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Local Ensemble Transform Kalman Filter 
(LETKF, Ott et al., 2004, Hunt et al., 2007)

Obs.

background

analysis
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LETKF, like any other EnKF, provides background and analysis uncertainty 
estimation in every analysis cycle.
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Local Ensemble Transform Kalman Filter 
(LETKF, Ott et al., 2004, Hunt et al., 2007)

Schematic of 2-dimension local patch

LETKF solves the analysis states in a local volume centered each grid point
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Local Ensemble Transform Kalman Filter 
(LETKF, Ott et al., 2004, Hunt et al., 2007)

Schematic of 2-dimension local patch

Different local volumes have a great overlap.

Each observation is used more than once in the data assimilation.

The analysis in each grid point is highly parallel.
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Outline

New applications of the LETKF
– Adaptive observations

– Analysis sensitivity and information content

– Observation impact

– Assimilation of moisture

Summary
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Outline

New applications of the LETKF
– Adaptive observations (Liu and Kalnay, GRL, 2007)

– Analysis sensitivity and information content

– Observation impact

– Assimilation of moisture

Summary
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Motivation of adaptive observations

Hardesty, 2006

White: DWL orbits

Brown: adaptive DWL

• U. S. Doppler Wind Lidar (DWL) will be operated in targeted mode, with the goal of 
“10% adaptive observations to get 90% improvement”

MY GOAL: sample simulated DWL observations based on LETKF estimated 
uncertainty and compare it to other sampling strategies.
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Experimental Design

• Simplified PrimitivE Equation DYnamics model (SPEEDY) (Molteni, 
2003, adapted by Miyoshi, 2005)
A global model with fast computation speed.
96 grid points zonally, 48 grid points meridionally, and 7 vertical levels

• Data assimilation schemes
Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007)
3D-Var (Miyoshi, 2005)

• Simulated observations (perfect model assumption)
“Truth” (a long time integration) plus random perturbations.
Observe both zonal and meridional wind  at adaptive observation points.
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Sampling strategies
• Ensemble spread strategy (from the LETKF)

→ Locations with large ensemble wind spread at 500hPa.

• Random locations
• Uniform distribution
• Climatology ensemble spread

→ Locations with large climatological average ensemble wind spread
from rawinsonde assimilation.  

Note: 3D-Var and LETKF use the same locations in above strategies

• “Ideal” sampling
→ Locations with large background error obtained from the “truth”. 

Constraint: two adaptive observations have to be at least two grid points apart to avoid 

cluster of adaptive observations 
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10% adaptive observation (+) distribution from ensemble 
spread (shaded area; unit: m/s) strategy of LETKF

Total adaptive observation number: 10% of half global grid points.

The number of adaptive observation in each latitude bands is proportional to 
the area of each band
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500hPa zonal wind RMS error (10% adaptive obs)
Rawinsonde; climatology; uniform; random; ensemble spread; “ideal”; 100%

3D-Var LETKF

The analysis accuracy is significantly improved for both 3D-Var and LETKF. 

Ensemble spread strategy gets best result among operational possible strategies.

3D-Var is more sensitive to adaptive strategies than LETKF. 
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500hPa zonal wind RMS error (2% adaptive obs) 
Rawinsonde; climatology; uniform; random; ensemble spread; “ideal”; 100%

3D-Var LETKF

With fewer (2%) adaptive observations, ensemble spread sampling strategy 
outperforms the other methods in LETKF

For 3D-Var, 2% adaptive observations are not enough to make significant
improvement with any method
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Conclusions on adaptive observations

• With the constraint that two adaptive observations have to be at least 
two grid points apart, ensemble spread is close to optimal.

• 3D-Var is more sensitive to adaptive observation locations than the
LETKF with 10% adaptive wind observations. 

• 3D-Var is as effective as LETKF with 10% simulated DWL observations, 
but not as effective as LETKF with 2% simulated DWL adaptive 
observations.
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Outline

New applications of the LETKF
– Adaptive observations

– Analysis sensitivity and information content
– Observation impact

– Assimilation of moisture

Summary
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Analysis sensitivity and information content

Cardinali et al., 2004

Information content for different observation types

Analysis sensitivity: how sensitive is the analysis to the observations.  

