Quantification of uncertainties in atmospheric analyses and forecasts by using normal modes

Nedjeljka Žagar

in collaboration with J. Tribbia, J. Anderson, K. Raeder

National Center for Atmospheric Research
Advanced Study Program

NCEP, 3 June 2008
Outline: certainty and uncertainty

- Motivation for the revival of normal mode expansion with emphasis on large-scale tropical motions
- Derivation of normal modes for various datasets
- Quantification of energy in three analysis datasets: CAM/DART, ECMWF and NCEP
- Analysis of time averaged analysis increments in terms of various motions and scales
- Quantification of short-range forecast uncertainties in the ensemble system DART/CAM
- Conclusions
• Linearization around the mean state (vertically stratified in $N_z \sigma$ levels and at rest)

• New mass variable P

\[P = g z + R T_0(\sigma) q \]

\[
\frac{\partial u'}{\partial t} - 2\Omega v' \sin\phi = -\frac{\partial P'}{a \cos\phi \partial \lambda},
\]

\[
\frac{\partial v'}{\partial t} + 2\Omega u' \sin\phi = -\frac{\partial P'}{a \partial \phi},
\]

\[
\frac{\partial}{\partial t} \left[\frac{\partial}{\partial \sigma} \left(\frac{\sigma}{R \Gamma_0} \frac{\partial P'}{\partial \sigma} \right) \right] - \nabla \cdot \mathbf{V}' = 0.
\]

assume separation of variables by new vertical dependence function Ψ

\[
\begin{align*}
 u' &= \tilde{u} \Psi(\sigma) \\
v' &= \tilde{v} \Psi(\sigma) \\
P' &= g \tilde{h} \Psi(\sigma)
\end{align*}
\]

\[
\int_0^1 \Psi_i(\sigma) \Psi_j(\sigma) d\sigma = \delta_{ij},
\]

\[q = \ln(p_s) \]

\[
\begin{align*}
\frac{\partial \tilde{u}}{\partial t} - 2\Omega \sin\phi \tilde{v} &= -\frac{g}{a \cos\phi} \frac{\partial \tilde{h}}{\partial \lambda}, \\
\frac{\partial \tilde{v}}{\partial t} + 2\Omega \sin\phi \tilde{u} &= -\frac{g}{a} \frac{\partial \tilde{h}}{\partial \phi},
\end{align*}
\]

\[
\frac{\partial \tilde{h}}{\partial t} + D \nabla \cdot \mathbf{\tilde{V}} = 0,
\]

\[
\frac{d}{d\sigma} \left(\frac{\sigma g}{R \Gamma_0} \frac{d\Psi}{d\sigma} \right) + \frac{1}{D} \Psi = 0.
\]

\[
\Gamma_0 = \frac{k T_0}{\sigma} - \frac{dT_0}{d\sigma} \quad \text{Stability parameter}
\]

D - separation constant of dimension length - “equivalent depth”
System of equations for the horizontal structure of modes

\[
\begin{align*}
\frac{\partial \tilde{u}}{\partial t} - 2\Omega \sin\phi \tilde{v} &= -\frac{g}{a \cos\phi} \frac{\partial \tilde{h}}{\partial \lambda}, \\
\frac{\partial \tilde{v}}{\partial t} + 2\Omega \sin\phi \tilde{u} &= -\frac{g}{a} \frac{\partial \tilde{h}}{\partial \phi}, \\
\frac{\partial \tilde{h}}{\partial t} + D \nabla \cdot \tilde{V} &= 0, \tag{\star}
\end{align*}
\]

\[
(\tilde{u}, \tilde{v}, \tilde{h})^T = S_n H_r^s(\lambda, \phi; n) \exp(-i\sigma_{\lambda}^s t),
\]

Hough functions

\[
H_r^s(\lambda, \phi; n) = H_r^s(\phi; n)e^{is\lambda}
\]

\[
\frac{1}{2\pi} \int_0^{2\pi} \int_{-1}^1 H_r^{s*}(\lambda, \phi; n) d\mu d\lambda = \delta_{rr}\delta_{ss},
\]

\[
\begin{array}{c}
\text{n - vertical mode index} \\
\text{s - zonal mode index} \\
\text{r - meridional mode index} \\
\text{\sigma – eigen frequency}
\end{array}
\]

Energy partitioned into rotational (ROT) and inertio-gravity (IG) motions (eastward-EIG and westward-WIG) for each vertical mode
Motivation for the present research

• Previous applications of normal modes indicated a negligible amount of energy in divergent motions and a dominance of the first vertical mode in the energy spectra (Tanaka et al., J. Met. Soc. Japan)

• In the NWP model applications normal mode functions have been primarily used for the initialization purposes

• State of the art NWP and climate models with good physical parameterizations and high resolution represent divergent motions much better.

