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Motivations

• Spectral models are used at leading NWP centres.

• Current semi-Lagrangian cores do not make the most out of
spectral methods.

• Non-hydrostatic effects need to be evaluated with the non-
hydrostatic version rather than a different model.
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Three keys

• Accurate associated Legendre functions at high order and degree

• Accurate interpolation in semi-Lagrangian advection

• Stable and simple non-hydrostatic formulation
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Assoicated Legendre
functions

Enomoto et al. (2004; 2008);
Enomoto and Miyamoto, MSJ 2012 Spring
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Conventional Swarztrauber (1993)
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Conventional three-term recurrence

P̃m
n = (am

n cos θ)P̃m
n−1 − bm

n P̃m
n−2 (1)

P̃m
m = (dm

n sin θ)P̃m−1
m−1 (2)

P̃m
m+1 = (am

m+1 cos θ)P̃m
m (3)

where θ is the colatitude and
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n2 −m2
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n
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The alternative four-term recurrence

involves (m−2,n), (m-2,n−2), and (m−2, n−2) to calculate the
value at (m,n):

P̃m
n =

√
(2n + 1)(n + m− 2)(n + m− 3)

(2n− 3)(n + m− 1)(n + m)
P̃m−2

n−2

−

√
(n−m + 1)(n−m + 2)

(n + m− 1)(n + m)
P̃m−2

n

+

√
(2n + 1)(n−m)(n−m− 1)
(2n− 3)(n + m− 1)(n + m)

P̃m
n−2 (5)
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Why does the three-term recurrence fail?

• A floating-point number has can only represent a certain small
number e.g. xmin = 2.23× 10−308 for double precision.

• P̃m
m ∝ sinm θ is very small near the poles at high orders.

• |P̃m
n | grows with degree n.
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Legendre synthesis–analysis test at T2159

Conventional Swarztrauber (1993)
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Legendre synthesis–analysis test
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Extended-range arithmetic

• Smith et al. (1981) avoided overflow and underflow in the
evaluation of associated Legendre functions with extended-range
arithmetic at the 2x computational cost.

• Fukushima (2011) proposed an accelerated version that enables
to evaluate extremely high degree as 232 at only 10% increase in
computational time.

Express X with a pair of a floating-point number x and an integer i.

X = xBi (6)

where B is a large power of 2.
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Validation of associated Legendre functions
calculated from the four-term recurrence

• The check sum ∫ 1

−1

[P̃m
n ]2dx = 1 (7)

shows that the Swarztrauber (1993)’s recurrence enables accurate
Legendre transforms at high order and degree.

• Associated Legendre functions evaluated by the method of
Fukushima (2011) is regarded as the truth.

• The small values from the four-term recurrence is found to be in
inaccurate.
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Summary for associated Legendre functions

• The four-term recurrence (Swarztrauber 1993) is stable over 2000.

• The conventional three-term recurrence may be used in extended-
range arithmetic to avoid overflow and underflow (Smith et al.
1981).

• An optimized evaluation with extended-range arithmetic only
require 10% increase in computational time (Fukushima 2011).

• Associated Legendre functions from the four-term recurrence
are validated with those from the three-term recurrence using
extended-range arithmetic to be inaccurate at small values.
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Interpolation
Enomoto 2008;

Lauritzen et al. 2012, in preparation
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Advection

• Eulerian advection

– is dispersive
– requires a short time step.

• Semi-Lagrangian advection

– allows a longer time step
– needs interpolation, which determines the accuracy
– is typically diffusive

→Semi-Lagrangian advection with an accurate interpolation should
be less dispersive and diffusive.
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Quasi-cubic interpolation

Ritchie et al. (1995)
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Bicubic interpolation

Derivatives calculated in spectral space (Enomoto 2008)
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Rotation of a Gaussian hill

Initial
Euler
Quasi-cubic
Spectral bicubic

Enomoto (2008)
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Standard test suite

Lauritzen and Skamarock (2010)
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Slotted cylinders

t = Tt = T/2

no filter

filter +fix

Spectral bicubic T119 CFL 5.2
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Convergence

Spectral bicubic

Quasi-cubic

3 1.5 0.75 0.375 0.1875°

nofilter filter+fix

Quasi-cubic

3 1.5 0.75 0.375 0.1875°

Spectral bicubic
Ne

T119 CFL 5.2 `2 error norm cos hills
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‘Minimal’ resolution compared

model reference filter Ne
Quasi-cubic Ritchie et al. 1995 no 0.919

yes 0.864
Spectral bicubic Enomoto 2008 no 2.41

yes 2.29

obtained from convergence of `2 error norm cos hills

NCEP EMC Seminar 21



Non-hydrostatic spectral models Enomoto, Miyamoto and Juang

Summary for interpolation

Spectral bicubic interpolation

• is easy to implement in existing spectral models.

• is accurate for smooth and non-smooth tracers.

