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Two reasons to consider using
ensemble Kalman filters

e To improve the accuracy of initial
conditions .

— >95% of research.

e To initialize ensembles in an optimal
manner.
— <5 % of research.



MSLP analysis spread, 2008-01-01 0600 UTC
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CMC has noticed problems, also

7
a) rms ensemble spread b) rms ensemble-mean error
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FIG. 8. The growth rate of (a) perturbations and (b) the ensemble mean error are shown in units of energy for
an ensemble of sixty-four 120-h forecasts. The contributions from wind, temperature, and surface pressure are
shown by the dashed, dotted, and dashed-dotted curves, respectively.

from Houtekamer et al. 2005 MWR; they attributed this to strong diffusive
damping near model top, plus the additive noise they use to stabilize their EnKF.



Why does this matter?
“Spread-error consistency”

Let ensemble member X and truth T be
independent draws from the same distribution.
Then can easily show that (Casella & Berger 1990,

p.57)
E(X-EX) =(EX-TY

Spread? RMSE?



Spread-error consistency

(a) Inconsistent: Large Error (b) Consistent: Smaller Error
& Slower Spread Growth & Faster Spread Growth
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Spread should grow as quickly as error; part of spread growth
from manner in which initial conditions are generated,

some due to the model (e.g., stochastic physics, higher resolution
increases spread growth). If you don’t have this consistency,
your ensemble-based probability estimates will be inaccurates



Outline

e Review of ensemble Kalman filter and the
variant we primarily use, the ensemble
square-root filter (EnSRF).

e Understanding (and ameliorating) the
mechanisms that limit spread growth in
ensemble forecasts.



Part 1:

Review of the
ensemble Kalman filter



Data assimilation terminology

y : Observation vector (weather balloons, satellite
radiances, etc.)

X" : Background state vector (“prior”)
X2 : Analysis state vector (“posterior”)

H : operator to convert model state = observation
location & type

R : Observation - error covariance matrix

PP : Background - error covariance matrix

P2 : Analysis - error covariance matrix

M : Forecast model operator

Q : Model-error (“system error”) covariance matrix



Notes:

Canonical EnKF

update equations (for time t)

X, = XIZ+K(yi — HX’Z) |
Y, =YY,
K=PH"(HP’H +R)’

Pb :XXT leN(O,R)

b b b b
X:(x1 -X ,...,X, —X )

(1) An ensemble of n parallel data assimilation cycles is conducted,
assimilating perturbed observations .

(2) Background-error covariances are estimated using the ensemble.
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Propagation of state and error
covariances in EnKF

. (P2 never
Py =([x/()-% () ][x/()-% ()] ) explcity
formed)
Xf (t + 1) = MX? (t) if forecast model is “perfect”

i ...or something similar,
<77i nT> =Q if forecast model imperfect.
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Perfect-model EnKF schematic

—— Observations

#1 Perturbed

—— Observations

#1 Perturbed

Observations Observations
member | | o EnkF member 1 | Forecast member 1 __| gl pokF b
forecast analysis Model forecast

#2 Perturbed #2 Perturbed

Observations Observations
member 2 _| EnKF [p member2 Forecast member 2 __| EnkF b
forecast analysis Model forecast

#3 Perturbed #3 Perturbed

Observations Observations
member 3 member 3 Forecast member 3
forecast I EnkF |> analysis Model forecast Enkt

(This schematic

is a bit of an
inappropriate
simplification,

for EnKF uses
every member

to estimate
background-
error covariances)
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Propagation of state and error
covariances in EnKF

] (P2 never
P(1) = < x{ (1) =X/ (¢) || x7(2) =X (¢ > explicitly
=[x 0-xOx0-x@]) e
b _ a if forecast model is “perfect”
Xi (t T 1) = Mx; (t) and ensemble is very large
- Or -
Xf (t + 1) = MX; (t) + 1. if forecast model has model
- error and/or ensemble size small.
<ni n; > =Q /X

estimating this is key to EnKF performance
in real-world scenarios 13



Two common ways of
estimating system error

Covariance inflation: Xf «— r(xf _ if)+ if

before update, pump up the spread around the
ensemble mean by some factorr> 1.0

Additive noise: x! <« x’+ax!, ox!~N(0,Q)

add some differently structured perturbations
that hopefully sample the model-error covariance Q