• Large-scale equatorial waves in recent years have been diagnosed from different mass-field observations. Quantification of their variance and dynamical relevance still puzzling.

• Divergent tropical circulations crucial, but unreliable from present (re)analysis
Region with largest uncertainties in the existing (re)analysis datasets, because of:

- Lack of direct observations of the wind field, especially wind profiles
- Difficult task of the tropical data assimilation due to balance issue
Uncertainty concerning the role of divergent motions: static bkg-error covariance

Single temperature observation example

Mid-latitudes

Rossby waves

Rossby, K, MRG

Rossby, K, MRG, EIG waves

Tropics

Background – error spectra derived for ECMWF 500 hPa: 43% ER, 39% EIG, 8% K, 10% MRG
Uncertainty concerning the role of divergent motions: static bkg-error covariance

Single zonal wind observation

Rossby waves

Rossby, K, MRG

Rossby, K, MRG, EIG waves

ECMWF 500 hPa:
43% ER, 39% EIG,
8% K, 10%MRG
Sensitivity experiments with 3D-Var

Reliable B matrix, simple tropical model: result from a study about added value by the second satellite with respect to ADM-Aeolus DWL satellite in terms of the reduction % of the first-guess error (Žagar et al., MWR, 2008)

3D-Var assimilation acts as a univariate analysis!
Region with largest uncertainties in the existing (re)analysis datasets, because of

• Lack of direct observations of the wind field, especially wind profiles

• Difficult task of the tropical data assimilation due to balance issue

Remedies

• Improved global observing system

• More advanced data assimilation procedures

• Improvements of the models, especially convective parameterizations and resolution
Questions

How much of the large-scale tropical circulation is made up by the Kelvin wave, mixed Rossby-gravity wave, other inertio-gravity waves?

How is this dependent on the model resolution, physics, biases?

What is the spectra of forecast errors in the tropics like? How are the tropical forecast errors spread across the scales and motion types? What modes do the biases project onto?

Related data assimilation issues

How important are special tropical waves (Kelvin, mixed Rossby-gravity, large-scale IG) for the data assimilation?

What is the real potential of the EnKF in the tropics due to flow-dependent background-error covariances in comparison to 4D-Var?
Application of normal modes to CAM, NCEP, and ECMWF data

Three analysis dataset for July 2007, global fields every 6 hours

DART/CAM: ensemble mean from the DART system, version 3.1, T85 horizontal resolution, 26 vertical levels up to 3.5 hPa. Limited number of observations (conventional observations and AMVs).

ECMWF: operational analyses, 12-hour 4D-Var system, Cycle 32r2, T799 interpolated to N64 grid, 91 vertical level up to 1 Pa. Large amounts of satellite observations.

NCEP-NCAR reanalyses from NCAR mass archive: 3D-Var system, T62 horizontal resolution, 28 vertical levels up to 2.7 hPa. The assimilation system not the recent one.
Tropical winds in 3 analysis datasets in July 2007 at 370 hPa

DART/CAM: u wind, 370 hPa, along 5N

NCEP: u wind, 370 hPa, along 5N

ECMWF: u wind, 370 hPa, along 5N
Normal mode expansion

Basic idea: select the expansion basis which provides the best fit (best correlation and variance fit to the input grid-point fields) \(\Leftrightarrow \) tuning of the truncation parameters \(N_k, N_n, N_m \)

\[
\mathbf{X}(\lambda, \varphi, z, t) = \sum_{m=1}^{N_m} \sum_{n_i=1,2,3}^{N_n-1} \sum_{k=-N_k}^{N_k} \chi_{knm}^{(t)} S_m \Pi_{knm}^{(\lambda, \varphi, z)}
\]

