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Microphysics parameterization is essential to 
virtually all major numerical models 

Except for DNS, microphysics is parameterized with different 

sophistications, e.g., single moment (L), double moment (L, N), 

three moment (L, N, dispersion), …, bin microphysics.  



• One moment scheme (LWC only)             

• Two moment scheme (LWC & droplet concentration)

• Three moment scheme (LWC, N, & relative dispersion)

….

Uncertainty and Discrepancy 

Microphysics Parameterization  

Further improving m-parameterization brings 
the issue to the heart of cloud physics

Cloud Physics



Spectral broadening is a long-standing puzzle 
in cloud physics.

The conventional condensational theory predicts a droplet size 

distribution much narrower than observation (Houghton, BAMS, 

1938; Howell, J. Met, 1949). Key missing factors are turbulence, 

entrainment-mixing and associated processes.
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Valley of Death and Drizzle Initiation

Rain initiation has been another sticky puzzle in cloud physics 

since the late 1930s (Arenberg 1939).  Key missing factors are 

related to turbulence as well.

Fundamental 

difficulties: 

• Spectral 

broadening 

• Embryonic 

Raindrop 

Formation



Knowledge Gaps for Sub-LES Scale Processes

• Turbulence-microphysics interactions

• Entrainment-mixing processes

• Droplet clustering

• Rain initiation

Modified from Grabowski and Wang (2013)



Fast Physics Parameterization as 
Statistical Physics  

• “Statistical physics“ is to account for the observed 

thermodynamic properties of systems in terms of the statistics of 

large ensembles of “particles”.

• “Parameterization” is to account for collective effects of  many 

smaller scale processes on larger scale phenomena.

Classical Diagram of Cloud Ensemble 

for Convection Parameterization  

(Arakawa and Schubert, 1974, JAS)

Droplet Ensemble 

Systems Theory

Molecule Ensemble

Kinetics, Statistical 

Physics, Thermodynamics



Statistical Physics for Microphysics 
Parameterization:

Part I: Most Probable Size Distribution --
Theory for Gamma Size Distribution

(Liu et al., AR, 1994, 1995; Liu & Hallett, QJ, 1998; JAS, 1998, 

2002; Liu  et al, 2002)

Part II: On Rain Initiation -- Autoconversion
(McGraw and Liu, PRL, 2003, PRE, 2004; Liu et al., GRL, 2004, 

2005, 2006, 2007, 2008)



Commonly Used Size Distribution Functions

Q Q 1
τ = = =

R kQ k

(Most already summarized in “The Physics of Clouds” by B. J. Mason 1957) 

Most microphysics parameterizations are based on the assumption 

that size distributions follow the Gamma or Weibull distribution >> 

theoretical framework for this?



Fluctuations associated with turbulence lead us 

to assume that droplet size distributions occur 

with different probabilities, and info on size distributions can be 

obtained without knowing details of individual droplets.

Kinetics failed to explain observed 

thermodynamic properties

Know equations 

for each droplet 
Knew Newton’s mechanics

for each molecule

Maxwell, Boltzmann, Gibbs

established statistical mechanics

Models failed to explain 

observed size distribution

Establish the systems

theory 

Molecular system, Gas
Clouds

Most probable

distribution

Least probable

distribution

Droplet System vs. Molecular System



x = Hamiltonian variable, X = total amount of

per unit volume, n(x) = droplet number distribution with

respect to x, r(x) = n(x)/N = probability that a droplet of x

occurs.

Droplet System

(1)

(2)

Consider the droplet system constrained by

ρ(x)dx = 1


X

xρ(x)dx =
N

x



Liu et al. (1992, 1995, 2000), Liu (1995), Liu & Hallett (1997, 1998)

Note the correspondence between the Hamiltonian 

variable x and the constraint 

Droplet spectral entropy is defined as

Droplet Spectral Entropy 

(3)E=- (x)ln( (x))dxr r

N xρ(x)dx = X



Maximizing the spectral entropy 

subject to the two constraints given by Eqs. (1) and (2) 

yields the most probable PDF with respect to x:

where a = X/N represents the mean amount of x per droplet. Note that 

the Boltzman energy distribution becomes special of Eq. (5) when x = 

molecular energy. The physical meaning of a is consistent with that of 

“kBT”, or the mean energy per molecule.