Information content ( trace of analysis sensitivity): qualitatively reflects the 
importance of different type observations.

MY GOAL: calculate analysis sensitivity within the LETKF and study the properties 
of this quantity
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Calculation of analysis sensitivity within the LETKF

S =
∂Hxa

∂y
= KT HT = R−1HPaHT

P a

Definition: analysis sensitivity is the diagonal value of the influence matrix:

In 4D-Var (Cardinali et al., 2004), it requires an approximation to get   .

is explicitly calculated in each local patch in the LETKF.1−RHP Ta

? The analysis sensitivity is different with 
respect to the same observation in different 
local patches.

⇒ Averaged the analysis sensitivity over the 
different local patches.
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Verification of analysis sensitivity calculation method within 
the LETKF with Lorenz-40 variable model

The analysis sensitivity per obs.                      
from LETKF ( ) & global ETKF (+)

40 obs.
30 obs.

20 obs.

10 obs.

LETKF gives same results as global ETKF without averaging

It decreases with the increasing of observation coverage, increases with the 
magnitude of the analysis error.
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Simulated experiments with SPEEDY

Data denial experiments:

Control run: full coverage for all dynamical variables

Sensitivity experiment: u is not observed in locations with red +

• Compare information content (the trace of analysis sensitivity) of zonal wind at 
locations with red + from control run to the RMS error difference between sensitivity 
experiment and control experiment.
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Information content (control, shaded)  vs.                      
RMSE difference (data-denial experiments, contour)

RMSE (u, sensitivity-control) &         
info-content (u)

Information content qualitatively reflects the actual observation impact from data-
denial experiments.
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Summary of analysis sensitivity

The calculation of analysis sensitivity (like Cardinali et al., 2004) needs no 
approximation and can be calculated along with the data assimilation in the 
LETKF.

The trace of analysis sensitivity qualitatively reflects the actual observation 
impact from much more expensive data-denial experiments.
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Summary of analysis sensitivity

The calculation of analysis sensitivity (like Cardinali et al., 2004) needs no 
approximation and can be calculated along with the data assimilation in the 
LETKF.

The trace of analysis sensitivity qualitatively reflects the actual observation 
impact from much more expensive data-denial experiments.

× But analysis sensitivity cannot give quantitative estimation of observation 
impact, and cannot detect the observations that have poor quality
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Outline

New applications of the LETKF
– Adaptive observations

– Analysis sensitivity and information content

– Observation impact (like Langland and Baker, 04, Zhu and 
Gelaro, 07, but without adjoint)

– Assimilation of moisture

Summary
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Motivation of observation impact

The adjoint method proposed by Langland and Baker (2004) quantifies the 
reduction in forecast error for each individual satellite channel.

The adjoint method detects the observations which make the forecast worse.

With the adjoint of GSI, Zhu and Gelaro (2007) carries similar observation 
impact as Langland and Baker (2004).

MY GOAL: propose an ensemble sensitivity method to calculate observation 
impact without using adjoint model. 

AIRS shortwave 4.180 µm

AIRS shortwave 4.474 µm

AIRS longwave 14-13 µm

AMSU/A 



Schematic of the observation impact on the forecast error

-6hr 00hr t  analysis

Obs.

et |−6

et |0

et |−6 = xt |−6
f − xt

a

et |0 = xt |0
f − xt

a

(Adapted from Langland 
and Baker, 2004)

The only difference between         and            is the assimilation of observations at 
00hr.

Cost function: 

e t |0 e t |−6

J =
1
2

(et |0
T et |0 − et |−6

T et |−6 )
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The ensemble sensitivity method

J =
1
2

(et |0
T et |0 − et |−6

T et |−6 ) v0 = y0
o − h(x0|−6

b )

J = v0 ,
∂J
∂v0

Euclidian cost function:

Cost function as function of obs. Increments:
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The ensemble sensitivity method

J =
1
2

(et |0
T et |0 − et |−6

T et |−6 ) v0 = y0
o − h(x0|−6

b )

J = v0 ,
∂J
∂v0

Euclidian cost function:

Cost function as function of obs. Increments:

We derived the sensitivity of forecast error change to the assimilated observations:

 

∂J
∂v0

= %K0
T Xt |−6

fT⎡⎣ ⎤⎦ et |−6 + Xt |−6
f %K0v0⎡⎣ ⎤⎦

The cost function as function of assimilated observations: 

J = v0 ,
∂J
∂v0

=
∂J
∂v0

i ⋅ v0
i⎛

⎝⎜
⎞

⎠⎟i=1

n

∑
26



27

Experimental design

Model: Lorenz-40 variable model (Lorenz and Emanuel, 1998)

• Full observation coverage

Three experiments:

• Normal: observation error is 0.2 at every observation location.

