Stable Atmospheric Boundary Layers and Diurnal Cycles Challenges for Weather and Climate Models

Bert Holtslag

EMC Seminar, NCEP, Washington DC, December 2, 2013

Progress in the Atmospheric Sciences: Connecting scales

Meteosat observations versus ECMWF predictions (T1279 ~ 15 km) (Courtesy MeteoSat and ECMWF)

Meteosat 9 IR10.8 20080525 0 UTC

ECMWF Fc 20080525 00 UTC+0h:

Atmospheric Budget Equations

$$\begin{split} \frac{\mathrm{d}u}{\mathrm{d}t} &= -\frac{1}{\rho \arccos \varphi} \frac{\partial p}{\partial \lambda} + fv + uv \frac{\tan \varphi}{a} + F_{\lambda} \\ \frac{dv}{dt} &- \frac{1}{\rho a} \frac{\partial p}{\partial \varphi} - fu - u^2 \frac{\tan \varphi}{a} + F_{\varphi} \\ \frac{\partial p}{\partial z} &= -\rho g \end{split}$$

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \rho \mathbf{V}$$

$$p = R\rho T$$

$$C_p \frac{d\Theta}{dt} = \frac{\Theta}{T} Q$$

 u, v, w, p, ρ, T

Sub-grid processes

History of day and night time temperature errors Monthly averages over Europe

Diurnal cycle over land: Cabauw 1987 annual average

Courtesy Anton Beljaars

Diurnal cycle: Cabauw 1987 vs. ERA-40 12-36 hour daily forecasts

Model underestimates diurnal cycle at 10 m and at 200 m

Stable boundary layer diffusion affects large scale scores

Effect of MO-stability
functions (reduced diffusion)
instead of operational
formulation, on 500hPa NH
height scores

Model somehow needs larger drag over land than can be obtained from schemes that produce reasonable stable boundary layer structure.

Ground truth for drag over land does not exist.

Courtesy
Anton Beljaars

ECMWF

Mean model difference in 2 meter temperature for January 1996 using two different stability functions in ECMWF model (Courtesy A. Beljaars)

From long "relaxation" integrations starting 1 Oct 1995

cam3_5_04 (yrs 1-10)

WILLMOTT

cam3_5_04 - WILLMOTT

Comparison of climate models (such as NCAR-CAM4) with observations for 2m temperature reveals large differences over land and ice in stratified conditions (here for HB scheme; 10 year winter averages)

Holtslag+Boville, J. Clim., 1993

cam3 5 04 uw00 bl (yrs 1-10)

IPCC/CRU

cam3 5 04 uw00 bl - IPCC/CRU

Comparison of climate models (such as NCAR-CAM5) with observations for 2m temperature reveals large differences over land and ice in stratified conditions (here for UW scheme; 10 year winter averages)

University of Washington scheme; Bretherton and Park (2009)

11

Climate models only capture small fraction of the change in the diurnal temperature range

McNider et al (2012)

Modeling Atmospheric Boundary Layers: It is still a challenge!

Atmospheric models do have problems in representing the stable boundary layer and the diurnal cycle

Sensitivity to details in mixing formulation

Strategy

Enhance understanding by benchmark studies over land and ice in comparison with observations and fine scale numerical model results

So far focus on clear skies!

GEWEX Atmospheric Boundary Layer Studies (GABLS) provides platform for model intercomparison and development to benefit studies of Climate, Weather, Air Quality and Wind Energy

GABLS1	GABLS2	GABLS3
		phote: J.G. v.d. Viet
LES as reference	Data (CASES99)	Data (CABAUW)
Academic set up	Idealized forcings	Realistic forcings
Prescribed T_s	Prescribed T_s	Full coupling (SCM)
		Prescribed T_s (LES)
No Radiation	No Radiation	Radiation included
Turbulent mixing	Diurnal cycle	Low levet jet + transitions

GABLS3: SCM and LES model studies

Cabauw tower (KNMI, NL)

Initialization Profiles

Cabauw tower, Profiler, De Bilt Sounding

Geostrophic Wind (time-height dependent)
Similar for both SCM and LES

<u>Large-scale Advection (time-height dependent)</u> Similar for both SCM and LES

Surface Boundary Conditions
Cabauw tower

GABLS3 Large Eddy Simulation intercomparison (coordinated by Sukanta Basu, NC State Univ)

Initialized at midnight (02-jul-2006 00:00 UTC) and run for 9 hours (11 LES models)

Prescribed temperature at lowest model level from observations!

