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Predictability and Prediction

* Land states (hamely soil moisture but also snow) can provide
predictability in the window from deterministic (weather) to climate (O-
A) time scales, peaking at S2S.
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Predictability and Prediction

* Land states (namely soil moisture but also snow) can provide
predictability in the window from deterministic (weather) to climate (O-

A) time scales, peaking at S2S.

* Vegetation states, related to

soil moisture anomalies, give | atmosphere
(weather)

predictability at/beyond S25S
time scales.

* L-A couplingis active where
there is sensitivity, variability
and memory.

* Good models and analyses (of
atmosphere and land) needed
to exploit this source of skill. -7 days  -30 days Time

Predictability
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Shukla & Mintz 1982

* GCM simulation with uniformly wet

soil (top) and dry soil (bottom).

e Most land areas have more rainfall

over wet soil than dry.

* India is an exception — strong surface
heating and low level convergence

enhances monsoon.

 Early indication of the feedback

between land evaporation and
orecipitation.
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Global Land-Atmosphere Coupling Experiment (GLACE)

c.12

JJA Land-Atmnsphere Coupling Strength, Averaged Across AGCMs

* 12 weather and climate
models differed in their
land-atmosphere coupling
strengths, yet “hot spots”
emerged in transitions zones
between arid and humid
climates.

* These largely correspond to
major agricultural areas.

* Thus, places of intense land
management are also where “Famous” figure from Science paper which has become widely
atmosphere is very sensitive used to justify the role of the land surface in climate.
to land state!

180 1200

Koster et al. (2004: Science)
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GLACE-2 Multi-Model Forecast Experiment

Land Impacts on Air Temperature Forecast Skill

* 10Yyears, 10 start 1-15 days 16-30 days Lead time (days) . . days 46-60 days
dates, 10-member < | S - T
ensembles 3

* Realistic soil g
moisture ©
initialization S
improves forecasts. S

* Improvements -
largest over North
America — data

quality effect? —

r’correlations o, o, 0. 0. o, o

0, 0, %, %05 07 O, Oo 9o O O
Model: Multi—model Analysis  Year: 1986—-1995 Obs: Hadley
Multi-model AnalySIS Koster et al. (2010; GRL) £
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GLACE-2 Hindcast Skill

* Weaker impact at short lead times
(deterministic forecast range) -

atmospheric initial states dominate.
* Peak impact for precipitation around

2-3 weeks lead time.

* Positive impacts for temperature
persist throughout forecast period.

* Only 4 of 12 models showec

verifiable impacts from land surface
initialization! COLA GCM shown

here.
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2m Temperature Forecast Skill Improvement

100.0

Skill Contributors

o
o

* Places that see the greatest skill
impact from realistic land
surface initialization have high
rain gauge density (good rainfall
data to generate initial soil
moisture states) and high land-
derived predictability (hot
spots).

GPCP Precipitation Gauge Density —m>

Garbage in,
garbage out

Black: No Improvement

16-30
days

for Air

Koster et al., (2011: JHM)
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Land-Atmosphere feedback stands on 2 legs

s R
AP = ASM — AFluxes — APBL - AP

Y

S Feedback loop: Terrestrial leg Atmospheric leg -

e Terrestrial —When/where/how does soil moisture (vegetation, snow,

etc.) control the partitioning of net radiation into sensible and latent
heat fluxes?

e Atmosphere —When/where do surface fluxes significantly affect
boundary layer properties, clouds and precipitation?

ALH}=> Ag - ALCL - AClouds

Process chains: ASM | AEF AMSE = Alnstability ¢ APrecipitation

ASH|—> AG - APBL - AEntrainment

NCWCP — 29 May 2018 Paul Dirmeyer _— Sl ON
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Climate Feedbacks: Three Ingredients

* Sensitivity
— When and where is there an active
coupling between climate components?

—
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Climate Feedbacks: Three Ingredients

* Sensitivity
—When and where is there an active
coupling between climate components?
* Variability
— A climate coupling results in a significant

impact only when the fluctuations are
large enough.

——

~ . — COLA
NCWCP — 29 May 2018 Paul Dirmeyer —_—r V1A



Climate Feedbacks: Three Ingredients

* Sensitivity
—When and where is there an active
coupling between climate components?
* Variability
— A climate coupling results in a significant

impact only when the fluctuations are
large enough.

* Memory

— If the coupling and fluctuation do not
persist, the impact will be short-lived,
weaker.
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Climate Feedbacks: Three Ingredients

* Sensitivity
—When and where is there an active
coupling between climate components?
* Variability
— A climate coupling results in a significant

impact only when the fluctuations are
large enough.

