
A coupled energy & air quality model for lowest  

cost energy solutions, respecting air quality constraints:  

development and initial results 

1 

         Dan Zachary 

May 6, 2014  

NOAA SEMINAR - NCWCP Conference Center College Park  



 Introduction to energy – air quality modeling  
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• An illustrative example  

• Results  

 

 

 



 Daniel Zachary (Applied Physicist, Mathematician) 

 Ulrich Leopold (Geographer, finishing PhD)    

 Olivier Baume (Computer Scientist) 

• Luis Alexandre Duque Moreira De Sousa (GIS, Computer Scientist, PhD student) 

• Chris Eykamp (GIS expert, programer)  

• Chris Braun(GIS expert, geographer) 

• Lara Reis (Atmospheric scientist)  - now in Milan, Italy 

• Laurent Drouet (Computational scientist) – now in Milan, Italy  

 

 



TUDOR Modeling Group – Research snapshot  
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Air pollution – a major concern 



A need for integrated solutions  







Some models explore solutions via simulation – e.g. 

(EC4MACS)   



 Introduction / Motivation   

• The model (Energy-emissions / Air Quality) 

• An illustrative example  

• Results  
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Energy transition 

Emissions/AQ 

Geocomputation 

Approaches – e.g. 
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tools 

 

 

 

The integrated assessment model – the LEAQ model  

http://crteweb.tudor.lu/leaq/ 

crteweb.tudor.lu/leaq


The ETEM model  



ETEM (Energy Technology Environmental Model)  



The ETEM model 

############### 

#             # 

# ETEM model  # 

#             #  

############### 

# Date     : 11/2008 

# Version  : 2.0 

# Authors  : L. Drouet et J. Thenie 

# Language : GMPL 

# command  : glpsol -m model_file.mod -d data_file.dat -y display_file.txt -o 

output_file.txt 

# example  : glpsol -m etem.mod -d geneva.dat 

 

param nb_periods    >=1; 

param period_length >=1;     # expressed in year. 

 

set T := 1..nb_periods;      # time periods. 

set L;                       # localization 

set S;                       # slice periods 

set P;                       # processes 

set C;                       # commodities 

set DEM within C;            # useful demands 

set IMP within C;            # imported commodities 

set EXP within C;            # exported commodities 

set FLOW;                    # commodities groups labels 

set FLOW_IN{P} within FLOW;  # incoming flows  

set FLOW_OUT{P} within FLOW; # outcoming flows 

set C_ITEMS{FLOW} within C;  # set of commodities 

set P_MAP{L} within P;       # localization of processes 

Plus about 350 more lines 



The ETEM data  
data; 

 

# set of time slices 

set S:= 

WD     # Winter Day 

WN     # Winter Night 

SD     # Summer Day 

SN     # Summer Night 

ID     # Intermediate Day 

IN;    # Intermediate Night 

 

# set of localisations (cities) 

set L:= 

LUXEMBOURG 

HAUTSURE 

CADIOM; 

 

 

# set of processes 

set P:= 

       # Electricity Industrial                          

I11    # Electrical appliances                  # existing technology 

I13    # El. savings industrial 2               #   new    technology 

I14    # El. savings industrial 3               #   new    technology 

I15    # El. savings industrial 4               #   new    technology 

I1A    # El. savings heat pump                  #   new    technology 

I1B    # El. savings clim/air                   #   new    technology 

I1C    # El. savings cold                       #   new    technology 

I1I    # El. savings compressor                 #   new    technology 

I1J    # El. savings pumps                      #   new    technology 

I1K    # El. savings fax/photocopy              #   new    technology 

       # LTH Industrial Area                     

IA1    # Electric                               #   new    technology 

Plus about 2500 more lines 



The ETEM interface  



Emissions  



The air quality model 



The air quality model – example of dynamics in a 

Lagrangian model 

Brownian motion 

Other dynamics included 
 - Brownian diffusion 
- Brownian turbulence  



The air quality model – dynamics 



… 

• ..  
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The air quality model 

O3 

VOC NOX 
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The integrated assessment model  

http://crteweb.tudor.lu/leaq/ 

crteweb.tudor.lu/leaq


The coupled model – combining ETEM and AQ with 

OBOE   

Cost minimization problem:  
 
Min {  (e)   :  AOT(e,p)    AOTmax}  

= min {c’x |Ax = b , x  0} 
 
 
 
 
p = pollution (O3 concentration in ppb) level   decision variable 
e = emissions (tonnes per year)                    decision variable 
AOT = Accumulated Ozone exposure over a Threshold 

ETEM  
 



 Introduction / Motivation   

• The model (Energy-emissions / Air Quality) 

• An illustrative example  

• Results  

 

 

 



Example – a very simple economy       

Car of type 1 – 

inexpensive, heavily 

polluting, maximum  

N1 

Car of type 2 – 

expensive, lightly 

polluting, maximum  

N2 



Supply & demand – for 2 types of cars      

Car – type 1 Car – type 2 



A short overview of convex optimization      
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Convex Bounds due 

to non-linear AQ 

constraints  

A short overview of convex optimization      
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Bounds (min, max 

cars of type i) 

A short overview of convex optimization      
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Bounds to cost 

Select a starting 

point 

A short overview of convex optimization      
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Bounds to cost 

Select a starting 

point 

Simulated cost  

A short overview of convex optimization      
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A short overview of convex optimization      

E
n

er
g
y
 C

o
st

s 
 

f(x) = cost curve 

number of cars (of  type 1)  



Sub-gradient  

(support plane)‏ 

Simulated cost 

A short overview of convex optimization      
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Sub-gradient  

(support plane)‏ 
Acceptable region 

(where solution must 

be found)‏ 

A short overview of convex optimization      
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Sub-gradient  

(support plane)‏ 
Acceptable region 

(where solution must 

be found)‏ 

Geometric center of 

acceptable region 

A short overview of convex optimization      
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Sub-gradient  
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2nd suggested point 

A short overview of convex optimization      
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Sub-gradient  
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Sub-gradient  

(support plane)‏ 
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New lower bound 
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A short overview of convex optimization      
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Solution point 

(in 1D)‏ 

A short overview of convex optimization      
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Results 
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Three results 

1) Emissions & Air quality management  
2) Public health & planning  
3) Energy policy 



Results  - e.g. Luxembourg (Scenario 1)  



Results  - e.g. Luxembourg (Scenario 2)  



Results  - e.g. Luxembourg region 
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2) Public health and planning 

Without Impact  

considerations 

With Impact  

considerations 

Zachary D.S., Drouet L., Leopold U., Reis L.A. ,  
Environmental Research Letters, 6(201), 2011. 

Min{()I( ): p() - }  0 
 
   = emission (tons per year) 
(decision variable) 
 = total discounted energy costs  
I   = impact function (ozone - health) 
p  = ozone concentration (ppb)   
  = average ozone concentration 
(ppb) (decision variable 