- Input data vector \(\mathbf{X} = (u, v, P/g)^T \)
- \(N_m \) – no. vertical modes, index \(m \)
- \(N_n \) – no. meridional modes per wave type, index \(n \)
- \(N_k \) – no. zonal waves, index \(k \)

\[
\Pi_{knm}^{(\lambda, \varphi, z)} = \Phi_m^{(z)} \cdot H_{knm}
\]

- Vertical normal modes
- Hough functions

\[
\langle \Pi_{knm}, \Pi_{k'n'm'} \rangle = \delta_{kk} \delta_{nn} \delta_{mm'}
\]

- Orthogonal 3D expansion basis

Normalization matrix \(S_m \):

\[
S_m = \begin{pmatrix}
\left(gH_{eq}\right)^{1/2} & 0 & 0 \\
0 & \left(gH_{eq}\right)^{1/2} & 0 \\
0 & 0 & gH_{eq}
\end{pmatrix}
\]
Vertical eigenstructures for CAM

Input information:
vertical discretization, temperature profile, stability profiles

H_{eq} from 10 km to 0.3 m
10 km, 6.2 km, 2.2 km, 985 m, 572 m, 379 m, 250 m, 162 m, 107 m

Modes 10-26 have H_{eq} below 100 m
A difficult one:

H_{eq} from 10 km to 8 mm

First 18 with $H_{eq} > 100$ m

Modes 19-38 between 100 m and 10 m, 39-66 between 10 and 1 m, and 66-91 below 1 m.
Higher vertical modes and higher zonal wave numbers \(\Leftrightarrow\) horizontal structures more meridionally trapped

- \(m=1, k=31\)
- \(m=20, k=1\)

KW: \(m=23 (H_{eq}=3.1 \text{ m}), n=0, k=2\)
Tuning the expansion: an example of tuning N_n

Choosing a (N_k, N_n, N_m) combination that will represent the most of input data variance. A trade-off between the desired fit, regions and variable of most interest.
Verification of the expansion quality for CAM

Below 900 hPa zonal wind variance overestimated in the tropics, and underestimated in the mid-latitudes. Mass-field variance poor close to the surface due to orography.
Tuning the expansion: NCEP solution

$N_k = 46$
$N_n = 20$
$N_m = 25$

Little variability of the mass field in the tropics

Fit worst at lowest levels

Variance of the tropical zonal wind overestimated at lowest levels

Temporal variation of the expansion quality do not vary significantly in time
Example of the projection quality for NCEP wind field at 884 hPa level
Energy distribution in CAM

Posterior ensemble mean, average over 25-day period 6-31 July 2007

\[\sum \sum \sum gH_{eq} |\chi_{knm}|^2 \]

\[(m,n) \Sigma \]

\[(m,k) \Sigma \]

\[(n,k) \Sigma \]

CAM po: July 2007

Rot

10^2–10^0

10^1

10^3

10^0

10^-2

10^-1

zonal wavenumber

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

88% 7% 5%
KW make 36% of EIG
2.6% of E_{total}
Mean low-level July circulation in CAM

Model level 24 (~929 hPa)
Tropics as envisaged by A. Gill (1980)

Level 15 (~269 hPa)

Level 23 (~868 hPa)

Movie to follow: CAM-KW, KW
Kelvin wave evolution in CAM in July 2007

Movie is available at
//www.cgd.ucar.edu/cdp/nzagar/cam_kw.gif
Kelvin wave evolution in CAM: summary

- Reversed flow in the lower and upper troposphere
- Spatial discontinuity of the $k=1$ signal
- Stronger $k=1$ signal developed by the end of month, especially in the Pacific
- Oscillations of daily period due to observations

How reliable is this Kelvin wave evolution?

DART/CAM uses few observations in the tropics. The assimilation uses flow-derived (multivariate) background-error covariances

- Inter-comparison with other analyses
Kelvin wave evolution in July 2007 by NCEP

Movie is available at
//www.cgd.ucar.edu/cdp/nzagar/ncep_kw.gif
Kelvin wave evolution in July 2007 by ECMWF

Movie is available at
//www.cgd.ucar.edu/cdp/nzagar/ecm_kw.gif
Temporal evolution of the KW, $k=1$ signal

CAM

Tidal signal

$H_{eq}(5-7) = 570, 370, 250 \text{ m}$

ECMWF

$H_{eq}(7-11) = 700, 528, 413, 332, 271$

NCEP

$H_{eq}(5-6) = 500, 300 \text{ m}$
Kelvin wave evolution in CAM: summary

- Reversed flow in the lower and upper troposphere
- Spatial discontinuity of the $k=1$ signal
- Stronger $k=1$ signal developed by the end of month, especially in the Pacific
- Oscillations of daily period due to observations

How reliable is this Kelvin wave evolution?

