Representing model uncertainty in data assimilation (using ensembles)

Jeff Whitaker, Phil Pegion and Tom Hamill
NOAA Earth System Research Lab, Boulder, CO, USA

jeffrey.s.whitaker@noaa.gov

• Spread-error in med-range ensembles (update on previous work).
• Replacement for additive inflation in ensemble-Var hybrid DA.
• If I have time..
 – Improving balance in EnKF analysis ensemble.
 – Incremental Analysis Update (IAU).
 – TC relocation in the EnKF ensemble.
Evaluating schemes for representing model uncertainty

• Using an EPS
 – Spread/error consistency, probabilistic scores.
 – Hard to know whether improvement comes simply from reducing spread deficiency.

• Using an ensemble-based DA system
 – Tougher test if inflation used as baseline, since scheme must do more than increase variance.
 – Evolution of all errors in DA cycle (not just model error) must be represented. Model error may not be dominant.
Un(der)-represented error sources in an EnKF ensemble

Model error

Sampling error

Observation error

Boundary condition error

Forward operator error

\[\frac{1}{N} \sum_{j=1}^{N} (N << \infty) \]

\[R \]

\[T(z = 0) \Rightarrow T_s \]

\[Mx_a \]

\[Hx_b \]
Methods to account for under-represented sources of error in ensemble DA: *Multiplicative Inflation*

Relaxation to prior spread (RTPS) \[\sigma^a \leftarrow (1 - \alpha)\sigma^a + \alpha\sigma^b \]

which implies \[x_i^{'a} \leftarrow x_i^{'a} \sqrt{\alpha \frac{\sigma^b - \sigma^a}{\sigma^a}} + 1 \]

- Inflates more where observations have a strong tendency to reduce ensemble variance.
- Simple model study of Whitaker and Hamill (MWR 2012, DOI:10.1175/MWR-D-11-00276.1) shows that multiplicative inflation best for representing errors in the assimilation system itself (such as sampling error).
- Used in operational EnKF with \(\alpha=0.9 \).
Methods to account for under-represented sources of error in ensemble DA: Additive Inflation

• Add random samples from a specified distribution to each ensemble member after the analysis step.
• Env. Canada uses random samples of isotropic 3DVar covariance matrix.
• NCEP uses random samples of 48-h – 24-h forecast error (fcsts valid at same time).
• Simple model study shows that additive inflation better than multiplicative inflation at representing model uncertainty.
• More desirable to simulate model uncertainty at the process level (in the model).
Can we replace the additive inflation by adding stochastic physics to the model?

• Schemes tested:
 – SPPT (stochastically perturbed physics tendencies)
 – SKEB (stochastic KE backscatter)
 – VC (vorticity confinement) – abandoned, since it increased ensemble mean error.
 – SHUM (perturbed boundary layer humidity, based on Tompkins and Berner 2008, DOI: 10.1029/2007JD009284)

• All use stochastic random pattern generators to generate spatially and temporally correlated noise.
Examples of stochastic patterns

(from M Leutbecher)
ECMWF method (SPPT)
Stochastically Perturbed Physics Tendency

- Perturbed Physics tendencies

\[X_p = (1 + r \mu) X_c \]

\(\mu \): vertical weights: decays to zero with height in stratosphere.

\(r \): horizontal weights (random pattern): range from -1.0 to 1.0, a red noise process with a
- temporal timescale of 6 hours
- e-folding spatial scale of 500 km
Stochastic boundary-layer humidity

• SPPT only modulates existing physics tendency (cannot change sign or structure, trigger new convection).
• Triggers in convection schemes very sensitive to BL humidity.

\[q_{\text{perturbed}} = (1 + r\mu)q \]

• Vertical weight \(r \) decays exponentially from surface. Added every time step after physics applied. Random pattern \(\mu \) has a (very small) amplitude of \(\sim 0.001 \), horizontal/temporal scales same as SPPT.
Stochastic Kinetic Energy Backscatter

