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Air pollution —a major concern

m The London smog
disaster 1952,
brought attention to
the damaging effects
of air pollution.

m There is a negative relation of air pollution with human
health, resulting in an increase of morbidity and mortality.
[Strom et al., 1994; Solé et al.,2007; West et al., 2007; Laaidi et al., 2011; Riickerl et al.,

2011; Tzivian, 2011].

m ‘Urban outdoor air pollution is estimated to cause 1.3
million deaths worldwide per year.” word Heaith Organization, 2011].

Ref. Lara Reis, Ph.D. Defense



A need for integrated solutions

m Indeed air pollutant concentrations are still too high and
harm our health and the ecosystems we depend on.”

[European Environment Agency, 2012].

m Ozone (O3) is one of the most problematic and harmful
pollutants. Exposure to Os has generally not decreased

since 2001. [European Environment Agency, 2012]

m European legislation on air quality has been developed and
Is becoming more and more strict.

m "European policies and measures increasingly seek to
maximise co-benefits, managing air pollutant and
greenhouse gas emissions at the least cost to

- rr
EﬂClEt_}". [European Environment Agency, 2011].



NOx + VOC + Heat & Sunlight = Ozone

Ground-level or “bad” ozone is not emitted directly
into the air, but is created by chemical reactions
between NOx and VOCs in the presence

‘ . Emissions from
: industrial facilities and electric

@ | utilities, motor vehicle exhaust,

of heat & sunlight.

rd

A

' ' gasoline vapors, and chemical solvents are
W, | some of the major sources of oxides of nitrogen
\ = » ‘

(NOx) and volatile organic compounds (VOC).
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Some models explore solutions via simulation — e.g.
(ECAMACYS)

Global/ European Cost- Impacts

hemispheric effectiveness
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The model (Energy-emissions / Air Quality)




The integrated assessment model —the LEAQ model

Energy Technology
Environmental Model -
ETEM

Energy model: ETE
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crteweb.tudor.lu/leaq

The ETEM model

Refererence Energy System of Luxembourg

Industry

Energy Model

-

Dynamic linear optimization

» End-use demands

¥y ¥y vy ¥y v ¥

Future technologies
Energy prices evolution
Total energy system cost

Energy policy assessment
GHG (CO2, CHz, N2O)
Air pollutants (NOy, VOC)




ETEM (Energy Technology Environmental Model)

» ETEM model (http://www.ordecsys.com)
» Implementation of MARKAL/TIMES in GMPL (LP)

» Energy system of Luxembourg (~ 100’000 rows/columns)

» Time horizon: 9 periods of 5 years (2005-2050)

» Minimize the total discounted energy cost s.t.

» the demands in energy services are satisfied,
» the commodity flows balance is respected;

m}jn{c’x | Ax =b,x > 0}



The ETEM model

HHETHEHHEHE

# #

# ETEM model #

# #

HHETHHHHEHE

# Date :11/2008

# Version : 2.0

# Authors : L. Drouet et J. Thenie

# Language : GMPL

# command : glpsol -m model_file.mod -d data_file.dat -y display_file.txt -0
output_file.txt

# example : glpsol -m etem.mod -d geneva.dat

param nb_periods >=1,;
param period_length >=1;  # expressed in year.

set T :=1..nb_periods;  # time periods.

setL; # localization

set S; # slice periods

set P; # processes

set C; # commodities

set DEM within C; # useful demands

set IMP within C; # imported commodities
set EXP within C; # exported commodities
set FLOW, # commodities groups labels

set FLOW_IN{P} within FLOW; # incoming flows

set FLOW_OUT{P} within FLOW; # outcoming flows
set C_ITEMS{FLOW} within C; # set of commodities
set P_MAP{L} within P;  # localization of processes

Plus about 350 more lines



The ETEM data

data;

# set of time slices

set S:=

WD  # Winter Day

WN  # Winter Night

SD  # Summer Day

SN # Summer Night

ID # Intermediate Day
IN; # Intermediate Night

# set of localisations (cities)
set L:=

LUXEMBOURG
HAUTSURE

CADIOM;

# set of processes
set P:=

# Electricity Industrial
111 # Electrical appliances
113 # El. savings industrial 2
114 # El. savings industrial 3
115 # El. savings industrial 4
I1A # El. savings heat pump
1B # El savings clim/air
I1C # El savings cold
111 # El. savings compressor
11 # EL savings pumps

11K # El. savings fax/photocopy

# LTH Industrial Area
IA1 # Electric

# existing technology
# new technology
# new technology
# new technology
# new technology
# new technology
# new technology
# new technology
# new technology
# new technology

# new technology

Plus about 2500 more lines



ETEM Luxembeurg - Mezilla Firefox

Eile Edit View History Bookmarks Tools Help
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Emissions

Sectoral emissions € are distributed over space and time to provide
emissions rates at sources using land-use maps and spots.
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The air quality model

