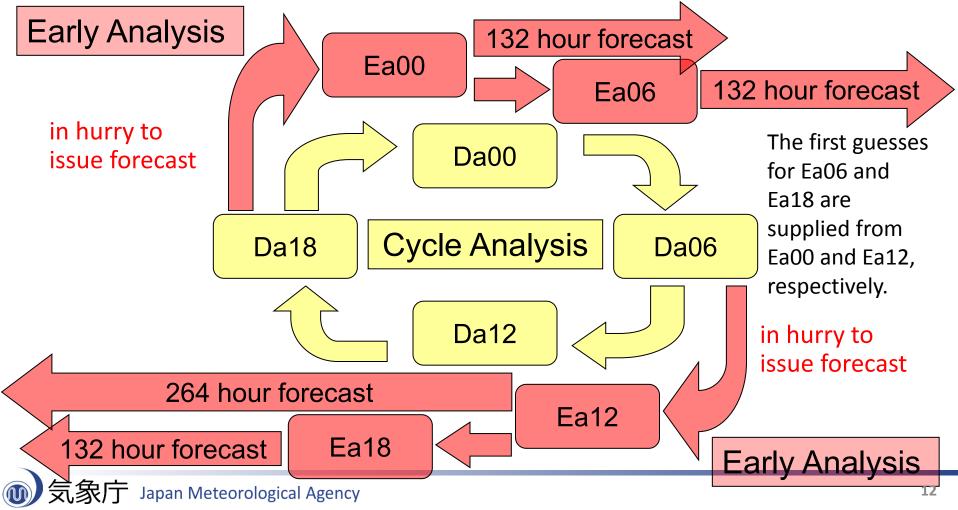
- Specifications

Computational Node	CPU	Intel Xeon Platinum 8160 2.1GHz x2	
	# of cores	24 x2	
	Peak Performance	3.2256 TFlops	
	Main Memory	96 GiB	
Total	Num. of Nodes	2,816 (15 cabinets) x2	
	Peak Performance	9.083 PFlops x2	
	Main Memory	264TiB x2	
Operating system		Cray Linux Environment	

) 気象厅 HITACHI

Current NWP models in NPD/JMA

	In Operation			Under Trial	
	Global Spectral Model <mark>GSM</mark>	Meso-Scale Model <mark>MSM</mark>	Local Forecast Model LFM	Global Ensemble GEPS	Meso-scale Ensemble <mark>MEPS</mark>
objectives	Short- and Medium-range forecast	Disaster risk reduction Aviation forecast	Aviation forecast Disaster risk reduction	One-week forecast Typhoon forecast	Uncertainty and probabilistic information of MSM
	Global	Japan and its surroundings (4080km x 3300km)	Japan and its surroundings (3160km x 2600km)	Global	Japan and its surroundings (4080km x 3300km)
Forecast domain		D	Part of the second seco		
Horizontal resolution	TL959(0.1875 deg)	5km	2km	TL479(0.375 deg)	5km
Vertical levels / Top	100 0.01 hPa	76 21.8km	58 20.2km	100 0.01 hPa	76 21.8km
Forecast Hours (Initial time)	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	39 hours (00, 03, 06, 09, 12, 15, 18, 21 UTC)	9 hours (00-23 UTC hourly)	264 h (00, 12 UTC) 132 h (06, 18 UTC)* 27 members	39h 21 members (00, 06, 12, 18 UTC)
Initial Condition	Global Analysis (4D-Var)	Meso-scale Analysis (4D-Var)	Local Analysis (3D-Var)	Global Analysis with ensemble perturbations (SV, LETKF)	Meso-scale Analysis with ensemble perturbations (SV)


* when a TC of TS intensity or higher is present or expected in the RSMC Tokyo - Typhoon Center's area of responsibility (0°-60°N, 100°E-180°). 10

Current analysis system in NPD/JMA

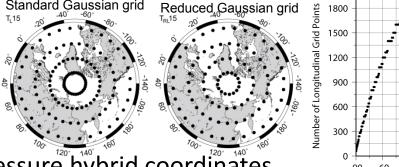
	Global Analysis GA	Meso Analysis MA	Local Analysis LA
Analysis time	00, 06, 12, 18 UTC	00, 03, 06, 09, 12, 15, 18, 21 UTC	00-23 UTC hourly
Data cut-off time	Early analysis: 2h20min (00, 06, 12, 18 UTC) Cycle analysis: 11h50min (00, 12 UTC) 7h50min (06, 18 UTC)	50min (00, 03, 06, 09, 12, 15, 18, 21 UTC)	30min (Every hour)
Horizontal grid system	Reduced Gaussian grid	Lambert projection	
Horizontal resolution/ Inner model resolution	TL959(0.1875 deg)/ TL319(0.5625 deg)	5km at 60N and 30N/ 15km at 60N and 30N	5km at 60N and 30N
Number of grid points (No. of inner model grid points)	1312360 (157800)	721 x 577 (241 x 193)	441 x 501
Vertical levels	Surface + 100 levels up to 0.01 hPa	Surface +50 levels up to 21.8 km	50 levels up to 21.8 km
Assimilation window	Analysis time – 3 hours to analysis time + 3 hours	Analysis time – 3 hours to analysis time	-
Analysis scheme	4-dimensional variational method	4-dimensional variational method	3-dimensional variational method