* Memory

— If the coupling and fluctuation do not
persist, the impact will be short-lived,
weaker.
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Ingredient #1: Sensitivity

e Over many parts of the world, there is
a range of SM over which evaporation
rates increase as soil moisture s ad B s

. . . . . o, . e -.-.;.. 5 n.-:v."c_-',-:. REDN ::. h_'
increases (soil moisture is a limiting aheit T TR e
~ .‘.I: '."'\: ; a® oy - ... :'..'- ° ‘.. ..1'- g
factor — moisture controlled). _ S
o . b :
= 1201 f’; "% | Little sensitivity of evaporation to
E et i soil wetness across a wide range
O 1w bl
O to
‘§ 80- .;_,
LLI

Sensitivity of |
601 evaporation to |4y

soil wetness | Noah (90-94W, 36-42N)
401 islimitedto |&.
the dry range
20 near the wilting t.
point. :
% 0.1 02 03 04 05 08 07 OB 09

Soil Wetness
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Ingredient #1: Sensitivity

e Over many parts of the world, there is

a range of SM over which evaporation * T
rates increase as soil moisture e
increases (soil moisture is a limiting 2 ST
factor — moisture controlled). _w AP
= Toe ittle sensitivity of evaporation to
e Above some amount of moisture in T 7 | o«
: - O  100; B8
the soil, evaporation levels off or Q. e
. = L0
even declines. W | sensitwiyor |7
soil wetness |2 Noah (90-94W, 36-42N)
401 islimitedto |&.
the dry range %
20 near the wilting t.
point. &
o 01 02 : 03 04 05 08 07 08 09
Soil Wetness
> —N COLA /;EORGE
NCWCP — 29 May 2018 Paul Dirmeyer —\ IV I A SON



Ingredient #1: Sensitivity

e Over many parts of the world, there is

a range of SM over which evaporation * T
rates increase as soil moisture B J
increases (soil moisture is a limiting 2 ST
factor — moisture controlled). _ e A
, , o 1 3 f——— .
e Above some amount of moisturein & 5% | il wetness auross a wide range
: - O  100; B8
the soil, evaporation levels off or Q. e
. = 8 L0
even declines. W | sensitwiyor |7
. . , soil wetness |2 Noah (90-94W, 36-42N)
e In that wet range, soil moisture is ali st %
plentiful, and is no longer controlling "e”i,'l,‘?n“f'“"g?
the partitioning of fluxes (it’s TEE s mw @ o
: - Soil Wetness
controlled by availability of energy).
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NCWCP — 29 May 2018 Paul Dirmeyer =N msoofq



Ingredient #1: Sensitivity

e Over many parts of the world, there is
a range of SM over which evaporation
rates increase as soil moisture
increases (soil moisture is a limiting
factor — moisture controlled).

-

<!

e Above some amount of moisture in ©
. . @)

the soil, evaporation levels off or S
>

even declines. =

e In that wet range, soil moisture is
plentiful, and is no longer controlling
the partitioning of fluxes (it’s
controlled by availability of energy).
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Slope and correlation are
measures of sensitivity

1 evaporation to |4

{ near the wilting
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soil wetness
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the dry range

point.

Little sensitivity of evaporation to
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Sensitivity Affects Predictability in GLACE 2

* Soil moisture anomalies that
push the local L-A system
toward the regime of greatest
sensitivity generate biggest
Improvements.

Koster et al., (2011: JAM)

Paul Dirmeyer
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Sensitivity Affects Predictability in GLACE 2

e Soil moisture anomalies that ~ VVettest Half
of Inltlal Soil

push the local L-A system Moisture-
Anomalies

toward the regime of greatest
sensitivity generate biggest

T\\ Nm/

Improvements.
* When an arid area becomes D”?ﬁ}tgﬁg;fl
moist (A), it gains predictability, = Moistures
_ Anomalies
and thus skill. \\
Temperature Forecast Skill, Days 31-45
T o
Koster et al., (2011: JAM) RSTETEREEE £
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Sensitivity Affects Predictability in GLACE 2

e Soil moisture anomalies that ~ VVettest Half
of Initial Soil

push the local L-A system Moisture-
Anomalies

toward the regime of greatest
sensitivity generate biggest

Improvements.
 When an arid area becomes D”?S? iaf of
_ _ _ _ . nitial Soill
moist (A), it gains predictability,  Moisture.
and thus skill. nemd 'eS_
* When a humid area becomes
dry (B), it gains predictability,  Temperatur

and thus skill.
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Koster et al., (2011: JHM)
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Explained Variance: Latent Heat Flux & Root Zone Soil Wetness JJA