Most Probable Distribution w.r.t. x
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The most probable distribution  with respect to x is



Most Probable Droplet Size Distribution

Assume that the Hamiltonian variable x and 

droplet radius r follow a power-law relationship 

b
x = ar

Substitution of the above equation into the exponential most 

probable distribution with respect to x yields the most probable 

droplet size distribution:  

   
;

* b-1 b

0

0

n r = N r exp -λr

N = ab/α;λ = a/α α = X/N

This is a general Weibull distribution!



Observational Validation of 
Weibull/Gamma Particle Distribution 

• Each point 

represents a 

particle size 

distribution

• e = Standard 

deviation/mean 

Aerosol, cloud droplet and precipitation particles share a

common distribution form ---- Weibull or Gamma, suggesting a 

unified theory on particle size distributions.
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Nonprecipitating clouds Precipitating clouds

Autoconversion process is the 1st step 
for cloud droplets to grow into raindrops.

Autoconversion was intuitively/empirically introduced to parameterize microphysics in 

cloud models in the 1960s as a practical convenience, and later has been adopted in 

models of other scales (e.g., LES, MM5, WRF, GCMs). The concept has been loose; I’ll 

give a rigorous definition later.



Autoconversion and its Parameterization

•Autoconversion is the first step converting cloudwater to rainwater; 

autoconversion rate P = P0T (P0 is rate function & T is threshold function).

•Approaches for developing parameterizations over the last 4 decades:

* educated guess (e.g., Kessler 1969; Sundqvist 1978)

* curve-fit to detailed model simulations (e.g., Berry 1968)

•Previous studies have been primarily on P0 and existing parameterizations can be 

classified into three types according to their ad hoc T: 

* Kessler-type (T = Heaviside step function)

* Berry-type (T = 1, without threshold function)

* Sundqvist-type (T = Exponential-like function)

•Existing parameterizations have elusive physics and tunable parameters.

Our focus has been deriving P0 and T from first principles and eliminating the 

tunable parameters as much as possible. 



Rate Function P0

Simple model: A drop of radius R 

falls through a polydisperse 

population of smaller droplets 

with size distribution n(r)

(Langmuir 1948, J. Met).

Nobel prize winner & pioneer 

in  weather modification in 1940s.

Dr. Irving Langmuir

R


dm

= k(R,r)m(r)n(r)dr
dt

The mass growth rate of the drop is 

The rate function P0 is then given by

Application of the above equations with various 

collection kernels recovers existing 

parameterizations and yields a new one.

0

dm
P = n(R)dR

dt
Generalized mean value theorem for integrals:

    0f x g(x)dx =f x g(x)dx

Autoconversion = Collection of 

cloud droplets by small raindrops (Liu & Daum 2004; Liu et al. 2006, JAS) 



Comparison of New Rate Function with 

Simulation-Based Parameterizations

• Simulation-based     

parameterizations are 

obtained by fitting 

simulations to a simple 

function such as a 

power-law.

• Such a simple function 

fit distorts either P0 or T 

(hence P) in P = P0T.

  1 3

0


P = f ε N L

The rate function P0 can be expressed as an analytical function of 

droplet concentration N, liquid water content L, and relative 

dispersion e (Liu & Daum 2004; Liu et al. 2006, JAS).  



Kessler-Type Autoconversion Parameterizations

Table 1. Kessler-type Autoconversion Parameterizations

P = P0H(rd – rc)

Expression Assumption Features

Previous Fixed 
collection 
efficiency

Fixed g, no e 
effect, rd = r3

New

Realistic 
collection 
efficiency

Has e, stronger 
dependence on L 
and N, rd = r6

 1/3 7/3

3g -

cP = N L H r -r

   LD

-1 3

6 cP = f ε N L H r -r

r3 = 3rd moment mean radius; r6 = 6th moment mean radius

H = Heaviside step function (Liu & Daum 2004, JAS). 

What about the critical radius >> rain initiation theory?