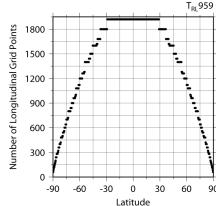
Early Analysis and Cycle Analysis

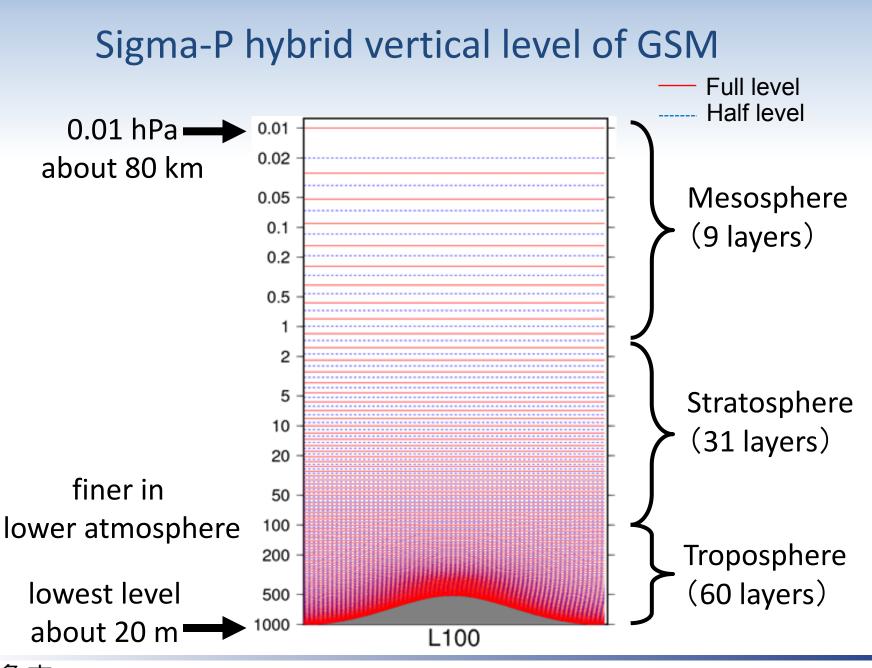
Early Analysis: Analysis for weather forecast. The data cut off time is very short.Cycle Analysis: Analysis for keeping quality of the global data assimilation system and for supplying the first guess to early analysis. This analysis is done after much observation data are received.

Contents

- Overview of NPD/JMA
- JMA operational NWP
- JMA global NWP
- Future plan




Roles of GSM

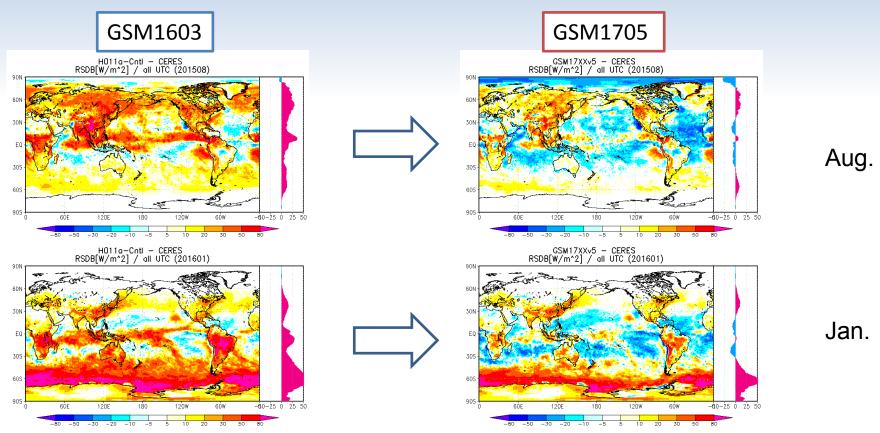

- Global NWP systems provide:
 - daily forecasts and warnings
 - for short- and medium-range forecasts
 - for one week forecast
 - for one month and seasonal forecasts (in CPD)
 - for typhoon track and intensity forecasts
 - to assist aviation and ship routing forecasts
 - lateral / upper boundary conditions
 - for the Meso-Scale Model
 - forcing data
 - for the operational ocean wave model
 - for the operational ocean data assimilation system
 - forecasted wind / temperature fields
 - for the operational chemical transport model

Numerical/Dynamical Properties (1)

- Horizontal representation
 - Spectral (spherical harmonic basis functions) with transformation to a reduced Gaussian grid for calculation of nonlinear quantities and most of the physics
 Standard Gaussian grid
 Reduced Gaussian grid
- Horizontal resolution
 - Spectral triangular TL959
- Vertical representation
 - Finite differences in sigma-pressure hybrid coordinates
- Vertical domain
 - Surface to 0.01 hPa level
- Vertical resolution
 - 100 unevenly spaced hybrid levels

Numerical/Dynamical Properties (2)

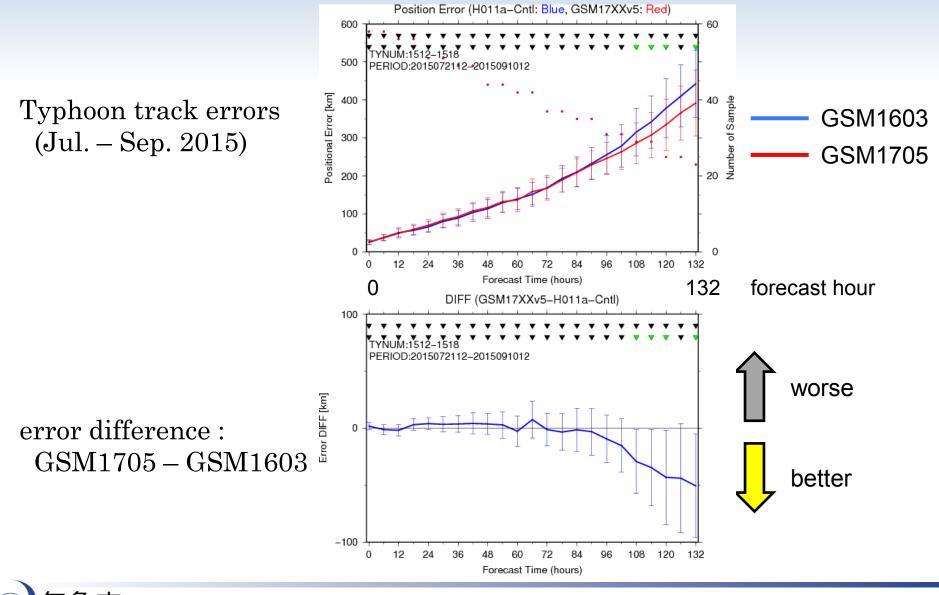
- Time integration scheme
 - A two-time level semi-implicit semi-Lagrangian scheme is used for the time integration
 - A constant time step length 400 sec.
 is used for the deterministic (TL959) model
- Numerical Diffusion
 - A linear fourth-order horizontal diffusion is applied on each model level in spectral space to remove numerical noises
 - A linear second-order horizontal diffusion is applied in the divergence equation as a sponge layer around the model top region