B N <
= . ke

Sensitivity to Land States

* There is widespread sensitivity to
soil moisture variations by surface
atent (top) and sensible (middle) o W

Explained Variance: Sensible Heat Flux & Root Zone Soil Wetness

I G v
neat fluxes in MERRA-2. .
474
' )l\liﬁj. -
e\"Vf‘V\A/ Y,
.ﬁf ) i

Explained Variance: Lifted Condesation Level & Sensible Heat Flux

— === [ — e —

=3

Explained variance (%) based on correlations
of daily means of indicated variables from
MERRA-2 (1980-2015) during JJA.
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Sensitivity to Land States

* There is widespread sensitivity to

soil moisture variations by surface
atent (top) and sensible (middle)
neat fluxes in MERRA-2.

* This sensitivity propagates into
the atmosphere, e.g., PBL height
sensitivity to sensible heat flux
(bottom).

Explained variance (%) based on correlations
of daily means of indicated variables from
MERRA-2 (1980-2015) during JJA.
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Standard Deviation: Root Zone Soil Wetness MERRA-2
—— - JJA

T——
E4
L=

Ingredient #2 Variability

e Standard deviation of daily soil
moisture (top) shows clearly that e —
arid regions lack variability (rare  Stonters vt e et P
occasions when there is significant
soil moisture).

Standard Deviation: Latent Heat Flux

- ——— e i _—

e |Latent heat follows soil moisture

e Largest variability for sensible heat is
associated with:

— Transition zones (arid — humid)

— Strong interannual variability (e.g.,
monsoon areas, SE U.S.)

NCWCP - 29 May 2018 Paul Dirmeyer



Combining the First Two Ingredients

* Mathematically, sensitivity and correlation are directly related:
o

ra,b — ﬁa,b -

O,

* A"couplingindex” between any two quantities with a process
linkage combines concepts of sensitivity (correlation), and
variance (magnitude of variability of key quantities).

l,(a) = Vo bOp = ﬁa,baa

Index — how strongly is Correlation between a Sensitivity of b to a
the response of b and b times standard (slope) times standard
coupled to forcing a? deviation of b. deviation of a.
One of many L-A coupling metrics. See:
http://tiny.cc/l-a-metrics Dirmeyer (2011: GAL) /
4EORGE
Paul Dirmeyer : C(PLA ! ON
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I (JJA) GSWP—-2 10cm
LH e
: 4 W {*‘ R 2 3 ; 'n F

Terrestrial Coupling Index

* For latent heat flux coupling to surface soil
wetness, there is strong correspondence to
not-spots (right; red colors).

* Remarkable consistency between (top to
bottom) a multi-model offline (LSM-only)
analysis, operational forecast model,
reanalysis, and uncoupled land reanalysis
with observed precipitation.

* Negative values: energy limited,
atmosphere controls land, no feedback.

e Units are same as the flux [W/m?3].
Dirmeyer (2011: GRL,)

NCWCP - 29 May 2018 Paul Dirmeyer
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- e

Memory (e-Folding Autocorrelation Time Scale)  Noah/CFSv2
° 0-10cm Soil Moisture 10-40cm Soil Moisture
e - .‘z;.::;; ] = ﬂ . ~ . ':,_.‘.;7'-.’; ] = 4‘:-: ‘ ~ .
Ingredient #3: Memory 6" e 5 e

April

* Memory (persistence) strongly
related to whether location is

energy-limited or moisture-limited.
— Long memory where arid.

— Long memory where snow covered,
frozen ground.

June

— Short memory where humid, rainy.
— Short memory under forests.

* Memory increases with depth into
the soil.

July

* Soil texture, geology also factors.

August

Dirmeyer & Halder, (2017: JAM)
NCWCP - 29 May 2018 Paul Dirmeyer




Land Surface Impacts on Atmospheric Predictability

(solid lines for LA\O case, dotted lines for A\O case)
~-Soil Moisture
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o .
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Guo et al. (2013: JHM)
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Land Surface Impacts on Atmospheric Predictability

(solid lines for LA\O case, dotted lines for A\O case)
~-Soil Moisture
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GLACE-2 Predictability
Rebound

* Box over US Great Plains.
Soil moisture memory is
high during spring and
summer.
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Land Surface Impacts on Atmospheric Predictability

(solid lines for LA\O case, dotted lines for A\O case)
~-Soil Moisture

—

Predictability  Predictability

_EV(J@];\/

Predictability

Correlation

Predictability

11

Month

Model: COLA AGCM Years: 1982—2006
Guo et al. (2013: JHM)
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GLACE-2 Predictability
Rebound

* Box over US Great Plains.
Soil moisture memory is
high during spring and
summer.