Systems Theory of Rain Initiation/Autoconversion

Rain initiation has been an outstanding 

puzzle with two fundamental problems 

of spectral broadening & formation of 

embryonic raindrop

dr 1
~

dt r
4dr

~ ar + br
dt

Valley of Death Mountain of Life

The new theory considers rain initiation as a 

statistical barrier crossing process. Only 

those “RARE SEED” drops crossing over 

the barrier  grow into raindrops.

The new theory combines statistical barrier crossing with the systems theory 

for droplet size distributions, leading to  analytical expression for critical radius 

(Phys. Rev. Lett., 2003; Phys. Rev., 2004; GRL, 2004, 2005, 2006, 2007).



Critical Radius & Analytical Expression 

Critical radius i the liquid water content and droplet concentration, 

eliminating the need to tune this parameter (McGraw & Liu 2003, Phys. Rev. 

Lett.; 2004, Phys. Rev. E; and Liu et al. 2004, GRL).
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• Kinetic potential

peaks at critical radius 

rc.

• Critical radius &

potential barrier 

both increase with 

droplet concentration.

• 2nd AIE: Increasing 

aerosols inhibit

rain by enhancing the

barrier and critical

radius.



Kessler scheme

e = Dispersion

Relative dispersion is critical for 
determining the threshold function

The new threshold function unifies existing ad hoc types of threshold 

functions, and reveals the important role of relative dispersion that has 

been unknowingly hidden in ad hoc threshold functions (Liu et al., GRL, 

2005, 2006, 2007).

Sundqvist-type

Berry-type

Truncating the cloud 

droplet size distribution at 

critical radius yields the 

threshold function:

0

P
T =

P

Further application of the 

Weibull size distribution 

leads to the general T as  a 

function of mean-to-critical 

mass ratio and relative 

dispersion.



Observational Validation 
of Threshold Function

The results explain why empirically determined threshold reflectivity 

varies, provides observational validation for our theory, and additional 

support for the notion that aerosol-influenced clouds tend to hold more 

water or a larger LWP (Liu et al., GRL, 2007, 2008).



• Entrainment Rate

• Vertical velocity

• Buoyancy

• Dissipation

• Environment  

• Turbulent mixing

• Microphysics

•Aerosol

• Couplings

Lu et al (2011, 2012, 2013, 2014, 2016; Yum et al., 2015)

Clouds are 
open multi-physics & multi-scale Systems  

Turbulence, related entrainment-mixing processes, and their 

interactions with microphysics are key to the outstanding puzzles.  



Different entrainment-mixing processes 
alter cloud properties significantly.

nevaporatio

mixing

τ

τ
Da 

Damkoehler Number



Observational Examples  

Inhomogeneous mixing 

with subsequent ascent

Leg 1 -- 18 March 2000

Homogeneous mixing

Leg 2  -- 17 March 2000

Extreme inhomogeneous

mixing

Leg 2 -- 19 March 2000

March 2000 Cloud IOP at SGP

A measure is needed to cover all!

Droplet Concentration

Adiabatic paradigm

Extreme homogenous



LES captures the general trend of co-variation of droplet 

concentration and LWC; but the LES mixing type tend to be more 

homogeneous than observations (left panel).  

LES Cannot Capture Observed Mixing Types

(Endo et al JGR, 2014)



Microphysical Mixing Diagram 
& Homogeneous Mixing Degree

1
/ 2







1= 0 for extreme 

inhomogeneous 

1= 1 for extreme 

homogeneous 

Complex entrainment-mixing mechanisms are reduced to one quantity: slope

(Andrejczuk et al., 2009), or homogeneous mixing degree (Lu et al., 2013).  

(Lu et al, JGR, 2012,  2013, 

2014)

(Lu et al,  JGR 2013)

A measure for all 

mechanisms



Dynamical Measure: Damkholer Number 
vs. Transition Scale Number

A larger NL indicates a higher 

degree of homogeneous mixing.