- Algorithm described in Shutts (2005), Berner et al (2009)
 - Designed to represent the effects of dissipated motions near truncation scale on resolved motions.
 - Random patterns are modulated by amplitude of KE dissipation (numerical, possibly other sources like convection – we only consider numerical dissipation here).
Vorticity confinement
(Sanches, Williams and Shutts, 2012 QJR doi 10.1002)

\[
\frac{DV_H}{Dt} + f \mathbf{k} \times \mathbf{V}_H + \nabla \phi = \mu \nabla^2 \mathbf{V}_H + \epsilon \hat{n} \times |\zeta| \hat{k}
\]

\[\hat{n} = \frac{\nabla H \zeta}{|\nabla H \zeta|}\]

Figure 6: Two frames of animation from two mpeg movies created using flowanim and mpeg2encode. Both frames depict the 60th frame of the movie. The left animation is created without vorticity confinement, the one on the right with vorticity confinement and a relatively high force factor.

\[\epsilon \hat{n}\]
acts as an advective velocity

\[\epsilon = 0.6\] in our experiments
120-h Control U (no stochastic physics)
SPPT U

- Slight increase in spread, mostly in tropics. All in all, very little effect.
- Ens mean error unchanged.
SHUM U

- Spread/error consistency improved in tropics, esp. in upper trop (max in error near tropopause reproduced in spread).
- Little or no effect in winter hemisphere poleward of 30.
- Ens mean error reduced in tropical upper trop and summer hem.
VC U

- Spread increase mainly in extratropics.
- Little or no spread increase in tropics.
- TCs made stronger.
- Ensemble mean error increased.
SKEB U

• Spread increased in mid-latitude jets (where numerical dissipation is active)
• Less effect in tropics (convective dissipation not included), but does add spread in lower trop.
• Neutral impact on ens mean error.
SPPT+SHUM +SKEB U

- Still slightly deficient in spread (not the case with height field)
- Ens mean error slightly reduced in tropics.

But is it “good” spread? Does it improve covariances in EnKF?
Operational STTP

- Spread added mainly in winter hemisphere
- Neutral impact on ens mean error.
Total wavenumber spectra (global)
control vs SKEB+SPPT+SHUM

- Well calibrated at larger scales in mass field.
- Still spread deficient at all scales for wind field.
Track Errors

ALL

- (265) (233) (220) (189) (176) (148) (137) (118) (110) (88)

Global Track Errors

- CONTROL spread
- CONTROL error
- ALL2 spread
- ALL2 error

SHUM

- (256) (226) (214) (185) (171) (148) (137) (115) (106) (84)

Global Track Errors

- CONTROL spread
- CONTROL error
- SHUM2 spread
- SHUM2 error

SKEB

- (265) (233) (221) (189) (177) (153) (141) (118) (109) (88)

Global Track Errors

- CONTROL spread
- CONTROL error
- SKEB2 spread
- SKEB2 error

SPPT

- (265) (233) (221) (190) (177) (152) (142) (118) (109) (88)

Global Track Errors

- CONTROL spread
- CONTROL error
- SPPT spread
- SPPT error
3d-ensemble Var DA expts

• Lower res version of ops (T254/T126 instead of T574/T254).
• Control with additive+multiplicative inflation (as in ops) and no stochastic physics.
• Expt with additive inflation replaced by stochastic physics (mult. Inflation unchanged).
Replacing additive inflation with stochastic physics

red: control (with additive inflation)

blue: Turn off additive inflation, include stochastic physics in model (only in ensemble forecast).

Vector Wind O-F (2012070100-2012080100)
Replacing additive inflation with stochastic physics

red: control (with additive inflation)

blue: Turn off additive inflation, include stochastic physics in model (only in ensemble forecast).

Temp O-F (2012070100-2012080100)
Replacing additive inflation with stochastic physics

red: control (with additive inflation)

blue: Turn off additive inflation, include stochastic physics in model (only in ensemble forecast).

Vector Wind O-F (2012070100-2012080100)
Replacing additive inflation with stochastic physics

red: control (EnKF with additive inflation)

blue: Turn off additive inflation, include stochastic physics in model (only in ensemble forecast).