In early spring soil
moisture does not control
ET.
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Predictability  Predictability

Predictability

Correlation

Predictability

—

Land Surface Impacts on Atmospheric Predictability
(solid lines for LA\O case, dotted lines for A\O case)

\ﬁ%% | GLACE-2 Predictability
- N S Rebound

* Box over US Great Plains.
% Soil moisture memory is
ey ' ' | high during spring and
Ry \ summer.

In early spring soil
R T control
ET.
Late spring and summer,
all pieces are in place.

T T

cemasen Neenenenn A e L LT TR -y
LLL TP

~Corr(ET,SM)

P

Month
Model: COLA AGCM Years: 1982—2006
Guo et al. (2013: JHM) s
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Land Surface Impacts on Atmospheric Predictability

(solid lines for LA\O case, dotted lines for A\O case)
~-Soil Moisture

0.8 f~——"——=C

—

cemasen Neenenenn A e L LT TR -y
LLL TP

1 ~Corr(ET,SM)

0.4 p <€

Predictability  Predictability
O
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Predictability

Correlation

Predictability

Month
Model: COLA AGCM Years: 1982—2006

Guo et al. (2013: JHM)
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GLACE-2 Predictability
Rebound

* Box over US Great Plains.
Soil moisture memory is
high during spring and
summer.

In early spring soil
moisture does not control
ET.

Late spring and summer,
all pieces are in place.
The impact of soil
moisture on temperature
and precip maximizes,
predictability “rebounds”

/
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The Atmospheric Leg

* Radiosonde sites in and around CONUS in summer were
assessed based on their climatologies of CTP and HI

Reg

Low"
ional Categorizations
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- f @
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Dependence of Afternoon Rain on Evaporative Fraction

TES, aft6.JJA, JJA, 50 bootstraps

* Triggering Feedback Strength 0 N ST T - 7
(in probability units):

TES = o O 0

~ YEF5EF

3OON
e Eastern US shows afternoon

rainfall triggering dependent ;J
on land surface fluxes in NARR 120 W 100 W 30 W

20 N

* Maps created from 5o bootstrap samples ' '
-0.05 0 0.05 0.1 0.15 0.2 0.25

Findell et al. (2011: Nat Geosct.)
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Feedback Via Two Legs

* GLACE coupling strength for summer soil moisture to —
rainfall (the “hot spot”) corresponds to regions where
there are both of these factors:

* High correlation between daily soil moisture and |
evapotranspiration during summer [from the GSWP
multi-model analysis, units are significance
thresholds], and

* High CAPE [from the North American Regional }

Reanalysis, J/kqg]

AP = ASM - AE - AP ;

-
Feedback path: Terrestrial leg Atmospheric leg

i

'?’
p
P
)
L e
a 1
.’ o

o

T |
200 400 800 1200 1600

-
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NCWCP — 29 May 2018 Paul Dirmeyer —_— O )
sudes: YNLTVERSITY



Leapfrogging of precipitation events

* In West Africa in particular,
easterly waves bring disturbances

and rainfall during the wet season. |f,>
* Convection and maximum rainfall Light mean wind ;
occurs preferentially just ~ ------ .
- 7 : : N\ Shallow, strong current
downstream Of previous ralnfa” Deep, weak current ', ﬂ H _________
event, not over wet ground. ) <
» Surface moisture/temperature =
. ~ m
gradlents set Up the pI’Eference_ Cool, moist soil Warm, dry soil Cool, moist soil

Taylor et al. (2011; Nature Geosci.)
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Observations: Rain over Dry Soil

Shading: percentile of observed variable (mean soil moisture
contrast) given no feedback

i e e ® R Ascat | *©
" e £
o P
30° N iz
%
Equator- Tl : —10
-0.4 0 0.4
- AS (fractional saturation)
30° S+ e | AMSR-E 0
60° S - " - U|: 01— .-‘ F—— @
180 120° W 60° W ‘Z,Jb "‘,‘T\: g
o /] \
[ |/ "
1 5 10 90 95 99 =t 5 0.1°
Rain over Percentile Rain over AS (m?* m3)
drier soil wetter soil
Apparent preference for afternoon rain over drier soil
Far fewer blue pixels than expected by chance
Signal strongest in Africa and Australia Taylor et al. (2012; Nature)
Z
—— GEORGE
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Reconciling Koster & Taylor

Perspective

Typical rainy cases

* Much of the difference may be due to
spatial vs. temporal scaling.