Inhomogeneous

Homogeneous

Lehmann et al. (2009)

η
• Transition scale number: 

• Transition length L* is the 

eddy size of Da =1:
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Parameterization for Mixing Mechanisms  

• Eliminate the need for  

assuming mixing 

mechanisms

• Scale number can be 

calculated in models with 

2-moment microphysics

• Difference between Cu 

and Sc ?

• Limited sampling 

resolutions in obs.

The parameterization for entrainment-mixing processes is further 

explored by use of particle-resolved DNS (Gao et al., JGR,  2017)



Our Particle-Resolved DNS 

• LES does not resolve turbulent processes that occur at scales smaller than 

LES grid size and are critical for turbulence-microphysics (knowledge gap).

• Bridge the scales between LES grid size and smallest eddies (e.g., 1 mm ~ 

1 – 100 m), tracks individual droplets, and serve as a benchmark for spectral 

bin models

• Provide a powerful tool for studying turbulence-microphysics interactions 

and entrainment-mixing processes (knowledge gap), and informing  related 

parameterization development (parameterization gap).

Water Vapor Field Droplets in Motion Turbulent 

motion and 

deformation at 

sub-LES grid 

scales can 

generate complex

structures and

droplet tracks.  x  ~ 1cm; 

Domain ~ 1 m3



Main DNS Equations

Fluid Dynamics

Microphysics

Droplet Kinetics



Six Simulation Scenarios

Case1 Case2 Case3

RH

T

Two Turbulence Modes: Dissipating & Forced



Distinct Microphysical Properties for Different 
Scenarios at Different Times

Time (S) 

Droplet 

Concentration 

Liquid Water 

Content 

Mean Volume 

Radius Mean Radius 

Relative 

Dispersion 
Standard 

Deviation 



First Collapsing: Microphysical Mixing Diagram

Normalized Droplet Concentration 
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Unified Parameterization 
for Different Mixing Mechanisms

Transition Scale Number
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Our measure of homogeneous mixing degree is clearly better than the previous 

slope parameter; the expression can be used to parameterize mixing types in 

two-moment schemes.
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(Andrejczuk et al., JAS, 2009) (Lu et al., JGR, 2013)



Entrainment-Mixing Processes 
in P-DNS: Animation 

Transition Scale Number
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• Different entrainment-

mixing processes can 

occur in clouds and are 

key to rain initiation and 

aerosol-cloud 

interactions.

• Our knowledge on these 

processes is very limited. 

• DNS can be used to fill 

in the knowledge gap and 

inform the development of 

related parameterization.

•

Homogeneous 

Mixing

Inhomogeneous 

Mixing

Droplets start with homogeneous mixing and evolve 

toward inhomogeneous mixing due to faster 

evaporation relative to turbulent mixing.



Take-Home Messages

• Potentials of statistical physics (systems theory) as a 

theoretical foundation for microphysics parameterizations

• Potentials of unified parameterization for all turbulent 

entrainment-mixing processes 

• Potentials of particle-resolved DNS to fill in the critical gaps 

between sub-LES and cloud microphysics

• Current  is like the early days of classical physics when 

kinetics, statistical physics, & thermodynamics were established, 

full of challenges and opportunities:

 Implement & test parameterization for entrainment-mixing processes

 Consider relative dispersion (from two moment to three-moment scheme)

 Small system, scale-dependence, and scale-aware parameterizations

 Couple P-DNS with LES
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Long Ignored Quantity: Dispersion of 
Cloud Droplet Size Distribution  

The necessity to consider the spectral shape in atmospheric 

models is bringing progress of atmospheric models to the core of 

cloud physics, converging with weather modification!

e = 0.3 e = 1e = 0

N
u

m
b

er

Radius

Dispersion e is the ratio of standard deviation to the mean radius

of droplet sizes, which measures the spread of droplet sizes. 

Dispersion increases from left to right in above figures.  

The three size distributions have the same L and N.



Effect of Spectral Shape: 
Two Moment vs. SBM 



Reflectivity of Monodisperse Clouds

Neglecting dispersion can cause errors in cloud reflectivity, which 
further cause errors in temperature etc.  Dispersion may be a 
reason for overestimating cloud cooling effects by climate models.