AUSTAL2000-AYLTP

Enission
Allpcation

Temporal

Yearly
Emiss10ns

Comcentration
at time = {

AOT: Average Over Threshold (60 ppb)

AOT(8) = |—1|% | Coy(t.siE)dsdr
J 5%

Calculation time
Emission allocation + AYLTP + AOT calculation = 5 min




The air quality model — example of dynamics in a
Lagrangian model

Brownian motion
r = z+dz)+s
r particle location at time t + 7
d deterministic displacement 7V(z),
s  stochastic displacement with distribution tunction

V' particle velocity

Other dynamics included Particle trajectories
- Brownian diffusion
- Brownian turbulence & 20w

Height

100

0 200 400 600 800 1000 1200 1400 160C
Source distance (m)



The air quality model — dynamics

Particle positions
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A cloud of 1000 simulation particles emitted all at the same
time at the height 100 m, shown 80 seconds after emission (left
part of the picture) and 240 seconds after emission (right part).
Note the effects of wind shear.



The air quality model

Day: - July 19th 2006

- high ozone concentration day

1 T )
T % S\/ﬂ. [Smﬂr(ﬂz 'E(t: ip E}}dﬂdt

(z,y,2)

- ETEM emissions calibrated for 2006




The integrated assessment model

Energy Technology
Environmental Model
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crteweb.tudor.lu/leaq

The coupled model — combining ETEM and AQ with
OBOE

Cost minimization problem:

Min {y (e) : AOT(e,p) < AOT

max}

v=min {c’x |Ax=b , x>0} € ETEM

p = pollution (O5 concentration in ppb) level decision variable
e = emissions (tonnes per year) decision variable
AOT = Accumulated Ozone exposure over a Threshold
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An illustrative example




Example —avery simple economy




Supply & demand — for 2 types of cars

Supply Supply
(] [
- -
- -
o o
Demand Demand
Quantity Quantity
Car — type 1 Car — type 2




A short overview of convex optimization

Energy Costs

Optirénal cost withou
AQ constraints
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number of cars (of type 1)



Energy Costs

A short overview of convex optimization

Convex Bounds due
+ tonon-linear AQ
constraints

Emission constraints :

Optitnajgost with
AQ gonstraints

Optirénal cost withou :
AQ constraints : demand

number of cars (of type 1)



Energy Costs

A short overview of convex optimization

convex cost curve
TR O 1 OO O W R

Bounds (min, max
cars of type i)
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number of cars (of type 1)



A short overview of convex optimization

f(x) = cost curve Bounds (min, max
g /...~ cars of type i)
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A short overview of convex optimization

f(x) = cost curve
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A short overview of convex optimization

f(x) = cost curve

Energy Costs
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number of cars (of type 1)



A short overview of convex optimization

Sub-gradient

(support plane) <~

Energy Costs

Simulated cost =~

L

number of cars (of type 1)



A short overview of convex optimization

Sub-gradient _
o Acceptable region

(where solution must
be found)

Energy Costs

number of cars (of type 1)



A short overview of convex optimization

Sub-gradient

Energy Costs

Geometric cente
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A short overview of convex optimization
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A short overview of convex optimization
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A short overview of convex optimization
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A short overview of convex optimization
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A short overview of convex optimization

Energy Costs

number of cars (of type 1)



A short overview of convex optimization

Energy Costs

number of cars (of type 1)



A short overview of convex optimization

Energy Costs

number of cars (of type 1)



A short overview of convex optimization

Energy Costs

number of cars (of type 1)



A short overview of convex optimization

number of cars (of type 1)
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Three results

1) Emissions & Air quality management
2) Public health & planning
3) Energy policy



Results - e.g. Luxembourg (Scenario 1)

The Luxembourg Country:

m Scenario 1: NO, national emissions.

m Uncertainty of the air quality model, using 95% of the
upper limit of the confidence interval.
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Results - e.g. Luxembourg (Scenario 2)

The Luxembourg Country:

m Scenario 2: NO, sectoral emissions.
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Results - e.g. Luxembourg region

The Luxembourg Region:

m NO, national emissions.
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2) Public health and planning

Min{y(e)-1(p ): p(e) - p} <0

€ =emission (tons per year)

(decision variable)

vy = total discounted energy costs

P

impact function (ozone - health)
ozone concentration (ppb)

Zachary D.S., Drouet L., Leopold U., Reis L.A.,
Environmental Research Letters, 6(201), 2011.

p =average ozone concentration e
(ppb) (decision variable
With Impact
considerations
Coupled model
. ETEM only h=1 h=3 h=>5
Without Impact Periods S | A A
. . NO;TREyr T 15617 15618 ||13962 14389 | 13372 13797 12714 13104
considerations VOC (ktyr') [6702 6703 ||2901 3006 | 322 333 322 333