Physical Properties

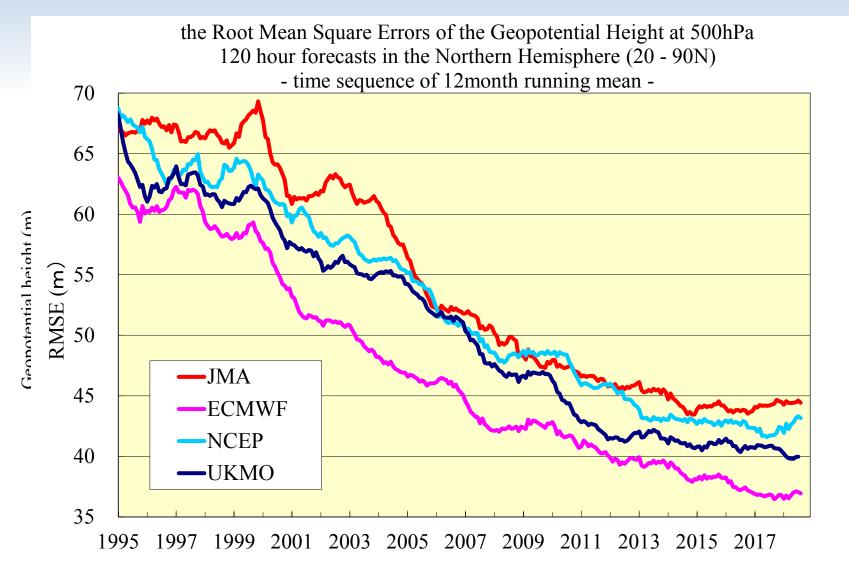
- Subgrid Gravity Wave : orographic gravity wave drag, momentum transport by non-orographic gravity waves
- Radiation : shortwave (solar) and longwave (terrestrial) radiation
- Convection : deep and shallow convection
- Cloud formation : a PDF-based cloud parameterization
- Precipitation : conversion from cloud droplets, detrainment from cumulus and conversion from cloud in convective updrafts.
- Planetary Boundary Layer : vertical transport of momentum, heat and moisture by subgrid scale flow
- Sea Ice / Snow cover
- Surface characteristics
- Surface fluxes : radiative and turbulent fluxes
- Land Surface : Simple Biosphere (SiB) model

A major upgrade of the global NWP system in May 2017 → GSM1705

- Upgrade of the physical processes
 - the deep convection parameterization
 - the cloud scheme
 - the radiation scheme
 - the land surface model
 - treatment of sea surface temperature (SST) and sea ice
- Refinement of the dynamical process to prevent undesirable spectral blocking in the model atmosphere
- Others
 - Introduce of the methane oxidation scheme in the middle atmosphere
 - Update of the background error statistics used in the analysis


Improvement of the Radiation Budget

(difference of downward solar radiation at the surface from satellite-based observation)

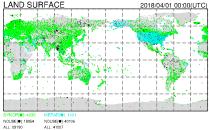

- GSM1705 has greatly improved the excessive solar radiation of GSM1603, by revisions of the cloud diagnostic scheme and the cloud-radiation scheme.
- It is thought to be related to more adequate representation of the cumulus convection and improved performance of the surface temperature prediction.

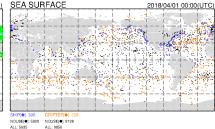
Improvement in typhoon track forecasts

Japan Meteorological Agency

Accuracy of Global NWP model

Smaller error

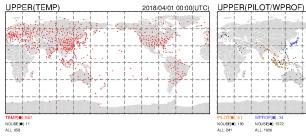

Operational Global Analysis

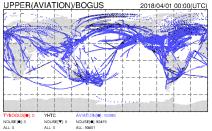

	GA	
Cut-off time	2h20m for early run analyses at 00, 06, 12 and 18 UTC, 11h50m for cycle run analyses at 00 and 12 UTC, 7h50m for cycle run analyses at 06 and 18 UTC	
Initial Guess	6-hour forecast by GSM	
Grid form, Horizontal resolution	Reduced Gaussian grid, approximately 20km for outer model (TL959) Reduced Gaussian grid, approximately 55km for inner model (TL319)	
Vertical resolution	100 forecast model levels up to 0.01 hPa + surface	
Analysis variables	Surface pressure, temperature, winds and specific humidity	
Methodology	Four-dimensional variational (4D-Var) scheme on model levels	
Data Used (as of 31 December 2017)	SYNOP, METAR, SHIP, BUOY, TEMP, PILOT, Wind Profiler, AIREP, AMDAR; atmospheric motion vectors (AMVs) from Himawari-8, GOES-13, 15, Meteosat-8, 10; MODIS polar AMVs from Terra and Aqua satellites; AVHRR polar AMVs from NOAA and Metop satellites; LEO-GEO AMVs; ocean surface wind from Metop-A, B/ASCAT; radiances from NOAA-15, 18, 19/ATOVS, Metop-A, B/ATOVS, Aqua/AMSU-A, DMSP-F17, 18/SSMIS, Suomi-NPP/ATMS, GCOM-W/AMSR2, GPM-core/GMI, Megha-Tropiques/SAPHIR, Aqua/AIRS, Metop-A,B/IASI; Suomi-NPP/CrIS, clear sky radiances from the water vapor channels (WV-CSRs) of Himawari-8, GOES-13, 15, Meteosat-8, 10; GNSS RO bending angle data from Metop-A, B/GRAS, COSMIC/IGOR, GRACE-A, B/blackjack, TerraSAR-X/IGOR, zenith total delay data from ground-based GNSS	
Initialization	Non-linear normal mode initialization and a vertical mode initialization for inner model*	