Neglection of dispersion significantly 
overestimates cloud reflectivity

Green dashed line

indicates the 

reflectivity 

error where 

overestimated 

cooling is 

comparable to the 

warming by 

doubling CO2. 

(Liu et al., ERL, 2008)



Conflicting Results since 2002

Cooling Dispersion Effect:

(Martins et al, ERL, 2009; 

Hudson et al, JGR, 2012) 

Warming dispersion effect:
(Lu et al, JGR, 2007; Chen et al, ACP, 2012; 

Pandithurai et al, JGR, 2012; Kumar et al 

ACP, 2016)

(Ma et al, JGR, 2010)

Droplet Concentration (cm-3)

These conflicting results suggest that dispersion effect exhibits 

behavior of different regimes, like number effect?

(Liu & Daum., Nature, 2002)

Aerosol Increase



AIE Regime Dependence

II
I

III

Dispersion effect exhibits stronger regime dependence

& works to “buffer”  number effect! 

III

(Chen et al. GRL, 2016)

I
II

III

(Reutter et al. ACP, 2009)

(Chen et al. GRL, 2016)



Subadibatic LWC Profile-Entrainment

This figure shows that the ratio of the observed liquid water content

to the adiabatic value decreases with height above cloud base, 

and less than 1 (adapted from Warner 1970, J. Atmos. Sci.)  



Remaining Issues and Challenges

• How to determine the parameters a and b in the power-law 

relationship

• Establish a kinetic theory for droplet size distribution

(stochastic condensation, Ito calculus, Langevin equation,

Fokker-Planck equation).

• How to connect with dynamics?

• A grand unification with molecular systems?

• Application to developing unified and scale-aware 

parameterizations

b
x = ar



Big system vs. small system

(Liu et al, JAS, 1998, 2002)

Kinetics failed to explain observed 

thermodynamic properties

Know equations 

For each droplet 
Knew Newton’s mechanics

for each molecule

Maxwell, Boltzmann, Gibbs

introduced statistical principles

& established statistical mechanics

Uniform models 

failed to explain 

observed size distributions--
Establish the systems

theory 

Most probable distribution

Molecular system, Gas Clouds

Most probable

distribution

Least probable

distribution

Difference of Droplet System 
with Molecular System



Gibbs Energy for Single Droplet

The increase of the Gibbs free energy to form this droplet is 

 2 2 3w
c c

3 2

1 2 3

4πρ L
g = 4πσr - 4πσ r - r

3

= c r + c r + c

34π
V = r

3
2

A = 4πr rw = water density

r
s = surface energy

L = latent heat

L – latent heat



Liu et al. (1992, 1995, 2000), Liu (1995), Liu & Hallett 

   

 
3 2

1 2 3

G = g r n r dr

= c r n(r)dr + c r dr + c

The larger the G value, the more difficult to form the droplet system. 

Therefore, the size distribution corresponds to the maximum 

populational Gibbs free energy subject to the constraints is the 

minimum likelihood size distribution (MNSD). 

To form a droplet population, Gibbs free energy change is  

Populational Gibbs Free Energy Change 



The larger the G value, the more difficult to form the droplet 

system. Therefore, the size distribution corresponds to the 

maximum populational Gibbs free energy subject to the

constraints is the least probable size distribution given by  

Least Probable Size Distribution

   min 0n r = Nδ r -r



Observed droplet size distribution corresponds the MXSD; 

the monodisperse distribution predicted by the uniform condensation 

model corresponds to the MNSD, seldom observed!

Observed and uniform theory predicted are two totally different

characteristic distributions!

MXSD, MNSD and 

Further Understanding of Spectral Broadening

Predicted

Observed



- Fluctuations 

increases from 

level 1 to 3.

- Saturation 

scale Ls is 

defined as the 

averaging scale 

beyond which 

distributions do 

not change.

- Distributions 

are scale-

dependent and 

ill-defined if

averaging scale 

< Ls.

Diagram shows the dependence of size distributions

(observed or simulated) on the averaging scale 

Scale-Dependence of Size Distribution



(Liu et al., 2002, Res Dev. Geophys)  

More Scale-Dependence of Size Distribution



Entropy and Disorder


