August 24, 2015, NOAA/NCEP/EMC, College Park, MD

Data Assimilation toward Big Data & Post-peta-scale Supercomputing: A Personal Perspective

Takemasa Miyoshi

RIKEN Advanced Institute for Computational Science

Takemasa.Miyoshi@riken.jp

With many thanks to JMA UMD Weather-Chaos group JST CREST "Big Data Assimilation" project JAXA PMM "Ensemble Data Assimilation" project Data Assimilation Research Team

Data Assimilation (DA)

Data assimilation best combines observations and a model, and brings synergy.

Data Assimilation (DA)

Global 870-m simulation (Miyamoto et al. 2013)

AICS

Visualized by Ryuji Yoshida

Computers getting more powerful...

- With the "post-K" supercomputer (~2020), we can afford 100 members of global 870-m simulation.
- Two directions:
 - High resolution
 - Large ensemble

The Japanese 10-Peta-Flops K computer

10240 parallel earths

Advantage of large ensemble

(Miyoshi, Kondo, Imamura 2014)

Non-Gaussianity

Non-Gaussianity due to Outliers

(Kondo and Miyoshi 2015)

Impact of far-away obs

Imbalance due to tapering

Kondo&Miyoshi (2015)

Imbalance due to tapering

Kondo&Miyoshi (2015)

Imbalance due to tapering

An observation of mass variable induces "balanced" rotating-flow increments.

Kondo&Miyoshi (2015)

Due to localization: mass gradient increased, flow speed reduced →Imbalance!

Correlation patterns (Q at ~100 hPa)

40 members Kondo, Miyoshi (2015)

11/8 00UTC after a week cycling

Correlation patterns (Q at ~100 hPa)

40 members Kondo, Miyoshi (2015) 10240 members

-1.0

11/8 00UTC after a week cycling

Correlation patterns (Q at ~100 hPa)

40 members Kondo, Miyoshi (2015) 10240 members

-1.0

FLOW-DEPENDENT

11/8 00UTC after a week cycling

With subsets of 10240 samples Kondo&Miyoshi

Explore vertical correl. with big ensemble

40 members

10240 members

Temperature

Kondo et al. (2015)

Toward next 20 years of DA

Next-generation geostationary satellite

Himawari-8 was launched successfully on 7 October 2014. Himawari-9 will be launched in 2016.

Full operations started on 7/7/2015!!

10 min.

2.5 min. Rapid Scan

30 sec. Super Rapid Scan

(Courtesy of JMA)

every 30 seconds

Rapid scan effective for convections

Typical lifetime of a convective system ~30 min.

Radar captures rain particles after the developing stage. (may be too late...)

Phased Array Radar

Conventional Radar

~15 scan angles Every 5-10 minutes

Phased Array Radar

~100 scan angles Every 10-30 seconds

Conventional Radar (every 5 min.)

Phased Array Radar (every 30 sec.)

Two PAR in Kobe area

Exploring new data: live-camera images?

- 1. Reduced/extracted information (e.g., weather type, visibility) (challenge) Automated image processing
- 2. Simulating images from model outputs (challenge) precise 3-dimensional radiation model

Towards "Big Data Assimilation"

High-resolution simulation

Combination of next-generation technologies

"Big Data Assimilation"

Improving simulations

Storm forecasting with Big Data Assimilation

水位は 10分間で約1m30cm も上昇

5 people died in Kobe on July 28, 2008, due to local heavy rainfall

●親水公園で水遊び

Only in 10 min.

Goal: 30-min forecasting of local severe weather through Big Data Assimilation innovations.

Revolutionary super-rapid 30-sec. cycle

A case selected for the first offline study

活星の 「日本列島は13日、 市本列島は13日、 市本列島は13日、 市なが、午後には上空 ったが、午後には上空 ったが、午後には上空 たび、年後には上空 たび、年後には上空 でち・ に見舞われた。 と、1時間の降水量で く午後4時四分までう・ と、1時間の降水量で たごの状態	該電電新聞 2013年(平成25年)
記録 ち デ の 下 で 雨 他 の 要 水 2 な 市 で 床 上 没 水 た 。 第 都 市 内 地 的 豪 水 2 大 の 下 で 床 上 浸 水 の 下 で 床 上 浸 水 の 下 で 床 上 浸 水 の 下 で 床 上 浸 水 の 下 で 床 上 浸 水 の 下 で 床 上 浸 水 の 下 で 床 上 浸 水 の 下 で 市 内 で 一 時 、 約 市 内 で 市 大 っ 彩 市 市 内 で 一 時 、 約 市 内 で 一 時 、 約 一 時 、 約 で 市 内 で 一 時 、 約 で 一 時 、 約 一 市 か ら 雪 密 で 一 時 、 の 新 市 内 で 一 時 、 約 部 市 内 で 一 時 、 約 一 時 、 の 新 市 内 で 一 時 、 の 、 の 新 市 つ 下 で 一 時 、 の 、 の 新 市 つ に 、 の 新 市 つ 下 、 の 新 市 つ に 、 の 新 一 野 が 、 の 新 市 一 一 時 、 約 の の 一 新 方 一 町 、 の 一 新 方 一 町 、 の 一 新 方 一 前 、 の 一 新 方 一 前 、 か ら は 下 つ 一 前 、 の 一 新 方 一 前 か ら は 、 つ 一 前 、 の 一 新 方 一 前 、 の 一 新 方 一 一 一 一 か ら は 二 の 一 一 一 か う の 一 、 の 一 の 一 一 う の 一 う の 一 一 う の う の 一 一 う の う の 一 う の つ 一 う の う の う の う の う の う の う の う の つ の う の う の う の う の う の う つ う つ う の う の う つ う つ う う つ う つ し う つ こ の つ こ つ う つ こ つ つ つ つ つ つ つ こ つ つ つ つ う つ つ つ つ う つ つ つ つ つ つ つ つ つ つ つ つ つ	7月14日曜日 The top page of Yomiuri newspaper
撮真なかケが時ぶ 3 ほ床城 N1 影 3 は 床城 N1 影 5 芸 ド っ ぎ 市 0 没 両	on 14 July, 2013