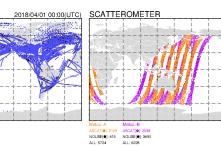
* Based on Machenhauer (1977)

Observations assimilated in JMA Global Analysis

JMA GLOBAL ANALYSIS - DATA COVERAGE MAP - 1 (Da00ps): 2018/04/01 00:00(UTC)



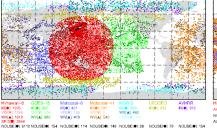



2018/04/01 00:00(UTC)

2018/04/01 00:00(UTC)

2018/04/01 00:00(UTC)

OTIOI: 5

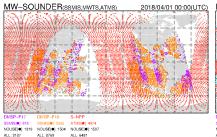

NOUSE[0]: 190

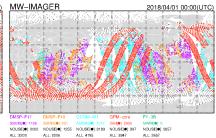
WPROFIOL 3

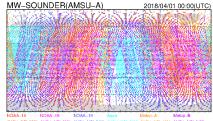
NOUSE[0]: 1572

ALL: 1606

ATMOSPHERIC MOTION VECTOR 2018/04/01 00:00(UTC) CLEAR SKY RADIANCE

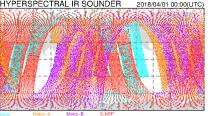

シンシント

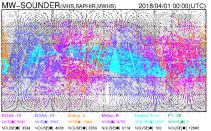


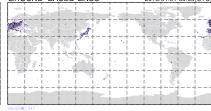

Himawari_8 Meteosat-8 AHI(@1: 2490

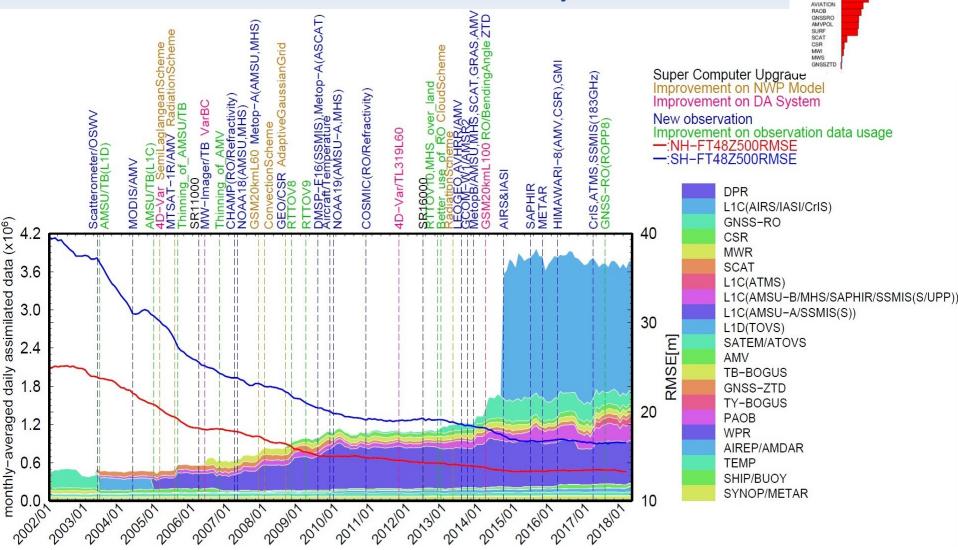
NCUSEI 8378 NOUSEI 2609 NOUSE 1 5924 NOUSE 1 4221 ALL: 5207 ALL: 9912 ALL: 9702

JMA GLOBAL ANALYSIS - DATA COVERAGE MAP - 2 (Da00ps): 2018/04/01 00:00(UTC)



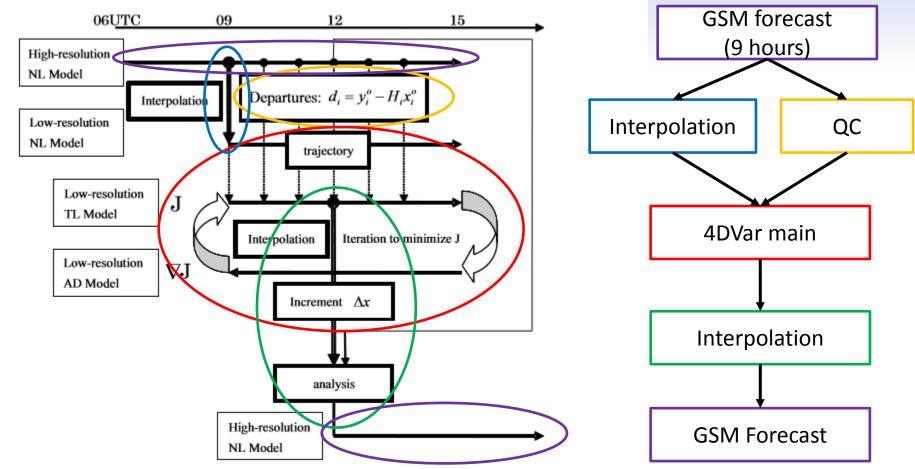

GNSS RADIO OCCULTATION 2018/04/01 00:00(UTC)


HYPERSPECTRAL IR SOUNDER



NOUSE[0]: 10290 ALL: 10637

Assimilated Data Amount History - Global Analysis -



気象庁 Japan Meteorological Agency

FSO (%)