* GLACE picked up on large-scale temporal =

Temporal coupling:
Rains when conditions are
wetter

_—

>

coupling, where correlations and feedbacks
are positive.

Spatial coupling:
Rains where conditions
are drier

ot

Joint perspective:

Rains when conditions are
wetter and
heterogeneous, in
locations where

conditions are drier

Guillod et al., (2014; Nature Comm.)

>

NCWCP - 29 May 2018 Paul Dirmeyer
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Reconciling Koster & Taylor

* Much of the difference may be due to
spatial vs. temporal scaling.

Perspective

Typical rainy cases

* GLACE picked up on large-scale temporal =

Cou
are
* Tay
Cou

grid in weather and climate models.

Temporal coupling:
Rains when conditions are
wetter

_—

>

vling, where correlations and feedbacks
positive.

or picked up on small-scale spatial —

Spatial coupling:
Rains where conditions
are drier

/

ot

nling that occurs at scales that are sub-

Joint perspective:

Rains when conditions are
wetter and
heterogeneous, in
locations where

conditions are drier

>

Guillod et al., (2014; Nature Comm.)
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Reconciling Koster & Taylor

Perspective

Typical rainy cases

* Much of the difference may be due to
spatial vs. temporal scaling.

* GLACE picked up on large-scale temporal =

Temporal coupling:
Rains when conditions are
wetter

_—

>

coupling, where correlations and feedbacks
are positive.

* Taylor picked up on small-scale spatial —

Spatial coupling:
Rains where conditions
are drier

/

ot

coupling that occurs at scales that are sub-
grid in weather and climate models.

* They can coexist in nature, but notin

Joint perspective:

Rains when conditions are
wetter and
heterogeneous, in
locations where

conditions are drier

>

models that parameterize convection -

conventionally.

Guillod et al., (2014; Nature Comm.)

>
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Atmosphere & Ocean ICs

Land ICs in Forecasts

LFSvZ
1982 [

* 28 years of seasonal CFSv2 jgg3 -
forecasts: 1 April, 1 May & 1 ;—)3 1084 B
June ICs covering 1982-2009. & -

* 28-member ensembles, 2009 -
same atmosphere and ocean O Specified 1982 1983 1984 .. 2009
ICs; 27 members with land
ICs from “wrong"” years, 1 “Wrong” Land ICs = Skill from A+Q initialization
with “l’ight" y€ar. “Specified” vs “Wrong” = Maximum potential

skill from land states
“Right® vs “Wrong” Land ICs = Harvested skill

e Additional case with land

states specified from CFSR as
B(Cs. “Specified” vs [“Right® = Unharvested skill

NCWCP - 29 May 2018 Paul Dirmeyer aw
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Skill Manifests on Day 1

* Once the sunrises, the land surface
begins to heat and interact with the
lower atmosphere

* The “right” land surface initialization
extends forecasts of daily means a
median of 3 days (skill = ACC
significance at 95% confidence) in
CFSv2 for 2m temperature and
humidity.

* On weather time scales, soil moisture
and temperature are the main
factors.

* This experiment did not consider |
vegetation effects.

Dirmeyer & Halder (2016: W&F) //
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S2S Skill from Land Surface Initialization

* Looking at longer time scales (pentad
means); how many pentads is
significant forecast skill (ACC)
extended by using the “right” land
1Cs?

* ~40% of globe has skill extended by 2
ventads or more, ~80% at least 1
ventad.

* For monthly means, 30-50% area has
skill extended =1 month.

* Neglecting land surface
Initialization seriously degrades

1JuneIC

forecast skill. |

Dirmeyer & Halder (2017: JHM) Z
. — CO'_A n 1 GEORGE
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How Much Memory is Harvested as Skill?

Ratio of Pentad Forecast Improvement Time to Soil Moisture Memory
2m Air Temperature

* Ratio of forecast improvement
time to soil moisture memory in
CFSv2 (a sort of “efficiency”).

* Light areas: potential impact of
land surface not realized — why?

— Inherent lack of sensitivity or
variability (other two ingredients)

— Model parameterization errors
— Poor quality land initialization

 Dark areas: land contribution
realized —again, why??