Note: this is an active area of research for us in

THORPEX. There must be better ways. y



Bayesian data assimilation:
2-D example as prelude to EnKF

Prior Density Estimate and Observation Posterior Density Estimate
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Computationally expensive when highly dimensional! Here, probabilities
explicitly updated on 100x100 grid; costs multiply geometrically with the number

of dimensions of model state. Also: “curse of dimensionality” s



X (2)

How the EnKF update works:
2-D example

Prior Sample & P® Estimate Posterior Sample and Implied P°
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Start with a random sample from bimodal distribution used
in previous Bayesian data assimilation example. Contours reflect
the Gaussian distribution fitted to ensemble data. 16



Potential advantage of EnKF:
flow-dependent
background-error covariances

1000 hPa temperature éK and
surface pressure (hPa

3D—Var increment Ensemble Filter Increment

-1.25-1.0-.75 -.5 -.25 .25 .5

Analysis Increment (K)
T iy e~ ==

Output from a “single-observation” experiment. The EnKF is cycled for a long
time. The cycle is interrupted and a single observation 1K greater than the mean
prior is assimilated. Maps of the analysis minus first guess are plotted. These
“analysis increments” are proportional to the background-error covariances
between every other model grid point and the background at the observation
location. 17



Flow-dependent covariances permit meteorologically reasonable
adjustments to be made to non-observed fields from what’s available

"‘:;:.\.\ 7 g ‘ >

Full NCEP-NCAR DN \S Y/
Reanalysis (3D-Var) |/ M 7,
(120,000+ 0bs) | N\ \\\\&=

Black dots show
Ensemble surface pressure ob
Kalman Filter observation
(214 surface locations
pressure obs)

RMS =39.8 m
Older Ol method,
similar to 3D-Var
(214 surface
pressure obs)

RMS =82.4m

fig. from Jeff Whitaker
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Some of our major algorithmic
modifications to basic EnKF

. Covariance localization
. Serial processing of observations
. Simplification of Kalman-gain calculations

Change formulation to “ensemble square-root
filter”

19
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Estimates of covariances from a small ensemble will be noisy,
with signal-to-noise small especially when covariance is small
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(a) Correlations in P°, 25—member ensemble

Covariance
localization
In practice

from Hamill review paper in “Predictability of
Weather and Climate” (Cambridge Press), 2006




Serial processing of observations

Method 1 Observations
1and 2

A 4

Background
forecasts En KF Analyses

Method 2

Observation Observation
1 2

A y

Background Analyses
forecasts En KF after obs 1 E N KF Analyses

: . : . 22
Equivalent results, at least in absence of covariance localization



Simplifying Kalman-gain calculation

K=P'H'(HP'H" + R)_l

- 1 m
define Hx' = —ZHXZ.’

T

P H' :LZ x” —x" || Hx? — Hx”
m_1i=1 i i

T

(fo.’ — be)(fo.’ — be)

HP'H' = ——
m—175

s

The key here is that the huge matrix P? is never explicitly formed
23



Different implementations of
ensemble filters

Double EnKF (Houtekamer and Mitchell, MWR, March
1998); more recently Quad EnKF.

Ensemble adjustment filter (EnAF; Anderson, MWR, Dec
2001)

Ensemble square-root filter (EnSRF; Whitaker and Hamill,
MWAR, July 2002)

Ensemble transform Kalman filter (ETKF; Bishop et al,
MWR, March 2001)

Local ETKF (Hunt et al., Physica D, 2007)

Others as well (Lermusiaux, Pham, Keppenne, Heemink,
etc.)

24



Serial ensemble square-root
filter (EnSRF); different update

X! =

x"+K(y’ - HX")

K=PH (HP’H +R)

l

~/

K =

x{ =x, — KHx]

&

R

HP'H' +R

]1

No perturbed obs; instead,
updates to the mean and
perturbations around the
mean are handled
separately, with “reduced”
Kalman gain K used for
perturbations. Rationale
in Whitaker and Hamill,
2002 MWR

25



Part 2:

Understanding the mechanisms
that limit spread growth
in ensemble Kalman filters

26



MSLP analysis spread, 2008-01-01 0600 UTC
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Mechanisms that may limit spread
growth from ensemble-filter ICs

Covariance localization introduces imbalances.

Additive noise used to treat system error in EnKF projects
onto non-growing structures.