20 30

Flow of global 4D-Var operation

JMA global 4D-var uses four models

- High-resolution NL model (outer NL model) = latest GSM
- Low-resolution NL model (inner NL model) = older and simplified GSM + NNMI
- Low-resolution TL/AD model (inner TL/AD model) = TL and AD version of inner NL model
- 🐠 気象庁 Japan Meteorological Agency

physical processes in TL model

Dynamical properties are basically same as outer NL model

- A constant time step length 600 sec.
- Subgrid Gravity Wave : orographic gravity wave drag only
 - The Richardson number is not perturbed in some parts for long waves
- Radiation : longwave (terrestrial) radiation only
- Convection : highly simplified Arakawa-Schubert scheme
 - Vertical wind shear and the planetary mixing length are not perturbed
 - The magnitude of mass-flux perturbation is set bounds
- Clouds and Large-scale Precipitation : Smith scheme and a simple statistical approach
 - the amount of falling cloud ice and the dependence on water vapor of isobaric specific heat are not perturbed. Only certain variables are perturbed in computing the conversion from cloud water to precipitation and the evaporation of precipitation
- Planetary Boundary Layer : vertical transport of momentum, heat and moisture by subgrid scale flow
 - Those diffusion coefficients are not perturbed
- Surface fluxes : radiative and turbulent fluxes
 - Sensible and latent heat flux are perturbed only over the sea

Global 4D-Var cost function

Total cost function $J(\Delta x_0) = J_b + J_o + J_c$

Incremental method

To control the gravity wave (based on Machenbauer 1977)

Background term $J_b = \frac{1}{2} \Delta x_0^T \mathbf{B}^{-1} \Delta x_0$

Background error covariance matrix **B**

- Described in spectral space
- Estimated by NMC method (365 samples)

Observation term $J_o = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{H}_i \mathbf{M}_i \Delta \mathbf{x}_0 - \mathbf{d}_i)^T \mathbf{R}^{-1} (\mathbf{H}_i \mathbf{M}_i \Delta \mathbf{x}_0 - \mathbf{d}_i)$

Pre-conditioning

Cholesky decomposition : $\mathbf{B} = \mathbf{L}\mathbf{L}^T \implies \Delta y_0 = \mathbf{L}^{-1}\Delta x_0$ $J = \frac{1}{2} \Delta \mathbf{y}_0^T \Delta \mathbf{y}_0 + \frac{1}{2} \sum_{i=0}^n (\mathbf{H}_i \mathbf{M}_i \mathbf{L} \Delta \mathbf{y}_0 - \mathbf{d}_i)^T \mathbf{R}^{-1} (\mathbf{H}_i \mathbf{M}_i \mathbf{L} \Delta \mathbf{y}_0 - \mathbf{d}_i) + J_c$ Gradient $\nabla J = \Delta \mathbf{y}_0 + \frac{1}{2} \sum_{i=0}^{N} \mathbf{M}_i^T \mathbf{H}_i^T \mathbf{R}^{-1} (\mathbf{H}_i \mathbf{M}_i \mathbf{L} \Delta \mathbf{y}_0 - \mathbf{d}_i) + \nabla J_c$

Control variables

- Analysis variables are
 - Winds (u, v), temperature T, surface pressure P_S , specific humidity q
- Control variables are
 - Relative vorticity ζ , unbalanced divergence η_U , unbalanced temperature and surface pressure

$$\begin{pmatrix} \Delta u \\ \Delta v \\ \Delta T \\ \Delta P_S \\ \Delta q \end{pmatrix} \rightarrow \begin{pmatrix} \Delta \zeta \\ \Delta \eta \\ \begin{pmatrix} \Delta \eta \\ \Delta T \\ \Delta P_S \\ \Delta \log q \end{pmatrix} \rightarrow \begin{pmatrix} \Delta \zeta \\ \Delta \eta \\ \begin{pmatrix} \Delta \eta \\ \Delta T \\ \Delta P_S \\ \Delta \log q \end{pmatrix} \rightarrow \begin{pmatrix} \Delta \zeta \\ \Delta \eta \\ \begin{pmatrix} \Delta \eta \\ \Delta T \\ \Delta P_S \\ \Delta \log q \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -P\tilde{L} & 1 & 0 & 0 \\ -Q\tilde{L} + RP\tilde{L} & -R & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \Delta \zeta \\ \Delta \eta \\ \begin{pmatrix} \Delta \eta \\ \Delta \eta \\ \Delta \rho \\ \Delta \rho \\ \Delta \log q \end{pmatrix}$$

P, *Q*, *R* : Regression coefficients \tilde{L} : modified balance mass operator

Recent updates of GA

- Upgrade of the inner models (2016.3)
- Update of the background error statistics (2017.5)
- Updates of Observation data usage
 - Enhancement of QC for GNSS-RO data (2017.5)
 - Switch-over from Meteosat-10 to Meteosat-11
 AMV and CSR (2018.3)
 - Use of DBNet Suomi-NPP/ATMS (2018.6)
 - Enhancement of surface sensitive CSR data use (2018.10)

Operational global EPS

• We started operation of GEPS integrating our previous three EPSs (typhoon, one-week and one-month) in Jan 2017

	GEPS
Main targets	Typhoon forecast, One-week to One-month forecast
Frequency	4 times a day when TC exists, 2 times a day otherwise
Forecast range	5.5 day (06,18UTC), 18 days (00,12UTC)
	34 days (00,12UTC on Tue. And Wed.)
Ensemble size	27 up to 11 days, 13 afterwards
Model and its resolution	GSM1705
	TL479L100 (top : 0.01 hPa) up to 18 days, TL319L100 afterwards
Initial perturbations	SV (NH, TR and SH) method, LETKF and LAF method
Model ensemble	Stochastically Perturbed Physics Tendency (SPPT)
	Modified amplitude
Boundary Perturbations	Perturbations on SST

