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Some NN applications in 
Numerical Modeling

• Model Initialization:
– Satellite Retrievals
– Direct Assimilation
– Assimilation of Surface Observations

• Model Physics:
– Fast and Accurate NN Emulations of Model Physics
– New NN parameterizations
– NN Stochastic physics

• Post-processing:
– NN nonlinear ensembles
– NN nonlinear bias corrections
– Upscaling and downscaling   



NN Applications Developed (black) 
and Under Development (red)

• NN for Model Initialization:
– Satellite Retrievals

• SSMI retrieval algorithm (operational since 1998)
• QuickScat retrieval algorithm

– Direct Assimilation
• Forward model for direct assimilation of SSMI BT
• QuickScat forward model

– Assimilation of Surface Observations
• Observation operator for assimilation of SSH anomaly
• Empirical biological model for ocean color
• NN algorithm to fill gaps in ocean color fields and for creating 

long and consistent ocean color data sets 
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NN Applications Developed (black) 
and Under Development (red) – cont.

• NN for Model Physics:
– Fast and accurate emulations of 

parameterizations of physics
• Fast nonlinear wave-wave interaction for WaveWatch
• Fast NN long and short wave radiation for NCAR CAM, 

CFS, and GFS models
• NN emulation for CRM in MMF
• Fast NN microphysics for NMMB and WARF

– New parameterization
• Convection parameterization for NCAR CAM learned 

by NN from CRM
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NN Applications Developed (black) 
and Under Development (red) – cont. 
• NN for Post-processing:

– Nonlinear ensembles
• Nonlinear multi-model NN ensemble for calculating 

precipitation rates over ConUS
• Nonlinear NN averaging of wave models ensemble

– Nonlinear bias corrections
• Nonlinear bias corrections for GFS
• Nonlinear bias corrections for wave model
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• Mapping: A rule of correspondence 
established between vectors in 
vector spaces       and       that 
associates each vector X of a vector 
space      with a vector Y in another 
vector space      .

Mapping
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Mapping  Y = F(X): examples
• Time series prediction:

X = {xt, xt-1, xt-2, ..., xt-n}, - Lag vector
Y = {xt+1, xt+2, ..., xt+m} - Prediction vector

(Weigend & Gershenfeld, “Time series prediction”, 1994)
• Nonlinear ensemble average:

X = {Ensemble members, Metadata}
Y = {Nonlinear ensemble average}

(Krasnopolsky and Lin, 2012)
• Retrieving surface wind speed over the ocean from satellite data 

(SSM/I):
X = {SSM/I brightness temperatures}
Y = {W, V, L, SST}  

(Krasnopolsky, et al., 1999; operational since 1998)
• Calculation of long wave atmospheric radiation: 

X = {Temperature, moisture, O3, CO2, cloud parameters profiles, 
surface fluxes, Metadata}        
Y = {Heating rates profile, radiation fluxes}

(Krasnopolsky et al., 2005, 2010, 2012)



NN - Continuous Input to Output Mapping
Multilayer Perceptron: Feed Forward, Fully Connected
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I. NN in Model Initialization

Satellite 
Data

“Ground” 
Observations

Model 
Predictions

ScenariosInitial Conditions

Oceanic (Atmospheric) Climate/Weather 
Prediction Numerical Model

Data Assimilation System (DAS)
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Ingesting Satellite Data in DAS
• Satellite Retrievals:

G = f(S),
S – vector of satellite measurements; 
G – vector of geophysical parameters;
f – transfer function or retrieval algorithm

• Direct Assimilation of Satellite Data:
S = F(G),

F – forward model 

• Both F & f are mappings and NN are used
– Fast and accurate NN retrieval algorithms fNN

– Fast NN forward models FNN for direct assimilation 
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Satellite Retrievals

Wind speed fields retrieved from the SSM/I measurements for a mid-latitude storm.
Two passes (one ascending and one descending) are shown in each panel.
Each panel shows the wind speeds retrieved by (left to right) GSW (linear regression)
and NN algorithms. The GSW algorithm does not produce reliable retrievals
in the areas with high level of moisture (white areas). NN algorithm produces reliable
and accurate high winds under the high level of moisture. 1 knot ≈ 0.514 m/s
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DAS: Propagation of Information Vertically 
Using NNs

