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Classic Data Assimilation: For NWP we need to
improve observations, analysis scheme and model
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New Data Assimilation: We can also use DA
to improve observations and model

OBSERVATIONS 6 hr forecast ]

*

ANALYSIS
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The simplicity and power of EnKF should encourage the use of

DA for improvements beyond its main goal
L

Combine optimally observations and model
forecasts
 We should also use DA to:
Improve the observations
Improve the model
* Also, do more truly coupled DA:

Example: The ocean and the atmosphere are
coupled: obviously the best DA should be coupled

e Earth system models used by IPCC have many
submodels, but they don’t include the Human System,
which totally dominates the Earth system.

We should do DA of the coupled Earth System-
Human System



Traditional approaches to coupling

 In a typical coupling scheme for an ocean-atmosphere model,
the ocean model passes SST to the atmosphere, while the
atmosphere passes back heat flux components, freshwater flux,
and horizontal momentum fluxes. (Neelin, Latif & Jin, 1994)

* |n standard data assimilation, atmospheric observations are
assimilated only by the atmospheric model, and ocean
observations are assimilated only by the ocean. We call this
weak (or standard) coupling.

« SST in the ocean model is frequently nudged from “Reynolds
(Ol) SSTs”, not assimilated from observations.

« SSH and Salinity may not be even be used.

* The data assimilation windows for the ocean are much longer
than for the atmosphere.

« We introduce the concept of strongly coupled data assimilation.




LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at
the central grid red dot
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LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at
the central grid red dot

All observations (purple
diamonds) within the local
region are assimilated

The LETKF algorithm can be described in a single slide!
1"



Local Ensemble Transform Kalman Filter (LETKF)

Globally: ;
X' =M (x" )
Forecast step: .k AN
Analysis step: construct Y’ — [xf _x? ... |x/}( _ i/’];

y, =AY =y -y |y -¥]

Locally: Choose for each grid point the observations to be used,
and compute the local analysis error covariance and
perturbations in ensemble space:

P =[(K-)I+Y'R'Y| ;W' =[(K - 1)P]"

Analysis mean in ensemble space:W* = P‘'Y "R (y° - ")
and add tow“ to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
X’ = XﬁW" + X Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are
analysis weights W’ and perturbation analysis matrices of
weights W°. These weights multiply the ensemble forecasts. |,



Hybrids between Var and EnKF

So far Covariance-Hybrids have been used, combining an
existing Var system with an ensemble that provides the flow
dependence of the background error covariance.

Penny (2014) developed a Gain-Hybrid, very simple to
Implement, that starts with the LETKF analysis and adds a
Var analysis. ECMWEF tested it with excellent results (Hamrud
et al. 2014, TM733).

The LETKF analysis is used as first guess by the Var, and the
analysisis O/Var+(1- &¢)LETKF + (LETKF perturbs).

Penny tested it with the Lorenz 96 model: The analysis error
is plotted as a function of the number of ensemble members
(2 to 40) and the number of observations (1 to 40).

Student Matthew Wespetal tested it with SPEEDY global
atmospheric model with the LETKF coupled with 3D-Var.



Observation count (1)

Gain-Hybrid with a simple local 3D-Var (Penny,
MWR2014) applied to the Lorenz 96 model

Standard LETKF

Mean absolute analysis error for standard LETKF

The total model dimension
Is K=40

The LETKF is extremely
accurate as long as
k>7, number of obs>7.

10 15 20 25 30 35 40
Ensemble size (k)

This is the corner where we
are in ocean EnKF: too few
obs, too few ensembles



Gain-Hybrid with a simple local 3D-Var (Penny,
MWR2014) applied to the Lorenz 96 model

Standard LETKF Add a simple 3D-Var to LETKF
Mean absolute analysis error for standard LETKF Mean absolute analysis error for Hybrid—-LETKF v1 alpha=0.5
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The hybrid LETKF- 3D-Var is more robust for few ensemble
members and few observations, as in the ocean.

ECMWF implemented Penny’s Gain-Hybrid with excellent
results, even slightly better than their operational EDA



LETKF and Hybrid on the SPEEDY model
Hybrid vs LETKF (20 members) RMSE

- satellite + rawinsondes rawinsondes only
- alpha=0.5 alpha =0.5

RMSE U ) RMSE U

ybrid 7 ybrid
LETKF LETKF

RMSE
RMSE

As expected, for the data rich case, the hybrid converges faster
but becomes slightly worse than the LETKF.

