

National Institute of Information and Communications Technology

NOAA Working Group on Space-Based Lidar Winds (Nov. 2, 2015, AOML NOAA, Miami FL)

Feasibility Study for Space-borne Doppler Wind Lidar

<u>S. Ishii</u>^a, A. Sato^{b, a}, K. Akahane^a, S. Nagano^a, T. Umezawa^a, K. Mizutani^a, P. Baron^a, S. Ochiai^a, K. Okamoto^{c, a}, T. Kubota^d, Y. Satoh^d, D. Sakaizawa^d, R. Oki^d, M. Satoh^e, and T. Iwasaki^f

a. National Institute of Information and Communications Technology (NICT),
b. Tohoku Institute of Technology (TIT)
c. Japan Meteorological Agency/Meteorological Research Institute (JMA/MRI)
d. Japan Aerospace Exploration Agency (JAXA)
e. The University of Tokyo

Outline

- Background and objectives
- Comparison of space-borne Doppler wind lidar
- Super-Low-Altitude-Satellite-borne Doppler wind lidar
 - Specifications
 - Geometry
- Development of laser system
 - Single-frequency pulse laser
 - Detector
- Summary

Background and Objective

Background

- WMO technical report 2012-1
 - Development of satellite-based wind profiling systems remains a priority for the future global observing system.
- ESA is planning to launch the first space-borne Doppler Wind Lidar (DWL) ADM-Aeolus for obtaining LOS wind profiles.
- Japanese working group is studying a space-borne coherent DW for vector wind measurement.
 - NICT has developed key technologies of 2- μ m coherent lidar for CO₂ and wind measurements.
 - ISS-borne CDWL (2001-2005)
 - Ground-Based 2-μm Coherent Lidar (2006-2010)
 - Ground-based and airborne system (Ongoing)

Objective

For a future space-borne DWL mission, motivations is to develop and demonstrate key technologies: $2-\mu m$ single-frequency pulse laser and a high-speed detector.

Comparison of space-borne DWL for WMO requirement

	Wind profile	Application	Horizontal resolution (km)			Vertical resolution (km)			Observing Cycle (h)			Accuracy (m/s)		
			Goal	B/T	T/H	Goal	B/T	T/H	Goal	B/T	T/H	Goal	B/T	T/H
WMO requir ement	U,V (LT)	Global NWP	15	100	500	0.5	1	3	1	6	12	1	3	5
	U,V (HT)	Global NWP	15	100	500	0.5	1	3	1	6	12	1	3	8
	U,V (LS)	Global NWP	15	100	500	0.5	1	3	1	6	12	1	3	5
Japan	0-2 km	Global NWP		100			0.5						1	
	2km	Global NWP		100	Cohere	nt	0.5						1	
	5km	Global NWP		100	2 LOS	wind spd 1						2		
	10km	Global NWP		100			2			\ 1			4	
ESA ADM	0-2 km	Global NWP		100	D :		0.5			rbit and	on	()	≤1-2 Bias: ≤0.5	5)
	2-16 km	Global NWP		100	Direct 1 LOS	s wind s	spd ¹		n s	umber o atellite	of	(]	≤2 Bias: ≤0.5	5)
	16-20 (30) km	Global NWP		100			2					(1	≤3 Bias: ≤0.5	5)
NASA	0-2 km	Global NWP		80-350			1					(]	<u>≤2</u> Bias: ≤0.5	5)
	2-12 km	Global NWP		80-350	Direct 2 LOS	wind s	pd ²					(]	≤2 Bias: ≤0.5	5)
	16-25 km	Global NWP		80-350			4					(]	≤3 Bias: ≤0.5	5)

B/T: Breakthrough, T/H: Threshold www.wmo-sat.info/oscar/variables/view/179

10/14/15

WMO requirement: horizontal wind vector ESA ADM-Aeolus: 1 LOS wind measurement, no wind vector. Japan and NASA: 2 LOS wind measurement, wind vector.

