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UA model parameterizations and global datasets

EMC (implemented):  
ocean surface turbulence (Zeng et al. 1998)
Noah land skin temperature (Zeng et al. 2012) 

EMC (fully tested for implementation; but not yet):
Max snow albedo data (Barlage et al. 2005)
Noah snow model improvement (Wang et al. 2010)

CPC (scientists there informed):
Seasonal hurricane activity forecast (Davis et al. 2015)

ECMWF (implemented):
Ocean surface turbulence; vegetation root distribution data; ocean 
skin temperature

NCAR CESM (implemented):
Community Land Model; sea ice surface turbulence; soil moisture 
equation; dynamic vegetation; bedrock depth data 3



Direct test of turbulence 
algorithms from NCEP,
ECMWF, NCAR, GMAO, 
and the COARE and our 
UA algorithms

Zeng et al. (1998)

NCEP        

ECMWF

TOGA COARE 
Data (+)

R2O success #1: Ocean Surface Fluxes
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Product
Total 
bias

Bulk variable 
uncertainty

Residual 
uncertainty

LH flux (W m-2)
NCEP/NCAR 11.2 -13.4 24.5

CFSR 19.3 8.2 11.0
SH flux (W m-2)

NCEP-NCAR 6.0 -9.0 15.0

CFSR -0.3 -12.0 11.7
Wind stress (10-3 N m-2)

NCEP-NCAR -7.6 -3.7 -3.9

CFSR 4.8 8.2 -3.5

𝐹"#$% − 𝐹$'( = 𝐹"#$% − 𝐹*+,$# − 𝐹*+,$# − 𝐹$'(

Total 
bias

Bulk 
variable 
uncert.

Residual 
uncert.
includes 
algorithm 
uncert.

CFSR residual uncertainty is 
reduced from earlier NCEP-
NCAR reanalysis, due to the 
implementation of the UA 
algorithm.

Brunke et al. (2011) 5



Zheng and Mitchell (2008) 

Land Skin T Diff

Green Vegetation Fraction

Mean absolute error (K)

Desert Rock      Gaize
Nevada       Tibet, China

Noah (Con)     2.8                 5.8           
Noah (New)   0.5                 1.6

CLM (Con)      1.9                 4.6
CLM (New)     0.7                 1.8

Zeng et al. (2012)

July 2007 R2O success #2: Land Skin Temperature
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Tb bias in satellite pixels used in GFS GSI (NOAA-17 HIRS-3 
Ch. 8)  (Zheng et al. 2012)
Similar improvements for NOAA-18 AMSU-A  Ch.15

Con New
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Motivation for Snow Study

Snow affects the energy cycle (via albedo), water cycle (via 
snowmelt), and land-atmosphere coupling (via insulation of ground). 

Snow cover is relatively easy to measure from space, and several 
global datasets exist; e.g., NESDIS/IMS, MODIS, Rutgers Univ

Snow water equivalent (SWE) and snow depth are much more 
challenging to measure from space or to upscale from in situ point  
measurements to area averages. But many datasets have also been 
produced; e.g., 
• Operational analysis, re-analysis, GLDAS, satellite (e.g., AMSR-E)
• Surface-based and satellite merged product, 
• Merged product based on the above datasets 

Q: How good are these SWE and snow depth products? 
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Q: How good are NCEP snow depth initializations?

Deficiency: Snow depth (SD) initializations for GFS, CFS, and NAM 
are 77% below upscaled SD (UA) on average.
Reason: based on the poor AFWA snow depth analysis
Solution: develop a better snow depth data

Dawson et 
al. (2016)
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Q: How good are NCEP SWE initializations?

Deficiency: SWE initialization is even worse than snow depth
Reason: use of constant snow density or very simple treatment
Solution: develop a better snow density parameterization
Better solution: develop consistent SWE and snow depth data 11
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Dawson et al. (2017a)

A new snow density model (SNODEN) 

• Include up to 10 snow layers
• Driven by daily snowfall and T2m

• Consider overburden and destructive metamorphism
• Consider melting pond
• Consider six snow classes
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NCEP Noah underestimates snow density early in the season 
but overestimates it later in the season 

snow density comparison

Using SNOTEL 
snow density to 
evaluate NLDAS 
values.

Our SNODEN 
performs best

12/1                       5/31
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NoahF and SNODEN are forced with identical SNOTEL T2m and SWE.