For the data poor case, the hybrid is better than the pure LETKF.

(from Matthew Wespetal).



Data Assimilation: STANDARD (WEAK) COUPLING

S. Zhang et al.: GFDL Coupled Ocean-Atm EnKF
GHG + NA fadiative forcing

4 ADA Component
\ 4

Atmosphere Atmospheric model
assimilates only
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Our strongly coupled LETKF assimilation

Observations

Ensemble of Coupled Fored

amble of Coupled Analyses

Coupled Model (==

V., T

Vgr I g \ observation
localization

Ocean sees atm. obs.
Atm. sees ocean obs

Thanks to
Miyoshi, Penny



Impact of strong coupling of the ocean-
atmosphere LETKF (Travis Sluka)

 SPEEDY-NEMO coupled model (from F. Kucharski, ICTP)
* Standard (weak) coupling as a control

e Test strong coupling: the ocean sees the atmospheric
observations and the atmosphere sees the ocean

observations
Experiments: 1) Only atmos. obs.
(2) Only ocean obs.)

* CONTROL: Weakly coupled data assimilation: Only the
atmosphere assimilates atmos. observations.

e Strongly coupled DA: ocean also assimilates
atmospheric observations (and vice versa).



Results — rawinsondes only

Salinity, RMSE, CONTROL vs STRONG
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Results - rawinsondes only

Temperature, RMSE, CONTROL vs STRONG
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Results - rawinsondes only

Salinity - upper 100m, avg of last 5 years
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Results - rawinsondes only
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e (Ocean

Results - rawinsondes only

(RMSE improvement of last 5 years)
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Results - rawinsondes only
, % RMSE change, CONTROL vs STRONG
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Impact on the atmosphere of strong
coupling (older experiment)

RMSE improvemt in troposphere of atmosphere when strongly coupling
using ocn obs only

2006-2007

using atm obs only

[rus)

Ocean obs only

Atmos. obs only

Allowing the ocean to see the atmospheric observations improves
the ocean T and S, more in mid-lats than in the tropics. In turn, the

ocean improvements result in better atmospheric temperature and
humidity in the atmosphere.




Results — rawinsondes only

 Atmo Precip - avg of last 5 years

[mm/6hr??]

Difference (CONTROL — STRONG)
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Why do atm. obs. seen by the ocean improve mid-lats., and
ocean obs. seen by the atmos. improve the tropics??

* This was a very surprising result:
— Ocean drives atmosphere in the tropics!
— Atmosphere drives ocean in mid-lats!

* QOcean obs. assimilated by the atmosphere (using LETKF)
change the atmospheric driving in mid-latitudes. This is
additional information that improves the mid-lats. atmosphere
and therefore the mid-lats ocean.

 Atmospheric obs. in the tropics assimilated by the ocean
change the ocean driving in the tropics. This is additional
information that improves the tropical ocean, and therefore
the tropical atmosphere.




Improve the observations: Ensemble Forecast

Sensitivity to Observations and Proactive QC

I i—(3rmh —
* Kalnay et al. (2012) derived EFSO

e Otaetal.(2013) tested 24hr forecasts and showed EFSO
could be used to identify bad obs.

* D. Hotta (2014): EFSO can be used after only 6 hours, so
that the bad obs. can be withdrawn and collected with
useful metadata so they can be improved.

* We call this Proactive QC, much stronger than QC.
e Hotta also showed EFSO can be used to tune R

* G.-Y. Lien (2014) tested EFSO to identify useful
observations of precipitation, with good results.



FT=06 hr.
2012020618

Total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr
[60°N,40°E,70°E]

Estimated Error Reduction: 39.06%
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Hotta (2014)

Feb. 18 O6UTC, near the North Pole
(Ota et al. 2013 case). Bad obs: MODIS WIND
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FT=24 hr.
2012020618

Total Obs. Impact by obs. type
Moist Energy norm, EFT=24hr
[60°N,40°E,70°E]

Estimated Error Reduction: 66.04%
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Can identify the bad observations after only 6 hours!