Temp O-F (2012070100-2012080100)
No significant difference in 5-day forecast skill
Expected vs Actual RMS ens mean innovations (tropospheric vector wind)

Vector Wind expected O-F (2012070100-2012080100)

Northern Hemisphere

Tropics

Southern Hemisphere

- stochastic physics
- additive inflation
- actual O-F
Ens Spread vs RMS ens mean innovations (tropospheric vector wind)

Vector Wind expected O-F (2012070100-2012080100)
Expected vs Actual RMS ens mean innovations (stratospheric vector wind)
Expected vs Actual RMS ens mean innovations (tropospheric temperature)

Temp expected O-F (2012070100-2012080100)
Expected vs Actual RMS ens mean innovations (stratospheric temperature)

Temp expected O-F (2012070100-2012080100)
Conclusions

• Stochastic schemes added to GFS (branch EXP-stochphy, track ticket #58).

• A combination of SKEB+SHUM (and possibly SPPT) looks to be an improvement upon STTP along for medium range ensembles.

• It’s hard to improve upon ad-hoc inflation for DA, but..

• Initial expts show impact of stochastic is slightly positive in trop, slightly negative for winds in strat. Multiplicative inflation still needed. Spread too large in trop. Should be able to replace additive inflation in DA cycle (with tuning).

• Stochastic physics should form a basis for further improvement (by treating model uncertainty the process level in each parameterization scheme).
Experiences with Env. Canada system
(Houtekamer, Mitchell and Deng, MWR July 2009)

• Operational EnKF tested with
 – Multiple parameterizations
 – SKEB (stochastic kinetic energy backscatter)
 – SPPT (stochastically perturbed physics tend)
 – Additive inflation (isotropic covariance structure)
 – Multi-physics plus additive inflation
Experiences with Env. Canada system
(Houtekamer, Mitchell and Deng, MWR July 2009)

<table>
<thead>
<tr>
<th>configuration</th>
<th>O-F (energy norm)</th>
<th>Energy spread in ob space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive inflation</td>
<td>3.1388</td>
<td>2.0622</td>
</tr>
<tr>
<td>Multi-physics</td>
<td>3.2978</td>
<td>1.2773</td>
</tr>
<tr>
<td>SKEB</td>
<td>3.4348</td>
<td>1.2671</td>
</tr>
<tr>
<td>SPPT</td>
<td>3.3899</td>
<td>1.1670</td>
</tr>
<tr>
<td>Multi-physics + add. Infln.</td>
<td>3.0846</td>
<td>2.1335</td>
</tr>
<tr>
<td>SKEB + SPPT</td>
<td>3.3352</td>
<td>1.3608</td>
</tr>
<tr>
<td>SKEB+SPPT+Mult-physics +rescaled additive infln.</td>
<td>3.0940</td>
<td>2.1092</td>
</tr>
</tbody>
</table>

• Biggest impact from ad-hoc additive inflation.
• Addition of multi-physics improves assimilation slightly.
• SPPT and SKEB have less impact (tuned for EPS?, model error not dominant?)
SKEB vs VC

- VC increases ensemble mean error.
- SKEB produces faster spread growth.
Max Wind Errors

ALL

N.H. MaxW Errors

SHUM

N.H. MaxW Errors

SKEB

N.H. MaxW Errors

SPPT

N.H. MaxW Errors
Forecast Error and Ensemble Spread

CONTROL ALL SHUM SKEB SPPT

200 mb Zonal Wind

850 mb Zonal Wind

500 mb Height
Ens. Spread vs RMS ens mean innovations (tropospheric temperature)

Temp expected O-F (2012070100-2012080100)
Relocation Experiment Track Errors (6-168 hrs)

20-member Ensemble

Track Error/Spread

Max Winds Error/Spread

N.H. Track Errors, Relocation Experiment
Relocation Experiment Track Errors (6-72 hrs)

20-member Ensemble

Track Error/Spread

Max Winds Error/Spread
Relocation Experiment Track Errors (6-120 hrs)

T878 Determinist Forecast

Track Error/Spread

![Track Error/Spread Graph]

Max Winds Error/Spread

![Max Winds Error/Spread Graph]