NOAA Working Group on Space-Dasea Luar winas

Specifications of Super-Low-Altitude-Satellite-borne DWL

	Super Low Altitude space-borne Coherent Doppler Wind Lidar					
Orbital altitude Inclination	220km TBD					
Instrument volume	$\underline{1.5} \times 1 \times 1 \text{ m}^3$					
Mass	600 kg (bus + Instrument)					
Power	1600 W(bus + Instrument)					
Ţ	3.75 W (125 mJ/pulse × 30 Hz) @2μm					
Laser power	3.75 W (10 mJ/pulse × 2500 Hz) @1.6µm					
Telescope	0.4 m (primary mirror) x 2					
Horizontal resolution	<100 km					
Vertical resolution	Altitude 0.5-3 km: 0.5 km Altitude 3-8 km: 1 km Altitude 8-20 km: 2 km					
Nadir angle	~35 degree					
Looking angle	45 and 135 degrees along direction of travel					

Super Low Altitude Test Satellite Launch: 2016

Super Low Altitude Test Satellite: Schedule

http://ictfss.nict.go.jp/ictfss-2015/dl/lecture2_sasaki.pdf

Super-Low-Altitude-Satellite-borne DWL: Orbit

We are discussing candidate orbits, sun-synchronous polar orbit (LST18) and low inclination orbit like TRMM (0-20, 20-45).

10/11/10

Super-Low-Altitude-Satellite-borne DWL: Geometry

- Orbital period of Satellite: 88.9 minutes
- Gap between orbits: 1922 km = 2032 km 110 km

10/14/15

Technologies required for space-borne DWL

Single-frequency high power laser

Single-frequency 2-µm CW laser: semiconductor laser

10/14/15

11/18

Single-frequency 2-µm CW laser: Optical fiber amplifier

 Requirement for optical output power Wavelength: 2051nm

> Gaing:13dB(input optical power:~1mW) Output:20mW

- Other requirements
 - Long-term mechanical stability (vibration and shocks)
 - Maintenance-free
 - Compact and high efficiency
 (E-O conversion, removal heat)

Erbium-Doped Fiber AMP:EDFA

Thulium-Doped Fiber AMP:TDFA

NOAA Working Group on Space-

Space-qualification

10/14/15

Previous TDFA research

- Small signal gain: 16 dB at 2050 nm
- Output power: >100mW @<u>1.9μm</u>
 (420mW pumped@1550nm)
- All optical fiber
- Low E-O efficiencty: ~10% (<u>w/o TEC E.P.</u>) Z.Li *et al.*, Opt. Express, **21**, 9282 (2013) Z.Li *et al.*, Opt. Express, **21**, 26450 (2013)
- High E-O efficiency in the free space pumped at 793nm

Y. Jung et al., Opt.Express, 22, 10544 (2014)

 Photobrightening (793 nm) recovering from photodarkening due to cosmic radiation exposure

Y. Xing et al., Opt. Lett, 40, 681 (2015)

Concept of TDFA for space application

- Double-crad Tm optical fiber
- 793nm multi-mode LD pump

All optical fiber

2µm laser block diagram

10/14/15

Setup for 2-µm laser experiment

Sato et al., CLEO-PR 2015, Paper 25F3-3より

Experiments

New ground-based 2-µm Doppler Wind lidar

Summary

A new super low altitude test satellite will be launched after 2016. NICT is developing key technologies required for a future super-low-altitude-borne DWL.

➤ Geometry

> Laser

- 2-µm semiconductor CW laser
- Tm optical fiber amplifier
- High pulse-energy 2-µm laser
- ➢ 2-µm detector
- Future works:
 - ➢ Demonstration of single-frequency 2-µm CW laser
 - ➢ Demonstration of high pulse-energy 2-µm laser
 - ➢ Evaluation of high-speed 2-µm detector
 - Evaluation of impact on forecasts in one-month assimilation experiments (summer and winter)
 - Minor updating of ISOSIM-L (ongoing)
 - Improve data assimilation pre-processing including QC (ongoing)
 - Comparison SOSE-OSSE with different systematic parameter (lidar, spatiotemporal resolution, systematic geometry)

Comparison SOSE-OSSE with different OSSE (nature run / ensemble OSSE)

A part of this research was supported by JSPS KAKENHI Grant Number 15K05293 and 15K06129.

10/14/15