Improve observations:
Proactive QC: Find and delete the obs that make

the 6hr forecast worse usinﬁ EFSO

Obs Impacts Type=259, EFT=06hr
Dr. Daisuke Hotta (2014): T ' '
EFSO is able to find whether Sese
each observation improves
(blue) or makes the 6hr
forecast worse (red)

40E . S0C - — o0l
Drop,all MODIS.wipds  Drop,only-MODIS winds |mpact of 6hr PQC on 24hr fcst
with'negative impact

e 4% pQC with metadata can be used

o= | to improve the algorithm!
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Implementation to the real operational system
(2) can we afford to do analysis twice?

ldea: Use approximated analysis rather than doing
analysis again:
— Using the approximation to Kalman gain:

1 ]‘ awzsa —
K =~ ﬁnggf‘“HTR—1 ~ ﬁXOYOTR1

the change in analysis by the denial of observations can be
approximated by:

1
—a,deny _ —ob,deny ~ )(a‘ 'raT —1 ¢—ob,deny
xa” en xa' ~ I‘ §y0 b) €en — —— R 5y

— As inexpensive as EFSO.
- No need to repeat analysis
- Can minimize the time delay

Can be used to tune R! (Hotta, 2014)
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Ensemble Forecast Sensitivity to Error Covariances
Hotta (2014)

* Daescu and Langland (2013, QJRMS)
proposed an adjoint-based formulation of forecast

sensitivity to B and R matrix.

e Daisuke Hotta formulated its ensemble equivalent for R
using EFSO by Kalnay et al. (2012) :

J

Oe Oe 1 _ a — oa
lﬁ—R]zg N yi G TR 1 {R 1Y0Xf‘]€)C (etlo +et|_6)L R~ 0y™]

where z is an "intermediate analysis increment” in observation space



R-sensitivity results from GFS / GSI-LETKF hybrid

Averaged R-sensitivity
Moist Energy norm, EFT=6hr

Averaged R-sensitivity

Aircraft 2

Radiosonde

MODIS wind

AMSU-A

Moist Energ_y norm, EFT=24hr
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Positive value: error increases as s, increases = should decrease s_?

Aircraft, Radiosonde and AMSU-A: large positive sensitivity

MODIS wind : negative sensitivity

— Tuning experiment:
* Aircraft, Radiosonde and AMSU-A: scale s,2 by 0.9
* MODIS wind: scale s,2 by 1.1



Tuning Experiment: Result
EFSO before/after tuning of R

Averaged total Obs. Impact by obs. type  Averaged total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr | Moist Energy norm, EFT=24hr
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Aircraft, Radiosonde and AMSU-A: significant improvement of EFSO-
impact

MODIS wind : insignificant difference in EFSO

|IASI: Significant improvement in EFSO although its error covariance is
untouched!



Current testing of PQC on JCSDA S4 (T.-C. Chen)

* Prof. Daryl Kleist has kindly offered to lead the
testing of operational PQC. JMA is implementing PQC
(both Hotta and Ota will work on that).

* Toimplement PQC, we need to first show that:

— Denying flawed observations works in a cycled
way (tested case by case so far).

— The EFSO approximation (constant K) can be used
to replace the full analysis without the flawed

observations (much faster).

— We can use the 6hr early forecast to check the
final analysis.

— Test the tuning of R



Improving non-Gaussian Observations

Effective assimilation of Precipitation (Guo-Yuan
Lien, Eugenia Kalnay and Takemasa Miyoshi, 2013.

Lien (2014), Lien et al. (2015a, 2015b)

® Assimilation of precipitation has generally failed to improve
forecasts beyond a day.

e A new approach deals with non-Gaussianity, and assimilation of
both zero and non-zero precipitation.

e Rather than changing moisture to force the model to rain as
observed, the LETKF changes the potential vorticity.

e The model now “remembers” the assimilation, so that
medium range forecasts are improved.
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How to transform precipitation y to a Gaussian y,,_,..¢

Start with pdf of
y=rain at every grid
point.

>

O 06 -
“No rain” is like a T
delta function that we o
cannot transform.

We assign all “no
rain” to the median of
the no rain CDF.