Dirmeyer & Halder (2017: JHM)
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Compare Efficiency to Coupling Indices

30 2m Air Temperature 20 2m Specific Humidity

* Clear correlation evident sy [ Lo C [T

between (X-axis) “efficiency” of &2 e W £l Pt
. . 51 o = 5 /2/7/5‘/.::;/-:#»—;7“"4
converting good land ICs into g o=t
fo recaSt |mprovementl and the 100707 02 03 04 05 06 07 08 09 1 g'wo 01 02 03 04 05 06 07 08 09 1
strength of L-A coupling. ) g "
* Sothe “inherent sensitivity” is a . TE’M 4

1
(O]
1

contributing factor (for CFSv2)!
Those other 2 ingredients

-10

—
o

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

30

w
o

Latent Heat Flux & 0-10cm Soil

-(Sensible Heat Flux) & 0-10cm Soil Moisture: Coupling Index [W/m?]

- 1JjunelC 75 - 1JunelC
matter. " Y
] 10 - 10 Bl et tb ann ] o -—”’I,f“:
* In other words, we can wring ’ § SiEhegacuEn iEianEs
. . 5 5 -
Skl” from ImprOVEd |and Surface 100 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
s owg . . . . Ratio of Pentad Forecast Improvement Time to Soil Moisture Memory
initialization in this model.
Dirmeyer & Halder (2017: JHM) P
T GEORGE
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Contributions to Skill in CFSv2

Land Potential
Atmosphere IC
B Land IC

Ocean IC

Convective
parameterizations
can decouple
precipitation from
PBL development
and land surface
influence.

“Potential” is
model-specific,
unmeasurable.

e
]

1

0.2

0.1

6 12 18 24 30 36 42 48 54 60

0.3

0.2

0.1

6 12 18 24 30 36 42 48 54 60

Dirmeyer et al., (2018; JGR-Atmos. submitted)
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The fraction of land area exhibiting significant skill as a function of forecast
lead time with specified land states (blue), right land ICs (green) and wrong
land ICs (red). Shaded curves show the difference between green and red
curves (tan) and between blue and green curves (pale blue).
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L-A Science: A Backwards Scientific Path

The science of land-atmosphere interactions has proceeded
backwards from the traditional progression from observation of

natural phenomena, formulation of hypotheses, development of
experiments and construction of models.

—— GEORGE
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L-A Science: A Backwards

Scientific Path

* The science of land-atmosphere interactions has proceeded
backwards from the traditional progression from observation of
natural phenomena, formulation of hypotheses, development of

experiments and construction of mode

* LSMs were developed initially to provic

S.
e BCs for AGCMs, before

there were wide-ranging observations of the land surface or land-
atmosphere interactions applicable to model development.
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L-A Science: A Backwards

Scientific Path

* The science of land-atmosphere interactions has proceeded
backwards from the traditional progression from observation of
natural phenomena, formulation of hypotheses, development of

experiments and construction of mode

* LSMs were developed initially to provic

S.
e BCs for AGCMs, before

there were wide-ranging observations of the land surface or land-
atmosphere interactions applicable to model development.

» Early LSMs consisted of poorly-validated collections of conceptual
and/or empirical parameterizations that were calibrated on a
handful of locations at best (e.g., Sellers and Dorman, 1987) then

applied globally out of necessity.

NCWCP - 29 May 2018 Paul Dirmeyer



L-A Model Bias

Climate drift’s effects

AUGUST 1993

BOUTTIER ET AL.

1335

Sequential Assimilation of Soil Moisture from Atmospheric Low-Level Parameters.

and thus its

causes were not obvious over land
like over ocean (SSTs well observed).

clearest symptom of f
Since there were no o

2m air temperature biases were the

ux imbalance.

MARCH 1994

nservational

global data sets of soi

became the “tuning knob” to addres

biases.

moisture to minimize
temperature and hum

NCWCP - 29 May 2018

moisture, it

ECMWEF still nudges initial soil

near-surface
idity biases.