Ocean DAS

“Ground” 
Observations
(mainly 2D)

Satellite 
Data 
(2D)

Model 
Predictions
(3D & 2D)

NN1 NN2

NN1 and NN2 – observation operators



Observation operator for SSH
𝒀 = 𝑭 𝑿 ≈ 𝑵𝑵(𝑿),

Y – vector of SSH satellite measurements; 
X – vector of ocean model variables;
F – observation operator – mapping 
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Input # Names Units Input Size
1 Day	of	the	year 1
2 ---- “	----- 1
3 Lon Sin(lon) 1
4 ---- “	--- Cos(lon) 1
5 Lat Sin(lat) 1
6 bottom pressure ? pbot 1
7 vertically average x-veolcity cm/s ubavg 1
8 vertically average y-veolcity cm/s vbavg 1
9 temperature °C temp 32
10 layer thickness at p-points m dp 32
11 potential density kg/m^3 th3d 32
12 internal x-velocity cm/s u 32
13 internal y-velocity cm/s v 32
Total 168
Output # Output Size
1 SSH anomaly m srfhgt 1
2 Montgomery potential m2/s2 montg1 1
Total 2



Jcobian of Observation Operator
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Profiles of derivatives of SSH.
Derivatives over dp (upper
row), temp (second row from
the top), th3d (third row from
the top), u (fourth row from the
top) and v (bottom row).
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II. NN for Model Physics
• Deterministic First Principles Models, 3-D Partial 

Differential Equations on the Sphere + the set of 
conservation laws (mass, energy, momentum, 
water vapor, ozone, etc.)

– y - a 3-D prognostic/dependent variable, e.g., 
temperature 

– x - a 3-D independent variable: x, y, z & t
– D  - dynamics (spectral or gridpoint)
– P  - physics or parameterization of physical processes 

(1-D vertical r.h.s. forcing) – mostly time consuming part 
> 50% of total time

( , ) ( , )D x P x
t
+ =
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Accurate and Fast NN 
Emulations of Model Physics

• Any parameterization of model physics is 
a mapping and can be emulated by NN

• The entire model physics is a mapping 
and can be emulated by NN

• NN emulation is usually 1 to 2 orders of 
magnitude faster than the original 
parameterization: ~20 times for SWR and 
~100 times for LWR 
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NN Emulation of Input/Output Dependency:
Input/Output Dependency: 

The Magic of NN Performance

Xi

Original
Parameterization Yi

Y = F(X)

Xi
NN Emulation

Yi

YNN = FNN(X)

Mathematical Representation of Physical Processes
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NN Emulations of Model Physics Parameterizations
Learning from Data

Model

X Y

Parameterization

F

X Y

NN Emulation

FNN

Training
Set …, {Xi, Yi}, …  "XiÎ ℂphys

NN Emulation

FNN

Final test of FNN in a parallel run of models 
with the physically based F and with FNN
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LWR Individual Profiles

PRMSE = 0.11 & 0.06 K/day PRMSE = 0.05 & 0.04 K/day

Black – Original 
Parameterization
Red – NN with 100 neurons
Blue – NN with 150 neurons

PRMSE = 0.18 & 0.10 K/day
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CTL
NN FR

NN - CTL CTL_O –
CTL_N

DJF NCEP CFS SST – 17 years
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CTL
NN FR

NN - CTL
CTL_O –
CTL_N

JJA NCEP CFS PRATE – 17 years
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Anomaly correlation for 
temperature fields at 
500 mb for the northern 
hemisphere (upper row), 
tropics (medium row), and 
southern hemisphere (lower 
row).  
Two GFS (T574L64) runs 
are shown: black line –
control run with the original 
LWR and SWR and red line 
– run with NN SWR and 
LWR .

NH

TRO

SH
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III.  Post-processing Model Output
• Nonlinear multi-model ensembles for 

precipitation forecast.
• Precipitation forecasts available from 8 

operational models:
– NCEP's mesoscale & global models (NAM & GFS)
– the Canadian Meteorological Center regional & global 

models (CMC & CMCGLB)
– global models from the Deutscher Wetterdienst (DWD) 
– the European Centre for Medium-Range Weather Forecasts 

(ECMWF) global model
– the Japan Meteorological Agency (JMA) global model
– the UK Met Office (UKMO) global model

• Also NCEP Climate Prediction Center (CPC) 
precipitation analysis is available over ConUS. 