NICT Phased Array Radar (2013/7/13, 14:00~16:20)

10 fps \rightarrow 300 x

30-sec. and 5-min. evolutions

Impact of "Big Data Assimilation"

15:00:30 JST after the first assimilation

15:06:00 JST after the 12th assimilation

34.9

34.8

34.7

34.6

34.5

34.4

34.3

135

135.2 135.4 135.6 135.8 136

43 40

36

Observation

Vertical section

15:06:00 JST

Thermodynamic structure

15:06:00 JST

Forecasts

10-min. 15:06:00 JST \rightarrow 15:16:00 JST

20-min. 15:06:00 JST \rightarrow **15:26:00 JST**

RMS Errors

RMS Errors

Toward seamless prediction

A nowcasting system taking advantage of the dense/frequent PAWR data is explored.

2D vs. 3D

- 3D motion extrapolation
- Pure image processing (a.k.a. optical flow)

NICT A real case: sky to the ground in 10 min.

With the real Phased Array Radar_{observed} 90-sec forecasts

Underused satellite data potentially useful

PRECIPITATION

With Kotsuki, Terasaki, Lien, Otsuka, Tomita, Satoh, Kalnay

GPM: Global Precipitation Measurement

TRMM/GPM-derived precipitation

"Near Real Time" products (Ushio et al. 2009)

"Optical flow" (nowcasting)

2013/7/13 00Z For "Near Future" products GSMaP

GSMaP

GSMaP assimilated into NICAM

Local Ensemble Transform Kalman Filter *(Hunt et al. 2007)*

Toward seamless NRT \rightarrow Now \rightarrow Near Future \rightarrow Forecast

GSMaP assimilated into NICAM

Local Ensemble Transform Kalman Filter *(Hunt et al. 2007)*

Toward seamless NRT \rightarrow Now \rightarrow Near Future \rightarrow Forecast

(Re-)Analysis = Satellite Level-4 products? (an idea suggested by M. Satoh)

Unsuccessful attempt of assimilating raw or log-transformed precipitation (Kotsuki et al., 2015)

RMSD vs. ERA-int degraded due to precip. DA

(Kotsuki et al., 2015)

Joint histograms [%]

→ Gaussian transformation?

RECENT SUCCESS

Lien, Miyoshi, Kalnay (2013, *Tellus*) Lien et al. (2015, in revision) Hotta et al. (2015, in prep.)

Gaussian Transformation for the real case

Gaussian Transformation for the real case

Gaussian Transformation for the real case

Lien and Kalnay succeeded in assimilating TMPA.

3-month time series: Analysis U (m/s) at 500 hPa, error relative to ERA-int.

5-day forecasts were improved.

APPLYING TO NICAM-LETKF *With Kotsuki, Terasaki, Lien*

Gaussian transformation

Lien et al. (2013, 2015)

Gaussian transformation (Kotsuki et al., 2015)

Gaussian transformation (Kotsuki et al., 2015)

GSMaP-like NICAM using GT (Kotsuki et al., 2015)

GSMaP-like NICAM using GT (Kotsuki et al., 2015)

NICAM-like GSMaP using GT (Kotsuki et al., 2015)

-3

-2

2

3

NICAM-like GSMaP using GT Kotsuki et al., 2015)

Successful attempt of precipitation DA using GT

Successful attempt of precipitation DA using GT

(Kotsuki et al., 2015)

Getting closer to obs due to DA

Analysis as satellite L4 product (an idea suggested by M. Satoh)

Seamless NRT \rightarrow Now \rightarrow NF \rightarrow Forecast

A perspective BIG SIMULATION

Global 870-m simulation (Miyamoto et al. 2013)

AICS

Visualized by Ryuji Yoshida

Future perspectives

- "Big Data Assimilation" 30-sec. super-rapid DA cycle
 - Japanese "post-K" supercomputer planned in 2020
 - May "Tokyo 2020" be a good place to demonstrate?
- "Big Data" and "Big Simulation"
 - "Co-design" among modelers, observers, DA, and CS
- What would you do with such large computers?
 - Larger ensemble, higher resolution, multi-media coupling...