Our SNODEN still performs better

SNODEN compared to Noah formulation directly
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a) Surface networks with dense  
measurement sites over some 
regions:
• hundreds of SNOTEL sites: 

SWE and snow depth data;
• thousands of NWS COOP 

stations: snow depth data

Site representativeness is a 
concern

b) Airborne data: areas and periods are limited; airborne data themselves 
need to be calibrated
c) River discharge: integrated assessment; discharge is affected by other 
processes (e.g., rainfall, ET)
d) Satellite passive microwave (e.g., AMSR-E): provide global coverage; 
SWE retrieval has several deficiencies

Q: What are the “ground truth” data to evaluate these gridded 
products? 
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Broxton et al. (2016a)

Q: How do we upscale from in situ point  
measurements to area averages? 

Step 1: compute the ratio of SWE over (accumulated snowfall minus 
snow ablation)

• Snowfall vs. rainfall: using a T2m threshold based on station data
• Snow ablation: using T2m based on station data 

Step 2: Use our new snow density model (SNODEN) to assimilate 
both SNOTEL SWE and COOP snow depth data

18



Q: How do we upscale from in situ point  
measurements to area averages? ?

Step 3: Interpolate 
in situ normalized 
SWE (from Step 1) 
to 4 km grids;

Step 4: Use PRISM daily 4 km P and T2m products to compute 
(accumulated snowfall minus ablation) (following Step 1)

Step 5: use Steps 3 & 4 to obtain daily 4 km gridded SWE over ConUS

Step 6: use Steps 2 & 5 to obtain consistent snow depth
19



• Our method has a much smaller error. 
• Our method is very robust, as the errors are nearly the same 

if we use 5%, 10%, 30%, or 90% of the sites for interpolation 

Test #1: Interpolation from point to point 

Q: How good is our method of spatial 
interpolation of normalized SWE compared 
with interpolation methods that use SWE 
itself?
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Test #2: Compare the average SWE over a 2ox2o area when 0%, 
50%, 75%, and 90% of the station snow data are withheld during 
the generation of the UA data. 

Colorado                             Wisconsin

Our results are very robust, as using 10%, 25%, 50%, and 100% of 
the sites gives very similar area-averaged  SWE seasonal cycle 21



Test #3: Compare daily snow 
cover (SWE > 3 mm) with other 
datasets 

Our results agree well with other 
binary datasets (snow or no-
snow), with the Mean Absolute 
Difference (MAD): 

15% with MODIS (5km)
13% with IMS (4km)
19% with Rutgers Univ (25 km)

Dawson et al. (2017b,                
in preparation) 22



Comparison between UA SWE data and IMS product

Overall, our SWE data and IMS data are similar, though some 
inconsistencies in areas with shallow snow / near edges
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Application #1: 
SWE in reanalyses and 
GLDAS is too low over 
much of ConUS

Q: What is the main  
reason for this 
underestimate?
• Atmospheric forcing 

deficiencies?
• deficiencies in land 

models and snow 
data assimilation? 

Panel a) max SWE according to our dataset 
(“OBS”), Other panels:  ratios between reanalysis
and GLDAS max SWE and OBS for WY2008

Broxton et al. (2016b) 25



Some products have 
too much 
precipitation or 
snowfall and some 
have too little

However, nearly all 
products have too 
little maximum SWE
(previous slide)

Point:
Deficiencies in 
atmospheric  forcing 
data cannot explain 
this widespread 
underestimation of 
SWE. a) Cumulative snow season precipitation (“OBS”), 

b-l) ratios between reanalysis/GLDAS cumulative 
snow season precipitation and OBS 26



SWE is under-predicted 
more severely for reanalysis 
products that ablate more 
snow near freezing point 
temperature

Point:
SWE underestimation in 
reanalysis/GLDAS is 
primarily caused by 
deficiencies in land model 
(particularly snow ablation 
near freezing point) and 
snow data assimilation 
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• AMSR-E (25 km) and GlobSnow (25 km) severely underestimate 
SWE over mountainous areas and heavily forested areas over flat 
areas

• AMSR-E and GlobSnow overestimate SWE in areas with SWE < 20 
mm.

• canSISE SWE (1ox1o) is generally underestimated everywhere.