DART/CAM uses few observations in the tropics. The assimilation uses flow-derived (multivariate) background-error covariances

- Inter-comparison with other analyses
- Impact of models’ biases
- Estimate of the analysis uncertainty
Average IG motions in July 2007 in the lower troposphere

Quantitative comparison for the wind field
Time-averaged analysis increments ~ biases
Biases split in ROT and IG modes

DART/CAM level 22 (788 hPa), average ensemble mean incs in July 2007, ROT modes

DART/CAM level 22 (788 hPa), average ensemble mean incs in July 2007, IG modes

ECMWF level 73 (753 hPa), average ROT incs in July 2007

ECMWF level 73 (753 hPa), average IG incs in July 2007

NCEP level 22 (845 hPa), average ROT incs in July 2007

NCEP level 22 (845 hPa), average IG incs in July 2007
Qualitative agreement in most of balanced modes

Example: ROT, $m=1$, $n=3$
Analyses inter-comparison

CAM
On average, smallest energy % in IG among the three datasets

ECMWF
n-mode symmetry in EIG-WIG,
Lowest vertical mode dominant

NCEP
Significant energy % in IG modes also in mid-latitudes
Ensemble assimilation:
for CAM/DART solved within the "ensemble adjustment Kalman filter"

Initial states

Uncertainty on initial state
Analysis
True initial state

Final states

Deterministic forecasts
Ensemble mean
Climatology

So far, I used this

True final state
Quantifying uncertainties in CAM analyses

To analyse the uncertainty, each prior and posterior ensemble member projected.

To analyse equivalents of 6-hr forecast errors, departures from the ensemble mean fields projected.

\[
X(\lambda, \varphi, z, t) = (u, v, P)^T \quad X(\lambda, \varphi, z, t) = (u-\bar{u}, v-\bar{v}, P-\bar{P})^T
\]

\[
X(\lambda, \varphi, z, t) = \sum_{m=1}^{N_m} \sum_{n=1}^{N_n-1} \sum_{k=-N_k}^{N_k} \chi_{knm}(t) S_m \Pi_{knm}(\lambda, \varphi, z)
\]

Ensemble size problem accounted for by:

• Covariance localization – reduces the impact of an observation on a state variable by a factor which is a function of their physical distance.

• Covariance inflation – increases the prior ensemble spread leaving the mean and correlations between the variables unchanged (here used is a time constant, spatially varying inflation applied on posterior)
Averaged ens mean and its uncertainty

POSTERIOR

ROT, po mean

EIG, po mean

WIG, po mean

Po spread

ROT, po spread

EIG, po spread

WIG, po spread
Analysis and its uncertainties: ROT modes

Related to the impact of inflated covariances, observation coverage, flow properties
Uncertainty reduction in time

Reduction of uncertainties does not necessarily coincide with the structure of the spread

Uncertainties reduced where observations exist
Impact of observations

Reduction of the ensemble spread
Mean energy and its uncertainties in EIG modes

D11-T2, eig, po mean

D35-T2, eig, po mean

D61-T2, eig, po mean

Ensemble mean

m_k
Analysis uncertainties in WIG modes

D11-T2, wig, po mean

D35-T2, wig, po mean

D61-T2, wig, po mean

D11-T2, wig, po spread

D35-T2, wig, po spread

D61-T2, wig, po spread
Observation non-homogeneity and inflation
Summary

- Tropics are the area with largest uncertainties in existing analysis datasets. Tropics are the area with largest biases in three studied data assimilation systems.

- Normal mode expansion allows to quantify energy in various motions and to modify traditional view of inertio-gravity motions as junk. With normal modes it is possible to quantify variance in various tropical divergent motions and its relevance for data assimilation.

- Application of normal modes offers a physically attractive approach to the quantification of uncertainties in analyses and forecasts. It points out the scales and motion types most affected by the inflation, localization, observations and model biases.

- Uncertainties vary in time and space, thus an argument for a flow-dependent covariance matrix for the forecast errors. The normal mode application may also help to address modeling aspects such as model-error covariances and the initialization.