More details on GEPS was introduced at Y. Ota's EMC seminar in May 2016

initial perturbation generators

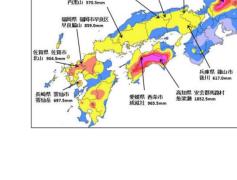
Specifications of SV computation

Lower-resolution versions of those used in the global 4D-Var data assimilation system		
Spectral triangular 63 (T63), quadratic Gaussian grid system, roughly equivalent to 1.875° ×1.875° (180 km) in latitude and		
longitude		
100 unevenly spaced hybrid levels (0.01 hPa)		
Moist total energy		
Northern Hemisphere (30°N-90°N)	Southern Hemisphere (90°S-30°S)	Tropics (30°S-30°N)
Initialization, horizontal diffusion, surface fluxes and vertical diffusion		In addition to the left, gravity wave drag,
large-sc:		large-scale condensation, long-wave
radiation and deep cumulus convection		
48-hours		24-hours
25	25	25
	Spectral triangular 63 (T63), quadratic Gauss longitude 100 unevenly spaced hybrid levels (0.01 hPa Moist total energy Northern Hemisphere (30°N-90°N) Initialization, horizontal diffusion, surface flu 48-hours	Spectral triangular 63 (T63), quadratic Gaussian grid system, roughly equivalent to longitude 100 unevenly spaced hybrid levels (0.01 hPa) Moist total energy Northern Hemisphere (30°N-90°N) Southern Hemisphere (90°S-30°S) Initialization, horizontal diffusion, surface fluxes and vertical diffusion 48-hours

Specifications of LETKF

Model name (version)	Global Spectral Model (GSM1705)
Horizontal resolution	Spectral triangular 319 (TL319), reduced Gaussian grid system, roughly equivalent to 0.5625° ×0.5625° (55 km) in latitude and
	longitude
Vertical resolution (model top)	100 unevenly spaced hybrid levels (0.01 hPa)
Analysis time	00, 06, 12, 18 UTC
Ensemble size	50 members
Data cut-off time	2 hours and 20 minutes
First guess	6-hour forecast of its own
Analysis variables	Wind, surface pressure, specific humidity and temperature
Observation	Same as global early analysis except for AIRS, IASI and CrIS
Assimilation window	6 hours
Perturbations to model physics	Stochastic perturbation of physics tendency
Initialization	Horizontal divergence adjustment based on the analysis of surface pressure tendendcy (Hamrud et al. 2015)
Covariance inflation	Adaptive multiplicative covariance inflation
Other characteristics	Fifty analyses are recentered so that the ensemble mean of them become consistent to the analysis of the Global Analysis (GA).
	Twenty six of 50 analyses are used to generate initial perturbations of GEPS.

Contents

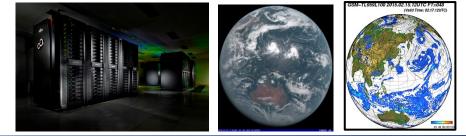

- Overview of NPD/JMA
- JMA operational NWP
- JMA global NWP
- Future plan

JMA NEW NWP STRATEGIC PLAN TOWARD 2030

Decided in October 2018

Context

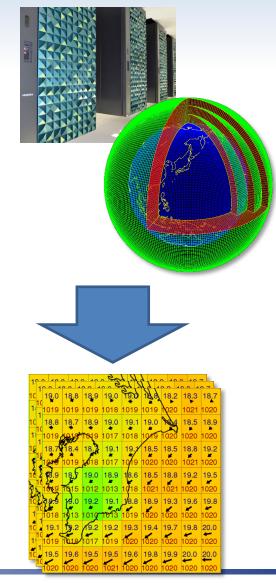
- Change of Natural Disaster
 - Severity of natural disaster with climate change
 - A rash of torrential rain disasters
 - Violent and very large typhoon
- Rapid Change of Social Condition
 - IoT and AI
 - Fragile social infrastructure with declining birthrate and aging population
 - Growth of needs for weather and climate information
- Dramatic Advances of Science and Technology
 - Simulation technology
 - Big-data
 - International collaboration



岡山県 芝田郡崎

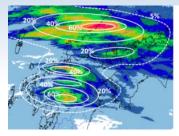
た島県 山県郡安芸オ

岐阜県 郡上市

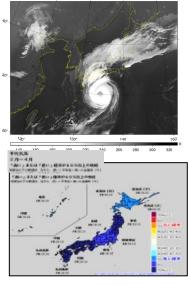


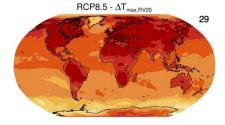
Vision

- Innovation to ensure the safety and security of the people, and to realize a vibrant society
 - NWP products are fundamentals for weather and climate forecast.
 - NWP becomes a vital social infrastructure for the safety, security and wealth life.
 - JMA promotes its improvement to achieve higher accuracy to support various social service including disaster prevention directly and effectively.



- NWP will be a new national common asset!