• generates ripples but they can be removed with a short-wave filter
of Sun et al. (1996).
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Non-hydrostatic
formulation

Enomoto and Juang, MSJ 2011 Autumn
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σ–co-ordinates in hydrostatic pressure p

(Laprise 1992)

• Additional prognostic variables: w and p

• Monotone in the vertical unlike full pressure p (Miller 1974)

• No additional complex metric terms unlike terrain following height
co-ordinates

• Easy to conserve total energy

• Adopted by Météo France ALADIN (Bubnová 1995)/Arpège
(Yessard 2008), ECMWF NH-IFS (Wedi et al. 2009) and JMA
GSM (Yoshimura, JMSJ spring 2011 B401)
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Non-hydrostatic double-fourier version of
JMA GSM (Yoshimura)

TL1279L60, ∆t=10 min, FT = 2 d, slp (hPa)
Spherical harmonics Double Fourier Series
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Non-hydrostatic double-fourier version of
JMA GSM (Yoshimura)

TL1279L60, ∆t=10 min, FT = 2 d, precipitation (mm/d)
Spherical harmonics Double Fourier Series
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Non-hydrostatic IFS at ECMWF (Wedi)

ECMWF 2nd AICS International Symposium 2012 Slide 5 

T3999 T2047 
20101015 12Z + 48h 

911hPa 948hPa 
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You already have
a gem at NCEP.
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NCEP MSM (Juang 1992; 2000)

• is a non-hydrostic version of NCEP RSM
(Juang and Kanamitsu 1994).

• uses horizontal discretization by double Fourier series.

• uses the perturbation method.

• shares the same physics packages with NCEP GSM.

• uses the Euler equations transformed from z– to σ– co-ordinates.
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Pressure gradient terms

Laprise (1992)

1
ρ
∇zp = RT∇σ ln p +

p

p

∂ ln p

∂ lnσ
∇σφ,

∂φ

∂σ
= −RTps

p
(8)

Juang (1992)

1
ρ
∇zp = RT∇σ ln p +

T

T

∂ ln p

∂ lnσ
∇σφ,

∂φ

∂σ
= −RT

σ
(9)
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The hydrostatic state of Laprise (1992)

Define
∂φ

∂p
= − 1

ρ
, (10)

means
ρ = ρ. (11)

Since ρ = p/RT , ρ = p/RT ,

T

T
=

p

p
(12)
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Hydrostatic variables

Choice of the hydrostatic temperature T and surface pressure ps:

1. Time independent (Juang 1994; Gallus and Rančić 1996)

2. Both T and ps are determined externally (Juang 1992).

3. Impose T externally but predict ps internally
(Juang 2000, default of MSM).

4. Predict both T and ps internally (Juang 2000).
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The unified system by Arakawa and Konor (2009)

• unifies anelastic and primitive (quasi-hydrostatic) systems.

• uses the hydrostatic density ρ in the continuity equation.

– by ignoring non-hydrostatic pressure tendency ∂(p− p)/∂t:
p− p is obtained by solving an Helmholz equation.

• removes sound waves without distortion of planetary waves.
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Sound and gravity waves
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Sound and gravity waves
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Rossby waves
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The hydrostatic state of Arakawa and Konor (2009)

Using the hydrostatic Exner function π = (p/pref)κ, define

∂π

∂z
≡ − g

cpθ
, (13)

which means
θ = θ. (14)

Since θ = T/π and θ = T/π, hydrostatic temperature T may be
written as

T = T

(
p

p

)κ

. (15)
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Forecast experiment using NCEP MSM

• Initial time: 0 UTC 11 August 2011, 24-hour forecast

• Horizontal resolution: ∆h = 26 km, vertical levels: 42,
time step: ∆t = 60s

• Initial and boundary conditions: NCEP GFS

• Projection: polar stereo

• Domain: (132–141E, 31–39N) centred at (136E, 35N)

• Problem size: 32×32×42
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slp hPa FT=24 INIT=2011081800

Initial state boundary (default)

    

Unified Laprise
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Summary for non-hydrostatic formulation

• The governing equation of MSM is the Euler equations in σ–co-
ordinates transformed from those in z–co-ordinates (Juang 1992).

• Sound wave can be removed without distorting planetary wave
by the use of the hydrostatic density ρ in the continuity equation
(Arakawa and Konor 2009).

• The hydrostatic temperature state T may be defined by the
hydrostatic assumption of Arakawa and Konor (2009) or Laprise
(1992).

• Preliminary forecast experiments shows that both hydrostatic
assumption are stable.
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The perturbation method

predicts deviations from from the global model.

2126
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physics is used in the global and regional models.
Hereafter, we will refer to the NCEP global spectral
model as GSM, which is also called MRF or AVN.