Paul Dirmeyer

Part I: Sensitivity and Calibration Studies

F. BOUTTIER, J.-F. MAHFOUF, AND J. NOILHAN
Meétéo-France/CNRM, Toulouse, France
(Manuscript received 30 July 1992, in final form 31 December 1992)

ABSTRACT

This paper and its companion report on the development of a sequential assimilation technique based upon
optimum interpolation in order to initialize soil moisture in atmospheric models. A previous study by Mahfouf
has demonstrated that it is possible to estimate soil moisture from the evolution of atmospheric temperature
and relative humidity near the surface. The main purpose of this paper is to examine more precisely the
dependence of atmospheric low-level parameters upon soil moisture and how this dependence is affected by
various factors (soil characteristics, vegetation type, low-level wind). The sensitivity of atmospheric parameters
to soil moisture is expressed as the statistical quantities of the optimal interpolation. The importance of observation
errors, which define the relevance of the atmospheric parameters for the assimilation procedure, is also investigated.
An analytical formulation of the optimal interpolation coefficients is proposed. Finally, the usefulness and
limitations of this work for soil moisture analysis in three-dimensional models are discussed.

YANG ET AL.

R. YANG, M. J. FENNESSY, AND J. SHUKLA

(Manuscript received 3 February 1993, in final form 7 September 1993)

ABSTRACT

The influence of initial soil wetness on surface weather forecasts was quantitatively assessed through the use
of the Center for Ocean—Land—Atmosphere Interactions (COLA) general circulation model with an advanced
simple biosphere model. The sensitivity of the COLA GCM to changes in initial soil wetness (ISW) is determined
by repeating three 10-day integrations with the same initial and boundary conditions as the control runs except
the values of ISW, which are revised at 69 model grid points covering much of the continental United States. It
is found that the relationship between the changes in the 5-day mean forecasts of surface air temperature and
surface specific humidity and the changes in ISW depends upon vegetation type and the values of ISW, and is
approximated by regression equations. With the ISW revised based on these regression equations, the first 5-
day mean surface air temperature and mean surface relative humidity forecast errors over the relatively dry
western portion of the domain are reduced from 2.9° to 1.1°C and from 15% to 7.6%, respectively. Somewhat

smaller surface forecast improvements occur for the following 5 days. The impact on the upper atmosphere is
1 to lower levels

small and is lareelv confine

P
GEORGE

——

Studies

47

The Influence of Initial Soil Wetness on Medium-Range Surface Weather Forecasts

S Center for Ocean—Land—Atmosphere Interactions, Department of Meteorology, University of Maryland, College Park, Maryland
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LSM as Scapegoat
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Multiple Culprits

* Biases in precipitation and downward
radiation at the land surface, unrelated
to land surface processes, put LSMs at
an immediate disadvantage (right).

* As aresult, soil moisture (below) drifts
in the first months (dots) and years

(bold line).

regarding L-A ., et R

coupling e ) Y

pro blems. {/ DSP Shortwave Radiation Eror (JJA)

CONUS ‘ (125 7OW, 25NE0N) Dirmeyer (2003; JHM)
e e 2N p
>  —N GEORGE
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Problems

Persist

* Compared across ~160 FLUXNET sites,

today’s mode
* There also ap

s still struggle.

nears to be a real problem

with LSM surface albedos (below).
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Basic errors impair
simulation of surface
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heat fluxes!
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Error Propagation in Coupled L-A Models

* Propagation of errors estimated P

11/12

from their rank correlations a0
across FLUXNET 2015 stations.
LCL 7/12 8/12

=0.02
11/12 p=0.01 P
p=6x10" %

SHeEFeLH

10/11
p=7x10"
10/11
p=0.003

RNet 11/11 x

p=4x10"7

* Ratios show the number of
models with p-values below 0.10,
based on average of correlations
across 4x3 models.

7/12
5/11 p=0.05

p=0.06

Dirmeyer et al. 2018: (/AHM) //
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Error Propagation in Coupled L-A Models

* Propagation of errors estimated
from their rank correlations
across FLUXNET 2015 stations.

* Ratios show the number of
models with p-values below 0.10,
based on average of correlations
across 4x3 models.

Ag > ALCL - AClouds

N
AMSE - Alnstability ¢ APrecipitation

V4
AB - APBL - AEntrainment

* We find the terrestrial leg (soil
moisture : surface flux coupling)
generally too strong.

Dirmeyer et al. 2018: (/JHM) //
e COLA GEORGE
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Error Propagation in Coupled L-A Models

* Propagation of errors estimated
from their rank correlations
across FLUXNET 2015 stations.

* Ratios show the number of
_ ALH > Ag > ALCL
models with p-values below 0.10, N
_ ASM - AEF AMSE
based on average of correlations 7

ASH - AO - APBL
across 4x3 models. |

* We find the terrestrial leg (soil
moisture : surface flux coupling)
generally too strong.

AClouds

Alnstability ¢ APrecipitation

AEntrainment

* The atmospheric leg (surface fluxes to PBL properties, clouds and
convection) is too weak in the coupled L-A models compared to what can

be inferred from FLUXNET 2015 sites.