Model attractor different from nature’s attractor;
assimilation kicks model from own attractor, transient
adjustment process.

Assumption that observation errors are independent when
they are spatially correlated introduces unrealistic, small-
scale increments, requiring adjustment.

Non EnKF issues, such as neglect or improper treatment of
model-related uncertainties.

(we’ll consider only the first three)

28



Covariance localization & imbalance
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envision a covariance
matrix, here with winds
and temperatures at

n grid points

envision a covariance
localization at its most
extreme, a Dirac delta
function, i.e., the identity
matrix.

The localized covariance
matrix has totally
decoupled any initial
balances between winds
and temperature



Additive noise

Before additive noise:
ensembles may tend to lie on
lower-dimensional attractor o

|

After additive noise:

some of the noise added
takes model states off
attractor; resulting transient
adjustment & spread decay

30



before data
assimilation

_ Nature’s
observations attracior
\ <
® °

T

forecast mean
background
and ensemble
members, ~ on
model attractor

Model error

after data
assimilation

~

analyzed state,

drawn toward obs;
ensemble (with smaller
spread) off model attractor

after short-range
forecasts

forecast states snap
back toward model

attractor; perturbations
between ensemble
members fail to grow.
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Testing the effects on spread growth of covariance
localization, additive noise, & model error

e Apply EnSRF in 2-level primitive equation “toy” model.

— Perfect-model experiments

e Determining maximum growth rate? Use very large ensemble, no
localization.

e Determine how much covariance localization, additive noise reduce
growth rate of perturbations in moderately (n=50) sized ensemble.
— Imperfect-model experiments

e How do results differ from perfect-model? Similar conclusions for
relative effect of localization, additive noise?

e Apply corrective effect for additive noise (discussed later)

e Diagnose the relative contribution of model error from how much
dimunition of spread growth exists even after corrective effect
applied.

e Test corrective effect in full T62 NCEP GFS EnSRF, real

observations.
32



Assimilation & toy-model details

e Assimilation:

EnSRF of Whitaker and Hamill (2002) MWR. 50 members unless otherwise
specified.

Ensemble forecasts at T31 resolution.

Observations: u,v at 2 levels every 12 h, plus potential temperature at 490 ~
equally spaced locations on geodesic grid. 1.0 m/s and 1.0 K observation
errors o.

e Model: 2-level GCM following Lee and Held (1993) JAS

State: vorticity at two levels, baroclinic divergence, barotropic potential
temperature.

Forced by relaxation to radiative equilibrium state with pole-to-equator
temperature difference of 80K, with 20-day timescale.

Lower-level winds damped at 4-day timescale.
V¥ diffusion, smallest resolvable scale damped with 3-h timescale.
T31 error-doubling time of 2.4 days

For imperfect model experiments, T42, with 74K pole-to-equator

temperature difference, wind damping timescale of 4.5 days
33



Definitions

b b <b\, <b
e Covariance inflation: X; < I’(Xl. — X )"’ X,

g . a a n n
e Additive noise: X <X, +0Xx,, OX, ~ N(O,Q)

— noise added after analyses, not prior to them.

— 0-24h tendencies are used to generate X:l for perfect-model
experiments; zero mean enforced.

— Random samples of model states using perturbed models for imperfect-
model experiments. Again, zero mean enforced.

e Energy norm: {

34



Error/spread as functions of localization
length scale, T31 perfect model

Perfect—model

Analyms Error & Sprecd Energy Norm
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Proper data assimilation provides this:

Given some additive noise vector
¢, adaptive additive findsasuch that

at observation locations
(whereas analysis errors &
spread computed over globe).

Bottom line on errors: for perfect-model simulation, covariance inflation
is more accurate; deleterious effect of additive random noise. 35



Growth of Energy

How does spread growth change due to
localization? (perfect model)

1.25

1.20

1.15

1.10

1.05

1.00

Perfect—Model, Growth of Ensemble Spread,
Energy Norm

I v v v ! 1] v ! v I ! v v v I
Growth rate of 400-member ensemble with

1% inflation, no localization

—— 90—member, Inflation=0.02
S0—member, Adaptive Addifive

o S 10 15 20
Localization Radius: Dist. to Zero Correlation (x 1000 km)

Notes:

(1) Growth rate of 50-member ensemble over
12-h period with large localization radius is
close to “optimal”

(2) Increasing the localization radius with
constant inflation factor has relatively minor
effect on growth of spread. Suggests that in
this model, covariance localization is secondary
factor in limiting spread growth.