We found this works .
as well as more =
complicated >
procedures. g

Q
It allows to assimilate | )
both rain and no rain. 0 +———————————— e —

0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3
y (mm/6h) Viae = G [F(y)] (unit: 0)38

&' () =\2er " (2x-1)



(a) Analysis (b) Forecast

Raobs
PP_TR_10mR
PP_TR_10mR_qOnly
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1AN 6 11 16 21 26 FEB MAR APRl MAY JUN JUL AUG SEP OCT NOV DEC JgAN3 0 24 48 72 96 120

1982 19 ! )
&aUSS|an, 10 members rain, Forecast hour (h)
20% error, all variables

* Main result: with at least 10 ensemble members raining in
order to assimilate an obs, updating all variables (including
vorticity), with Gaussian transform, and rather accurate
observations (20% errors), the analyses and forecasts are
much improved!

* Updating only Q is much less effective.

* The 5-day forecasts maintain the advantage! 39




REAL OBSERVATIONS (TMPA)

Example of Gaussian precipitation transformation
TMPA 6h PeC|p (mm) [00Z01JUN2006]
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Assimilating TRMM rain with a GFS T62 model

verified against ERA Interim (RMSE)

U at 500 hPa

24hr forecast RMSE

Global

Comparing RMSE of

Control (RAOBS) (no assim of pp)

Assim. with No Transform =
Assim. with LOG Transform
Assim. w Gaussian Transform cz
Assim. w Gaussian Transform bz

T

Results

No Transform is the worst

LOG Transform~RAOB (no pp assim) &
GT are the best
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Guo-Yuan Lien (2014): Efficient assimilation of precipitation

EFSO average impact of rain obs.

(a) Average obs |mpact (10-4J/kg) [MTE, EFT= 6h] AII obs

120W 60w

Assimilating only the precip This also shows that EFSO
obs identified by EFSO as can be used to optimize the
good improved the results! DA of new instruments

efficiently!



One-month time series: Analysis U (m/s) at 500 hPa

Guo-Yuan Lien (2014)
RMSE [GL/anal]: U (m/s) at 500hPa

6
Spin-up

A . W\

! ! \

WN‘ LA ‘

LA N1
1DEC  6DEC 11DEC 16DEC 21DEC 26DEC 1JAN  6JAN  11JAN  16JAN 21JAN  26JAN 1FEB
2007 2008

| ] This also shows that
Assimilating the TRMM precip

obs identified by EFSO as good Raobs EFS.O (.:an be used to
improves the results. GTbz optimize the DA of new

GTbz_EFSOpick instruments efficiently!




Improve the models: Parameter estimation

and estimation of bias using DA
I i—(3rmh —

* Model tuning on long time scales should be done with
EnKF parameter estimation.

 Kang et al., JGR, 2011, 2012 showed that evolving
surface carbon fluxes can be estimated accurately at the
model grid resolution from simulated atmospheric CO2
observations (OCO-2) as evolving parameters.

* Another approach is the use of analysis increments to
estimate model bias (Greybush et al., 2012, Mars) and
even state-dependent model bias (e.g., El Nino bias), as
in Danforth et al. 2007.



Surface carbon fluxes CF from atmospheric
assimilation of meteorological variables

and CO2 obtained as evolving parameters
(OSSE). Kang et al., JGR, 2011, 2012
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OSSE
Results
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Example: How to define the diurnal model
errors using EOFs from a Reanalysis
(Danforth et al., 2007)

Estimated the average SPEEDY model error (bias) by
averaging over several years the 6 hour forecast
(started from reanalysis) minus the reanalysis.

Then they computed the EOFs of the anomaly in
the model error, and found two dominant EOFs
representing the model error in representing the
diurnal cycle:
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Example: How to find the state dependent
errors using coupled SVD’s
(from Danforth et al., 2007)

Three leading coupled SVD’s of the covariance of 6 hr forecast
errors and corresponding model state anomaly for T at
sigma=0.95. Contours: state anomaly, colors: heterogeneous
correlation with forecast errors. Note that over land, the
corrections suggest the anomalous temperatures are too strong,
and over ocean too weak and too far to the west.

This can be extended to improving forecasts using coupled SVD’s
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Earth and Human System

* The Earth System is completely dominated by
the Human System.

 |In order to understand their interactions we
need to couple them bidirectionally, i.e., with

feedbacks.

e Currently, IPCC models and even Integrated
Assessment models don’t include population: it
is exogenously obtained from UN projections.