Calculating Ensemble Mean
• Conservative ensemble:

• Weighted ensemble:

Wi  - from a priori considerations or from past data (linear 
regression)

• If past data are available the assumption 
of linear dependency can be relaxed:
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𝑊𝐸𝑀 =	
∑ 𝑊0𝑝02
034
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2
034

𝐸𝑀 =	 42 ∑ 𝑝0, 	 𝑝0	2
034 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑚𝑒𝑚𝑏𝑒𝑟

𝑵𝑬𝑴 = 𝒇 𝑷 ≈ 𝑵𝑵(𝑷)
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Sample NN forecast: example 1
Verification CPC analysis MEDLEY

NN HPC 
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Sample NN forecast: example 2
Verification CPC analysis MEDLEY

NN HPC 
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Sample NN forecast: example 3
Verification CPC analysis

HPCNN

MEDLEY



Nonlinear Bias correction
• Current approaches:

– Relate observed weather elements (PREDICTANDS) 
to appropriate model variables (PREDICTORS) via a 
statistical approach.

• Predictors are obtained from:
1. Numerical Weather Prediction (NWP) Model 

Forecasts
2. Prior Surface Weather Observations
3. Geoclimatic Information

• Predictands are obtained from:
– Historical record of observations at forecast points 
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Methodology
• Statistical Method:

– MULTIPLE LINEAR REGRESSION
𝑦0 = 𝑎C + 𝑎4𝑥4 + 𝑎F𝑥F +	…+ 𝑎H𝑥H

yi - predictand; i = 1,2,…,m
X = {𝑥4, 𝑥F,… , 𝑥H	}	– vector of predictors
FOR EACH SITE and FOR EACH PREDICTAND and FOR 
EACH WEATHER REGIME!
• Motivations: 

– Actual dependence 𝒚𝒊 = 𝒇(𝑿) may be 
nonlinear! 

– NNs are a flexible nonlinear tool that has 
a potential to represent these nonlinear 
dependencies more efficiently and 
compact
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Data used in this study:
• observations for two predictands variables T2m and Td

• collected at 3,000 stations over the ConUS
• during the period of 669 days starting June 1, 2013 and ending 

March 31, 2015.  
• GFS 24h forecast was saved for five predictors, GFS variables 

T2m, Td, rh, Th, and wd during the same period of time.  These 
variables plus some metadata (see below) were used as 
predictors. 

• All days and locations with missing data are removed from the 
data sets.

• First 365 days were used for NN training, and last 304 days for 
independent validation

• Only 24 h projection time was considered
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Some results
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in# in out
0 Sind(jd) T2mo[0](jd+1)
1 Cosd(jd) Tdo[0](jd+1)
2 Lat
3 Lon
4 GFS - T2m(jd)
5 GFS – Td(jd)
6 GFS – rh(jd)
7 GFS – Th(jd)
8 GFS – wd(jd)
9 elevation

NN for all (3,000) stations, 
two variables (NN – 10:3:2)  

T2m in °F Td in °F

Bias RMSE CC Bias RMSE CC

OBS - GFS 1.38 5.16 0.972 0.67 4.84 0.966

Linear Regression -0.081 4.84 0.973 0.238 4.56 0.969

Best single NN 0.068 4.11 0.98 0.321 4.16 0.974

Ensemble of NN -0.078 4.09 0.981 0.306 4.13 0.975

NN performance, comparison with
Linear regression bias correction



Some results (cont.)
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Conclusions
• NN is a generic and versatile AI technique
• There exist numerous applications in 

Numerical Weather Prediction that can be 
successfully approached using NNs

• In NWP models NNs can be used in model 
initialization, as parts of the model physics, 
and for post-processing model outputs 

• A significant experience in developing NN 
applications for NWP models has been 
accumulated at EMC 



There is no free lunch
• NN, as any statistical model, requires data 

for training
• NN, as any nonlinear statistical model, 

requires more data, than linear 
model/regression 

• As any nonlinear statistical model, NN 
may be over fitted 

• As any statistical model, NN should be 
periodically updated to changes in 
environment; NN can be updated on-line
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