Priority objectives

- Torrential Rain Disaster Prevention
 - Improve probability forecast for genesis and stagnation of torrential precipitation
- Typhoon Disaster Prevention
 - Improvement of forecast accuracy for torrential rain caused by typhoon and synoptic scale front
- Contribution to Socio-economic activities
 - Improvement of weather and climate forecast up to 6 months.
- Adaptation to Global Warming
 - Improvement to higher resolution of global warming information based on common scenario

M_IR INIT 1959.09.26 OOUTC KT=C DATE 1959.09.26 OOUTC

Promotion of technology innovation

- To achieve above priority objectives, JMA promotes following technology innovation predominantly.
 - Assimilation of Earth Big-data Observation with next generation technology
 - Simulation of Weather and Climate in Japan with world highest accuracy and resolution
 - Support of decision making by blending of
 Probability forecast and Artificial Intelligence
 technology

Intensification of Development Management and Principle of development

- Intensification of Development Management
 - Promotion of wide collaboration

"Experts meeting about ALL-Japan NWP development"

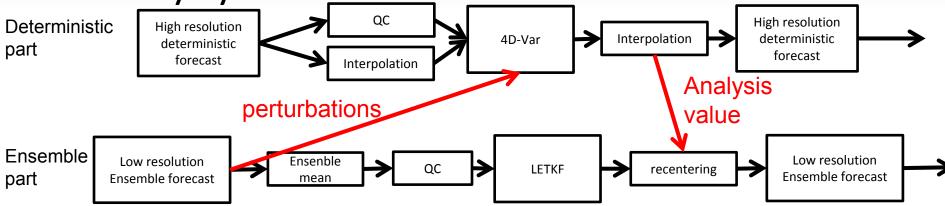
• Principle of development

- JMA NWP scientists share a principle of development which consists of
 - Prioritization
 - Evidence based development
 - Emphasis on logistics

Development Plan toward 2030

Objective	Development plan		
Torrential Rain Disaster Prevention	 Implementation of sub-km high resolution regional model State of the art data assimilation method with new technology including AI Assemble of various latest knowledge 		
Typhoon Disaster Prevention	 Optimized hierarchical NWP system which consists of global and regional model, storm surge model, EPS and so on Higher resolution global and regional model Newer physical processes suitable for higher resolution Assimilation of high density (time/space) earth observation big-data Introduction of AI technology 		
Contribution to Socio- economic activities	 The major target is to improve outlooks of high impact conditions or phenomena, such as <i>cold summer, warm winter, heat wave and cold spell</i>. Hierarchical Earth System model which reproduces various phenomena including heat and cold wave and various element Higher resolution ocean model, Improvement of data assimilation for earth system components 		
Adaptation to Global Warming	 High resolution regional climate model More accurate Earth system model which forecast global scale warming 		

FUTURE DEVELOPMENT PLAN OF GLOBAL NWP


Development plan of global NWP within the next few years

- Higher resolution global model
 - GSM : 20km L100 → 13km L128
 - GA inner models : 55km L100 \rightarrow ???km L128
 - GEPS : 40km L100 M27 → 25km L128 M51
- Newer physical processes suitable for higher resolution
- State of the art data assimilation
 - Introduction of hybrid DA system
- Assimilation of high density (time/space) earth observation big-data
 - Updates observation data use
 - Introduction of all-sky MW radiance assimilation

JMA global hybrid 4D-Var plan

Developing by Takashi Kadowaki

• 2-way system with 4D-Var and LETKF

• En4D-Var (extended control variable method)

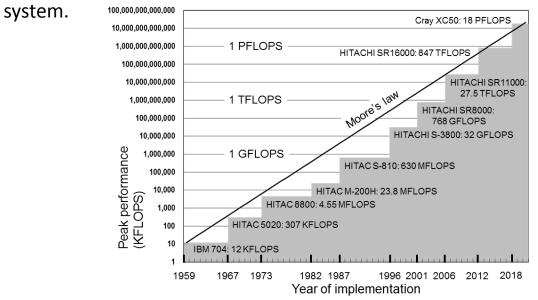
$$J(\Delta x) = \frac{1}{2} \Delta x_f^{\mathrm{T}} \mathbf{B}_{cli}^{-1} \Delta x_f + \frac{1}{2} \alpha^{\mathrm{T}} \mathbf{B}_{ens}^{-1} \alpha + J_o + J_c$$
$$\Delta x = \beta_{cli} \Delta x_f + \sum_{n=1}^{N} \beta_{en} (\alpha^n \circ (x_e)_0^{-n})$$
$$\Delta x_k = \mathbf{M}_k \left(\beta_{cli} \Delta x_f + \sum_{n=1}^{N} \beta_{en} (\alpha^n \circ (x_e)_0^{-n}) \right)$$

Lorenc (2000) Buehner (2003)

Current settings of our hybrid DA In development

- 4D-Var
 - Resolution : outer TL959L100/inner TL319L100
 - Localization scale 800 km in horizontal, 0.8 scale height in vertical
- LETKF
 - Resolution : TL319L100
 - Ensemble size : 50
 - Localization scale 400 km in horizontal, 0.4 scale height in vertical
- Mixing weight
 - $\beta_{cli}{}^2 = 0.85, \beta_{en}{}^2 = 0.15$