The development of climate models, past, present and future

Mid-1970s Mid-1980s Early 1990s Late 1990s Present day Early 2000s?
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Human and Nature Dynamical model (HANDY)
with Rich and Poor: for thought experiments

Motesharrei et al., 2014, J. of Ecological Economics

Just 4 equations!

Total population: Elite + Commoners X=X + XC

Nature equation: (only the Commoners produce)
y= y(A —y)—Productiond x,.y
The Wealth is managed by the Elites: Inequality factor K ~ 100
W = Production-Commoner consumption-Elite consumption = X .y — sx,. — K5X,

Population equations: death rate(Xdepends on whether there is enough food:

o (death rate) aPoor)=ar,, — (@, — @, )~

wha X =—=0cXe + Pexc
%ﬁ §§§§§§ Xp=—0pgXx, + ﬁExE

min

1/x 1 o

The rich Elite accumulates wealth from the work of everyone else (here referred to as the

Commoners). When there is a crisis (e.g., famine) the elite can spend the accumulated
wealth to buy food.



Human and Nature Dynamical model (HANDY))

with Rich and Poor: a thought experiment
%)iM Unequal Society: Irreversible, Type-N (Full) Collapse
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The accumulated wealth starts decreasing at the time the total equivalent
population crosses the Carrying Capacity. This “economic crisis” provides
a very obvious indication that the population has grown beyond the
sustainable level for the ecological system. If the overshoot is small, it
oscillates towards equilibrium. If it is large, it leads to collapse.



Human and Nature Dynamical model (HANDY)
with Rich and Poor: a thought experiment

% )}iM Unequal Society: Irreversible, Type-N (Full) Collapse o Nature declines with popu|aﬁon growth
40\

e Using their wealth, the Rich can shield
Wealth themselves from environmental degradation,
Commoners . .
which first affects the Poor

(Equivalent)
Elites

e Eventually it reaches the upper classes as well,
when it is too late to take preventive measures

0 50 100 150 200 250 300 350 400 450 500
Time (Year)

After ~250 years, having surpassed the sustainable Carrying Capacity of the planet,
the population is drawing down the accumulated capital to survive

This thought experiment shows how a crisis can happen rapidly, even though it appears
that population is rising steadily without any problems, and that the wealthy would not

feel the effects of the collapse until it is too late for the poor (and then it is too late for
the rich as well!).



If we reduce the depletion per capita to its optimal
value and the inequality (k =10) it is possible to reach
a steady state and survive well

%)im Unequal Society: Irreversible, Type-N (Full) Collapse % iM Unequal Society: Soft Landing to Optimal Equilibrium
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Reaching this equilibrium required changes in policies:
* Reduce depletion per capita

« Reduce inequality (K = 10)

* Reduce birth rates

http://www.sciencedirect.com/science/article/pii/S0921800914000615
Journal of Ecological Economics




Consider the impact of adding fossil fuels,
l.e., nonrenewable energy to Nature

80,000 pp1$ Classic Full Collapse (Regenerative Nature Only)
100 eco
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This is the classic HANDY1 full We then add to the

collapse scenario, with only regenerating Nature a
regenerating Nature nonrenewable Nature




Impact of adding fossil fuel
(nonrenewable) energy to Nature

80K 4Million
805(1)88 ppl$ Classic Full Collapse (Regenerative Nature Only) 4M ppl Full Collapse with Regenerative and Nonrenewable Stocks
eco 100 $
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This is the classic HANDY full We added to the
collapse scenario, with only regenerating Nature a
regenerating Nature nonrenewable Nature

The collapse is postponed by ~200 years and
the population increased by a factor of ~20!



SUMMARY

* Future applications of EnKF-based data assimilation

— 1) Combine model forecast and observations to create
the best initial conditions v/

— 2) Improve observations

— 3) Improve models (both by parameter estimation and
using the analysis increments to correct the model)

— 4) Do more truly coupled data assimilation
— 5) Do coupled Earth and Human modeling and DA.

e ECMWF implemented the new Hybrid (Penny,
2014) in 1 week, with great results (Hamrud et al,
2014). It needs an EnKF and a variational system.
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THANKS!