The major differences between the computational
methods used in the RSM and those of the other re-
gional spectral models are the spectral representations
and the perturbation method. The Japan Meteorologi-
cal Agency’s (JMA) limited-area spectral model
(Segami et al. 1989) uses spectral transformation for
both lateral boundary and inner fields. The other opera-
tional spectral limited-area model is Meteo France’s
ARPEGE/Aladin, which uses a larger domain than lim-
ited area of interest with Fourier series for full fields.
RSM uses spectral transformation for perturbation. The
spectral representation of the RSM is two-dimensional
cosine series for perturbations of pressure, divergence,
temperature, and mixing ratio, but two-dimensional sine
series for perturbation of vorticity. Shown in Fig. 1 is
a schematic illustration of (a) the conventional method
and (b) the perturbation method in one dimension over
a regional domain. All the variables in the figure are
time dependent. Here AG is the value contributed from
the outer coarse grid, and A is the full field obtained
from fine-grid integration. The shaded area can be
called Ap, which is predicted value in the model by

∂

∂
∂
∂

∂
∂

A
t

A
t

A
t

p G= − . (1)

The conventional method is used for nearly all regional
models (see Fig. 1a), including all gridpoint models
and spectral models such as JMA’s. It computes the
fine grid variable in full field within the inner domain
and has a blending zone along the lateral boundary to
blend the forecasted field between the parts from fine-
grid model, Ap, and the parts from a coarse-grid model,
AG, thus the inner domain A equals Ap with no contri-
bution of AG. Instead of getting a portion of the con-
tribution from AG only along the lateral boundaries like
in the conventional methods, the full field of AG is used
all over the domain in the perturbation method (see
Fig. 1b), and the Ap is evaluated by the full field of a
regional model result A minus the full field of coarse-
grid results AG. And the linear computations, say hori-
zontal diffusion and semi-implicit adjustment, are
treated in perturbation only. Even though the pertur-
bation method requires more memory and computa-
tion time to deal with base field over the entire regional
domain, the error due to reevaluation of the linear forc-
ing from the base fields by the regional model can be

eliminated. This is one of the reasons that the RSM
can be easily used for long-range climate simulations.

The earlier version of the RSM (Juang and
Kanamitsu 1994a) was nested into GSM to form a
single executable code. The base fields used to supple-
ment the perturbation for computing the perturbation
forcing are from the global model forecasts by spheri-
cal transformation from global spectral coefficients
directly to a regional grid point without any interpo-
lation. This implies that the RSM could not be ex-
ecuted without the GSM. Thus, a package for nesting
the RSM into a coarser-resolution RSM has to be de-
veloped. Furthermore, the RSM could only be used for
resolutions no finer than about several kilometers due
to the hydrostatic approximation. The nonhydrostatic
version of RSM had to be considered for resolutions
finer than several kilometers. The earlier version of the

FIG. 1. Schematic diagram of the amplitudes of any variable
over a regional domain in one dimension for (a) the conventional
method and (b) the perturbation method. The notation A represents
a full field, and AG represents the contribution from the global
spectral model.

∂A′

∂t
=

∂A

∂t
− ∂Ab

∂t
(16)
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The governing equations

∂v′

∂t
= −m2v · ∇v − σ̇

∂v

∂σ
− E∇m2 + fk × v

−R(T + T ′)∇(Qs + Q′)

−
(

1 +
T ′

T

)(
1 +

∂Q′

∂ lnσ

)
∇φ + F − ∂vb

∂t
(17)

∂w′

∂t
= −m2u · ∇w − σ̇

∂w

∂σ

− g

[
1−

(
1 +

T ′

T

)(
1 +

∂Q′

∂ lnσ

)]
+ Fz −

∂wb

∂t
(18)

NCEP EMC Seminar 43



Non-hydrostatic spectral models Enomoto, Miyamoto and Juang

∂Q
′
s

∂t
= −m2

∫ 1

0

[
u
∂Qs

∂x
+ v

∂Qs

∂y
+
(

∂u

∂x
+

∂v

∂y

)]
dσ − ∂Qsb

∂t
(19)

∂Q′

∂t
= −m2u

∂Qs + Q′

∂x
−m2v

∂Qs + Q′

∂y
− σ̇

∂Q′

∂σ
− σ̇

σ

− γ∇3 · v + γ
FT

T
− ∂Qs

∂t
(20)

∂T ′

∂t
= −m2u

∂T + T ′

∂x
−m2v

∂T + T ′

∂y
− σ̇σ̇κ∂(T + T ′)σ̇−κ

∂σ

− RT

cv
∇3 · v + FT −

∂T b

∂t
(21)

∂q′

∂t
= −m2u

∂q

∂x
+ m2v

∂q

∂y
− σ̇qσ + Fq −

∂qb

∂t
(22)
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Vertical velocity and divergence

σ̇ =
σ

RT

[
gw +

∂φ

∂t
+ m2

(
u
∂φ

∂x
+ v

∂φ

∂y

)]
(23)

∇3 · v = m2

(
∂u

∂x
+

∂v

∂y

)
+

σ

RT

[
m2

(
∂u

∂σ

∂φ

∂x
+

∂v

∂σ

∂φ

∂y

)
− g

∂w

∂σ

]
(24)

φ = φs +
∫ σs=1

σ

RT

σ
dσ (25)
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Q′ ≡ ln p− ln p = Q−Qs − lnσ (26)

gives (
p

p

)κ

= exp(−κQ′). (27)

Using this identity

∇T =
(

p

p

)κ

(∇T − κT∇Q′)

= exp(−κQ′) (∇T − κT∇Q′) . (28)

∇T is used in σ̇ and ∇3 · v.
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