Conservative settings

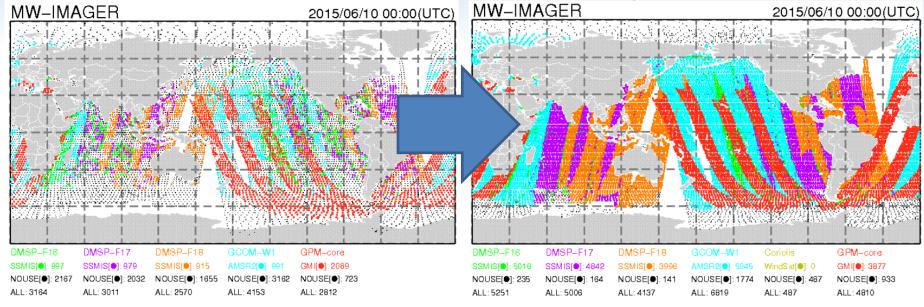

Experimental result

Cntl: 4D-Var **Relative changes** Test : Hybrid 4D-Var against observations Relative improvement of RMSE (201601)against ECMWF analysis (201508) MHS/AMUS-A AN departure Data count FG departure SHW SHW Typhoon track forecast -1.5 -1.0 -0.5 -1.5 -1.0 -0.5 0.0 0.2 0.4 0.6 0.8 Change in STDDEV [% Change in STDDEV [%] **MW-IMAGER** FG Departur error against JMA analysis る影 影 1 (2015072100-2015091106) 0.0 0.2 0.4 0.6 0.8 -0.8 -0.4 Position Error (H013-Cntl: Blue, H013v201508x: Red) Change in STDDEV [% Change in STDDEV [%] Change in data count [% FG Depa 220 CSR PERIOD:2015072100-400 200 GOES chi GOES d Psea MSG ch MSG cha MSG dt [km] 300 -1.0 -0.5 0.0 Error -12 -0.6 0.09 0.18 0.27 140 Change in STDDEV [%] Change in STDDEV [%] Change in data count [%] AN Departu œ IASI 200 100 80 100 0.0 0.2 0.4 -0.4 -0.2 0.0 0.9 1.2 0.3 0.6 Change in STDDEV [9 AN Departu FG De 12 24 36 60 72 84 108 120 GNSS-RO 0 48 96 132 Forecast time (hours) -00-5 12 -06 00 06 -0.8 -0.4 0.0 0.4 0.8 0.3 0.6 0.9 Change in STDDEV MA Change in STDDEV I% Change in data count P% Red : more close to EC analysis Improved

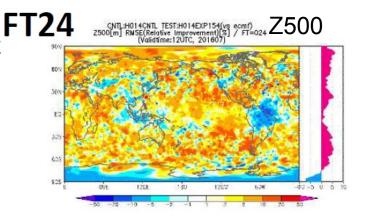
THANK YOU!

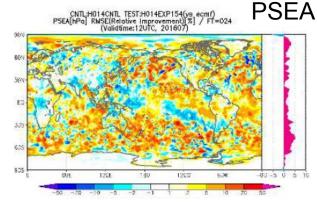
Supercomputer replacement

- Hitachi SR series to Cray XC series
 - Brand new CPU (Big change since 2001)
 - From IBM POWER to Intel Xeon.
 - Brand new compiler (Big change since the mid 1960's)
 - From Hitachi compiler to Cray (or Intel) compiler.
 - Migration from "Hitachi Service Subroutine"
 - These are provided by Hitachi along with his compiler but not supported on Cray

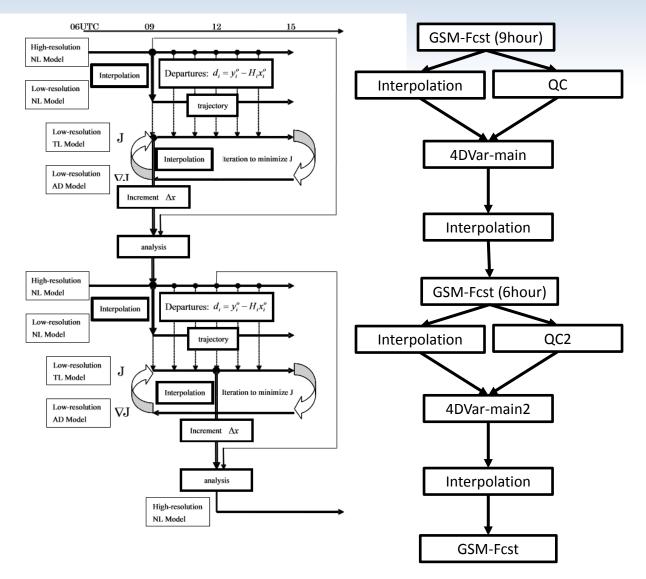


Operationally Assimilated Satellite Data


Туре	Satellite/Instrument	Global Analysis	Meso Analysis	Local Analysis
1. MW Sounder	NOAA15,18,19,Metop-A,-B,Aqua/AMSU-A	Radiance	Radiance	Radiance
	NOAA18,19,Metop-A,-B/MHS	Radiance	Radiance	Radiance
	DMSP-F17,18/SSMIS	Radiance	-	-
	Suomi-NPP/ATMS	Radiance	-	-
	Megha-Tropiques/SAPHIR	Radiance	-	-
2. IR Sounder	Aqua/AIRS	Radiance	-	-
	Metop-A,B/IASI	Radiance	-	-
	Suomi-NPP/CrIS	Radiance	-	-
3. MW Imager	DMSP-F17,18/SSMIS	Radiance	Radiance, Rain Rate	Radiance
	GCOM-W/AMSR2	Radiance	Radiance, Rain Rate	Radiance
	GPM-core/GMI	Radiance	Radiance, Rain Rate	Radiance
4. VIS/IR Imager	Himawari-8	CSR, AMV	CSR, AMV	CSR, AMV
	GOES-15	CSR, AMV	-	-
	Meteosat-8,11	CSR, AMV	-	-
	NOAA15,18,19,Metop-A,-B/AVHRR	AMV	-	-
	Aqua,Terra/MODIS	AMV	-	-
	LEOGEO composite image	AMV	-	-
5. Scatterometer	Metop-A,-B/ASCAT	OSWV	OSWV	-
6. Radio Occultation	GRACE-A,-B/Blackjack	Bending Angle	Refractivity	-
	Metop-A,-B/GRAS	Bending Angle	Refractivity	-
	TerraSAR-X/IGOR	Bending Angle	Refractivity	-
	TanDEM-X/IGOR	-	Refractivity	-
	COSMIC/IGOR	Bending Angle	Refractivity	-
7. Radar	GPM/DPR	-	Relative Humidity	-
8. Soil Moisture	GCOM-W/AMSR2	-	-	Soil Moisture
	Metop-A,-B/ASCAT	-	-	Soil Moisture


CSR: Clear Sky Radiance on water vapor channels, AMV: Atmospheric Motion Vector, OSWV: Ocean Surface Wind Vectors

All-sky MW radiance assimilation Clear-sky with outer loop



Relative improvement of RMSE against ECMWF analysis (201607)

Introduction of outer loop on GA