Dawson et al. (2017b, in prepartion)

Application #2: remotely sensed products underestimate SWE 
over much of CONUS

AMSR-E (NASA); 

GlobSnow (ESA): 
combine satellite 
and in situ data;

canSISE (Canada): 
combine GlobSnow, 
reanalyses, & GLDAS
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AMSR-E SWE over tree-covered grids is even less than 
those over short-vegetation-covered grids

Daily AMSR-E versus UA SWE in WY 2007

Mean SWE

Mean SWE 
over tree and 
non-tree grid 
boxes
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AMSR-E underestimates snow cover in Tree grid boxes, but performs well 
in non-Tree grid boxes.

Derived snow cover compared to IMS
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Q: How does this affect 
other model forecast 
quantities during spring-
summer transition

Predicted SWE for Apr 1 based on forecast issued in 
Jan 1 (left) vs forecast made Apr 1 (right)

Broxton et al. (2017) (in review)

CFS forecasted SWE (in mm) from 
different initialization times over a 
10ox10o box in central Asia 

Poor CFS SWE initialization affects 
forecasts of SWE
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Forecasts made later in the season have less SWE, more net solar 
radiation (SWn), less soil moisture (SM), more sensible heat (SH), less 
latent heat (LH), and higher T2M

Apr 1st minus Jan 1st forecast of model quantities for spring months 
(Apr-Jun) averaged from 1982-2009.
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Temporal correlation (from 1982-
2009) between dSWE on Apr 1st

and Apr-Jun  dT2m (grid-to-grid); 

dSWE, dT2m, dSST – difference between Jan 1st and Apr 1st

forecasts of SWE, T2m, and SST

Over Land, SWE influences other variables (e.g. T2M) more 
strongly than do SSTs, whose influence is mostly felt on the 
edges of continents

correlation between Apr-Jun dSST
(over oceans  > 30oN) and Apr-Jun 
dT2m
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R2O issue

Assume: 
• We get the funding to develop a better 

global SWE, snow depth, and snow 
fraction product (with our new snow 
density model, new data development 
methodology, potentially new data 
source);

• We work with EMC partners to 
implement the new data for snow data 
assimilation in CFS (or GFS, NGGPS);

• We work with EMC partners to finish 
the suite of operational tests

Based on the presentation so far,
Do you think 

36

this will actually be implemented in CFS based on the NCEP criterion 
that the new parameterization or dataset reduces a known deficiency 
but does not degrade other aspects of the forecasting?



Forecast SWE from different initialization times for 
three areas compared with our SWE data (Obs)

Left: Apr-Jun T2m difference between CFS and Obs
(forecasted from Jan 1st); 
Right: difference between CFS and Obs (from Apr 
1st) 

Earlier forecasts of SWE are 
more realistic (but still too 
little snow)

Later T2m forecasts are more 
realistic, despite having less 
realistic SWE

Point: More realistic SWE 
from Jan 1 forecast would 
lead to greater T2m cold bias, 
because of the CFS  
deficiencies in the 
atmospheric processes 
(e.g., radiative transfer)
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R2O issue
Assume: 
• We get the funding to develop a better global SWE, snow depth, 

and snow fraction product (with our new snow density model, new 
data development methodology, potentially new data source);

• We work with EMC partners to implement the new data for snow 
data assimilation in CFS (or GFS, NGGPS);

• We work with EMC partners to finish the suite of operational tests

Based on the presentation so far, do you think

this will actually be implemented in CFS based on NCEP criterion 
that the new parameterization or dataset reduces a known deficiency 
but does not degrade other aspects of the forecasting?   No!

The more productive approach:
• improve snow initialization first, 
• improve atmospheric radiative transfer (e.g. clouds and aerosols), 
• finally improve land model
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Conclusions

• Developed a new snow density parameterization for snow data 
assimilation

• Developed a robust method to obtain daily 4 km snow water 
equivalent (SWE), snow depth, and snow fractional coverage 
product over ConUS from 1981 – present

• Reanalyses and GLDAS products substantially underestimate 
SWE in the U.S., primarily because of the model deficiencies in 
the treatment of snow ablation especially near 0oC. 

• NCEP global (CFS, GFS) and regional (NAM) operational model 
snow initialization substantially underestimates SWE

• SWE on Apr 1 is much more strongly correlated to the CFS Apr-
Jun T2m forecast over mid- and high-latitudes than SST is.

• Atmospheric model in CFS needs to be revised in order to have a 
successful R2O related to snow, because of compensating errors 
in CFS
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