(3) Additive noise reduces spread growth
somewhat more than does localization.
Adaptive algorithm added virtually no additive
noise at small localization radii, then more and
more as localization radius increased. Hence,
adaptive additive spread doesn’t grow as much
as localization radius increases because the
diminishing imbalances from localization are
offset by increasing imbalances from more
additive noise.
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Speed (m/s)

Imperfect-model results:
nature run & imperfect model climatologies

(a) Upper—level Zonal Wind (m/s) (b Lower—level Zonal Wind (m/s) (c) Interface &
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e 6 K less difference in pole-to-equator temperature
difference in T42 nature run

e Less surface dragin T42 nature run results in more

barotropic jet structure. .
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Spread decays in
region of parameter
space where analysis
error is near its
minimum.

Differential growth
rates of model error
result in difficulties
in tuning a globally
constant inflation
factor (see also
Hamill and Whitaker,
MWR, November
2005)
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Speed (m/s)

Model error additive noise
zonal structure

(o) Upper—level Zonal Wind (m/s) (b) Lower—level Zonal Wind (m/s) (c) Interface @
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Plots show the zonal-mean states of the various perturbed model
integrations that were used to generate the additive noise for the
imperfect-model simulations.

Additive noise for imperfect model simulations consisted of 50
random samples from nature runs from perturbed models; zero-
mean perturbation enforced. 0-24 h tendencies as with perfect model
did not work well given substantial model error. 39



Additive noise, imperfect model

(a) Additive Nolse Analysis (b) Additive Nolze Analysla c) Addifive Nolse
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There is more
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spread and error
than with the
covariance inflation.
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Synthesis (model-dependent result)
rate of spread growth “g”

Perfect model, 400 members, covariance inflation, no localization: g=1.2

Perfect model: 50 members,

— Covariance inflation + localization: g = 1.175 to 1.2 ; virtually no loss of potential
spread growth lost due to use of covariance localization with large radii.

— Additive noise + localization: g = 1.15; noise reduces spread by ~5 percent, introduces
perturbations that don’t project as highly onto growing forecast structures.

Imperfect model, 50 members:

— Globally constant covariance inflation doesn’t work properly.

— Additive noise (type of noise changed relative to perfect-model experiment) g=
1.11, and tighter localization needed.

Implications:

— Perfect vs. imperfect: the better the forecast model fits the observations, the less
spread growth should be a problem in ensemble filters, for the less additive noise.

— We need additive noise that have growing structures.
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Average growth of additive noise
perturbations around nature run

Growth of Additive Noise Perturbations, Energy Norm
for Model—Error Additive Noise
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Forecast Lead (days)

dashed line shows magnitude of initial perturbation



Ensemble
mean analysis
time t-36h
Add
additive noise
samples
& v S
Perturbed Perturbed Perturbed
member 1. member 2. member n.
time t-36h time t-36h time t-36h
Make 36-h Make 36-h Make 36-h
forecast forecast forecast
Perturbed Perturbed Perturbed
member 1. member 2. member n.
time t time t time t
\ \ 4 \
Subtract Subtract Subtract
forecast forecast forecast
mean, mean, mean,
rescale rescale rescale

Additive noise
sample 1.
time t

Additive noise
sample 2.
time t

Additive noise
sample n.
timet

Suppose we evolve the additive noise for
36 h before adding to posterior?
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Suppose we evolve the additive noise for
36 h before adding to posterior?

(a) Evolved Additive Noise Anclysis (b) Evolved Additive Noise Analysis (c) Evolved Additive Noise
Error, Energy Norm Spread, Energy Norm Spread Growth Rate, Energy Norm
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Now the ensemble mean error is lower, but at a
different optimum localization radius and additive

noise amount. Note spread growth is much larger.



® Evolved, 3000 km localization, 10% inflation

(a) Ulpper—llvol u—wind component (b) Lower—level u—wind component (c) Interface &
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® Evolved, 4000 km localization, 20% inflation
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Error & Spread

12

10

0o

Ensemble—mean RMSE and

spread, energy norm

Add3000-10 RMSE
Evo3000-10 RMSE

o =z Evo4000-20 RMSE

Add3000-10 Spread
Evo3000—-10 Spread
Evo4000-20 Spread

2 3 4 S

Forecast lead

What is the
effect on
longer-lead
ensemble
forecasts?