Dirmeyer et al. 2018: (/JHM)
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* Remove one model error, and the
tuning that compensated for its
presence becomes out of balance.

* Thisis why model development,
calibration and validation must be
carefully pursued and documented,
and not done ad hoc.

* In coupled model systems, the
scope of development and
calibration grows broader; a
system-level model development
planin necessary.

NCWCP - 29 May 2018 Paul Dirmeyer
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Impact of Ocean-coupling on Tropical Cyclones
and relevance for 2018 season

32 . Tropical Cyclones Intensity is generall
R TC Neoguri, July Coupled 1rop dy i yisg y
Y 315 2014 ——— Uncoupled __»1 Improved when looking at
v ——— Observations A | recent cases (past 2-years)
2 3 zn s
g — |
qé. § 154 ’{// /
§ 305 £ [ ,
v Q. 1
S 30 1 _ _
= g he red curve is for the
§ 295 ‘ ECMWF HRES Coupled as
m n
29 , . . . | 0 implemented on the 5™ of June 2018
5Jul2014 7Jul 9Jul  11Jul 13 Jul R e Ry @

Mean-sea-level-pressure, MSLP in hPa, of new 45r1 (red) & 43r3 (blue). The data
sample includes about 750 cases at initial time, decreasing to about 200 at forecast

day 5-6 and to about 5o at day 10. Bars indicate 95% confidence.

Courtesy: G. Balsamo
Thanks to Kristian Mogensen & Fernando Prates P

< ECMWF — {seonae

NCWCP — 29 May 2018 Paul Dirmeyer _— Sl ON

P
vdes UNLITVERSITY



What happens to the temperature diurnal cycle
enhancing surface coupling?

* Towards more realistic surface temperature (skin and below) particularly in clear/sky

* Towards increased variability and surface responsiveness to atmospheric forcing
Ocean skin Land skin

Ampl. 1st harmonic diurnal c.; Tskin(C), Month:20160700, Exp:gn6y-0001 AmP'- 13? ,ham_quic __djurngl C.; Tskin(C), Month:2016(_)800,_. Exp:gqu-_gqxz!“

a7

=3
Rz S| - =
-
80°N ) =

Ry
7

-
4

- =
"

2w e’'W €W 3@°W  DE 3°E  BOE BFE 120°E

Difference in diurnal cycle amplitude due ocean-coupling Difference due to enhance multi-layer land-coupling

Courtesy: G. Balsamo

/
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Increased soil model vertical resolution to
improve use of satellite data

An enhanced soil vertical layer is motivated by land
data assimilation as it’s shown to better correlate

. . . . 9-layers:
I with satellite soil moisture products 401 om
4-layers: #1-3 cm
#0-7 cm # 3-7 cm
Comparison with ESA-CCI soil moisture remote sensing (multi-
sensor) product.(1988-2014). A finer soil model improves the
correlation with measured satellite soil moisture
Globally Improved match to satellite soil
moisture (shown is Anomaly correlation
AACC calculate on 1-month running mean)
T Dorigo et al. (2017 RSE)
—0.30 -0.24 —0.18 -0.12 —0.06 0.00 006 0.12 0.18 024 0.30 Courtesy.' G. Balsamo
Thanks to Clement Albergel, Patricia De Rosnay, LDAS-Team //
. e CO'_A GEORGE
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Increased snow model vertical resolution: impact

in cold regions climate

Increased vertical discretization of the snowpack (up to 5 layers) permits a better physical processes representation

Snow single-layer (SL) X cm (variable)

Difference ML- SL in Snow depth RMSE winter (DJF)
11 1 HEN

20 -10 5 -1 1 5 10 20 50

150w

An improved snow depth
(ML — SL) evaluated with
in-situ SYNOP snow depth.
RMSE of 0.19m (0.23m)

in ML (SL).

This is 17% RMSE error
reduction in snow depth.

Thanks to Gabriele Arduini,

Jonny Day, Linus Magnusson

NCWCP - 29 May 2018
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5cm
10 cm

Snow multi-layer (ML) X cm (variable)

10 cm

3>»5cm

Difference ML - SL in T,;, minimum winter (DJF)

180

150W _— T~ 150E

Winter reduction of the 2m
minima temperatures with
increasing diurnal-cycle.
DIFF Tmin 2-4 K colder in
ML compared to SL snow.
Increased variability

S
4 3 — 1 0 —— G. Balsamo
Reducing Increasing //
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