Wind speed magnitude

Potential Temperature

GABL

(Red dots: Tower; Blue squares: Wind Profiler)

Green dashed line: 1m LES run (Courtesy Siegfried Raasch)

GABLS3 Large Eddy Simulation intercomparison (coordinated by Sukanta Basu, NC State Univ)

Sensible Heat flux (W/m2)

400 Ensemble (p10-p90) Ensemble (p25-p75) 350 Ensemble (p50) 09HR (p50) 300 Tower (p50 w. min & max) 250 ш ₂₀₀ Z 150 100 50 -25 -20 -15 -10 -5 SH (W m⁻²) 0 5 10

Momentum flux (N/m2)

Flux profiles 03-04 UTC

(Red dots: Cabauw Tower observations)

Green dashed line: 1m LES run (Courtesy Siegfried Raasch)

Temporal evolution

GABLS3
intercomparison of
Single Column versions
(SCM) of operational
and research models
(Coordinated by
Fred Bosveld, KNMI)

Each SCM uses its own radiation and land surface scheme interacting with the boundary layer scheme on usual resolution! (Nlev is number of vertical levels in whole

atmosphere)

Note:

Name	Institute	Nlev	BL.Scheme	Skin
ALADIN	Meteo France	41	TKE	No
AROME	Meteo France	41	TKE	No
GLBL38	Met Office	38	K (long tail)	Yes
UK4L70	Met Office	70	K (short tail)	Yes
D91	WUR	91	K	Yes
GEM	Env. Cananda	89	TKE-I	No
ACM2	NOAA	155	K+non-local	No
WRF YSU	NOAA	61	K	No
WRF MYJ	NOAA	61	TKE-I	No
WRFTEMF	NOAA	61	Total E	No
COSMO	DWD	41		
GFS	NCEP	57	K	Yes
WRF MYJ	NCEP	57	TKE-I	Yes
WRF YSU	NCEP	57	K	Yes
MIUU	MISU	65	2nd order	
MUSC	KNMI	41	TKE-I	No
RACMO	KNMI	80	TKE	Yes
C31R1	ECMWF	80	K	Yes
CLUBB	UWM	250	Higher order	No

Surface fluxes

Surface sensible heat flux

Surface fluxes

Long wave downward radiation at surface

Low level jet Wind speed at 200m

Profile at midnight wind speed 20060702 0

Boundary layer height (at night time)

Dominant processes in stable boundary layer over land

Sensitivity runs with RACMO-SCM (Bosveld et al, 2011, 2013)

mixing

varying the TKE-I parameters that relates turbulent length scale to the properties of the flow

coupling:

varying the thermal conductance between the skin layer and the soil

radiation

varying specific humidity to affect long wave incoming radiation $(L\downarrow \pm 15 \text{ W/m}^2)$

Influence of mixing

Influence of mixing

Influence of surface radiation

Note: L↑ is strong function of surface temperature

Warmer surface

Colder Surface

Diurnal cycles of temperature and wind — A challenge for weather and climate models!

Significant variation in all aspects of the Stable Boundary layer are seen in models which can be related to relevant atmospheric and land surface processes

Sensitivity to details in mixing formulation, interaction with the land surface, the representation of radiation (divergence), et cetera

Overview of results and citations in Holtslag et al, 2013, BAMS (online)

GABL

On going activities

Set up GABLS4 case focussing on Antarctic (by Eric Bazille, Timo Vihma and others)

Revisit GABLS2 and couple to land surface using long spin up for land surface schemes (DICE)

(by Martin Best and Adrian Lock)

GABLS basic publications

(plus many conference and invited presentations)

GABLS1:

Special issue Feb 2006, Boundary Layer Meteorology (7 papers) Svensson and Holtslag, 2009, BLM (wind turning issue)

GABLS2:

Steeneveld et al, 2006, JAS (SCM) and 2008, JAMC (Mesoscale study)
Holtslag et al, 2007, BLM (Coupling to land surface)
Kumar et al, 2010, JAMC (LES study)
Svensson et al, 2011, BLM (SCM intercomparison)

GABLS3:

Baas et al 2010, QJRMS (set up case and SCM tests)
New special issue of BLM planned for 2014, including intercomparison papers by Bosveld et al (SCM), Basu et al (LES), Edwards et al (LES + Radiation scheme)....

Thanks to all the participating scientists in GABLS, GLASS-LOCO and many others who gave feed back and shared ideas!

GABLS workshop ECMWF, November 2011

7th International Scientific Conference on the Global Energy and Water Cycle

Conference format will be similar to the 2011 WCRP

Open Science Conference

- a. Plenary with speakers (including Land-Atmosphere Interaction Session)
- b. Poster sessions

Call for papers soon, see www.gewex.org

The Conference will be followed by Pan-GEWEX and Pan-CLIVAR Meetings

Thank you!