Not much difference,
evolved vs. additive,
with same
localization / additive
noise size.

An improvement in
error, more spread,
bigger spread growth
with longer
localization, more
evolved additive

noise.
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Will results hold with real model,
real observations?

) T62 real—data MSLP Ensemble—mean RMSE & spread
EnKF with T62 NCEP GFS, 10T | | | ; | . i

10 Dec 2007 to 10 Jan | .. Standard Addtiive RMSE
2008. Nearly full | . Evolved Addifive RMSE

operational data stream. Bl Standard Additive Spread .

24-h evolved additive
error using NMC method
(48-24h forecasts)
multiplied by 0.5.

10-member forecasts 1x
daily, from 00Z.

Main result: slightly
higher spread growth at
beginning of forecast.

Other results (T190L64)
less encouraging, still o 1 2 3 4+ 5 & 7
being analyzed. Forecast lead (days)

______ « Evolved Additive Spread

.
-t

Error & Spraad (hPa)




Conclusions

e The non-flow dependent structure of additive noise may
be a primary culprit in the lack of spread growth in
forecasts from EnKFs

— Model-dependent result?

e Pre-evolving the additive noise used to stabilize the EnKF
results in improved spread in the short-term forecasts,
and possibly a reduction in ensemble mean error at longer
leads.

— operationally this would increase the cost of the EnKF, but
perhaps the evolved additive noise could be done with a lower-
resolution model.

e More generally, the methods to treat system error will
affect performance of EnKF for assimilation, ensemble
forecasting; require more thought & research.
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s it the structure of this new type of
additive error responsible for the lesser
spread growth? NO.

Perfect—Model, Growth of Ensemble Spread,
Energy Norm

1.2 — — v T T T T T/ o ]
1.20f -
[~ i
@ I .#""'H--.. - T LT LTS
© , 45 Tt h
Ll —
© [
= .
T 110 N
2 I i
o |
i —  30-member, Inflation=0.02 i
1050 L. 50-member, Adaptive Additive ]
i — — — Adaptive Addifive, Model—Error Noise
to00 . . Ly 1
0 5 10 15 20

Localization Radius: Dist. to Zero Correlation (x 1000 km)

e used model-error additive noise back in perfect-model data assimilation
experiment. Little change in growth of energy. 49
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Error & Spread (m/s)

Growth Factor

(a) Perfect—model Energy Analysis Error
and Posterior Spread (m/s

teo e E
0.10 E_": .. 50-member Spread
930—member Error
(143 | BN PN PP I I
a.0 0.1 0.2 0.3 0.4 0.5
Additive Error Amount {Fraction of 24—h Tendencies)
b) Perfect—Model
Growth of Spread of Energy
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Does more and more
additive noise decrease the
spread growth?

(a test with fixed 10 000 km
localization radius)

e Answer:slightly. Moderate
detrimental effect of on spread
growth from increasing amounts

1 _— of additive noise when

localization radius is fixed.
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Covariance localization and size of
the ensemble

.

rms spread

2 -1

[u—
L]
(=]
. |
1

6

rms analysis error (10" m"s )

0 5000 10000 15000 20000 0 5000 10000 15000 20000
distance of zero correlation (km) distance of zero correlation (km)

FIG. 4. Analysis error as a function of r, (km), the distance beyond which p is zero, for various enfemble sizes.
(left) The rms spread in the ensemble, and (right) the rms error of the ensemble mean.

Smaller ensembles achieve lowest
error and comparable spread/error

with a tighter localization functio?1

(from Houtekamer and Mitchell, MWR, Jan 2001)



How does
covariance
localization
make up for

larger
ensemble?

(a) eigenvalue spectrum from
small ensemble too steep,

not enough variance in trailing
directions. (b) Covariance
localization adds directions,
flattens eigenvalue spectrum)
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Observation-error covariance
effect on posterior & spread growth

(o) Uncorrelo’red Obs Error

10

- Bclckgrou nd (pr|or)
Observation

Analysis (posterior)

(b) nghly Correlo’red Obs Error

10

- Bockground (prlor)
Observation

Analysis (posterior)

Common assumption of independence of observation errors
may inappropriately whiten the posterior, creating small-scale
noise that contributes to a lack of spread growth (speculation).
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