• Larger random error: the observation error SD at 11th grid point 
is 0.8, but still assume 0.2 in the data assimilation.

• Bias: the observation at 11th observation location has a bias equal 
to 0.5.
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Observation impact comparison between adjoint method (LB) 
and ensemble sensitivity method in normal case

Adjoint method (red), ensemble method (green) and 
actual forecast error reduction (black)

The ensemble sensitivity method gives results similar to the adjoint method

Both reflect  most of the actual observation impact (black) in the forecast.
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Ability to detect the poor quality observation

Like the adjoint method, ensemble sensitivity method can detect the observation 
poor quality (11th observation location)

The ensemble sensitivity method has a stronger signal when the observation has 
negative impact on the forecast.

Observation impact from LB (red) and from ensemble sensitivity method (green)

Larger random error Biased observation case
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Conclusions of observation impact

• Derived a formula to calculate the observation impact based on the ensemble
without using the adjoint model which usually is not available.

• The results based on Lorenz-40 variable model show that ensemble sensitivity 
method without using adjoint model gives results similar to adjoint method . 

• Like the adjoint method, ensemble sensitivity method can detect the observation 
which either has larger random error or has bias. Under such conditions, the 
ensemble sensitivity method has stronger signal.

• This provides a powerful tool to check the quality of the observations.
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Outline

New applications of the LETKF
– Adaptive observations

– Analysis sensitivity

– Observation impact and information content

– Assimilation of moisture

Summary
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Motivation of assimilation of moisture

Dee and Da 
Silva, 2003

Daily RMS statistics of rawinsonde observed-minus-background mixing ratio residuals during the 
period 1 Nov 1999—31 Oct 2000, produced by fvDAS. 

Specific humidity obs. minus background       
(over a year，unit: g/kg)

NH

Tropics

SH

The specific humidity error varies abruptly and is very non-Gaussian

MY GOALS:
Assimilate humidity with the LETKF

Multivariate assimilation of humidity.

The impact of different choices of humidity variables on the analysis results   
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Assimilation humidity on perfect model

Control run: 

The humidity observations are not assimilated. 

Humidity run

Uni-variate assimilation of humidity.

Multivariate assimilation of humidity. 

Observations

u, v, T, Ps observations are nature run with Gaussian random errors

Humidity observations are created with Gaussian errors in ln(q)
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Choice of humidity variable (1): specific humidity (q)

RMS of specific humidity 1e-4 g/kg
Observation error distribution  ( )                    

& Gaussian fit ( ) 

➲ Specific humidity (qo): exponential of the ln(q) observation.

Observation error changes with vertical levels abruptly.

Specific humidity observation errors are far from Gaussian.



35

Choice of humidity variable (2): relative humidity (RH)

Relative humidity:

It has a more Gaussian error distribution than specific humidity

But, RH errors have high correlation with temperature observation 
errors.

RMS of relative humidity

qo

qsat (T o, Po )

Observation error distribution  ( )                    
& Gaussian fit ( ) 
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Choice of humidity variable (3): pseudo relative 
humidity (pseudo-RH, Dee and Da Silva, 2003)

Pseudo-RH:

It has a similar error distribution (more Gaussian) as the relative humidity

Pseudo-RH errors do not correlate with the temperature observation errors.

qo

qsat (T b , Pb )

RMS of pseudo-RH
Observation error distribution  ( )                    

& Gaussian fit ( ) 



700hPa specific humidity analysis RMS error (10-4 g/kg)

Black: control; Purple: RH; Green: q; Blue: pseudo-RH; Red: ln(q)

Uni-variate
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• Multivariate assimilation is better than uni-variate assimilation
• ln(q) is a standard for the other choices to attain in our OSSEs.
• Pseudo-RH gives the best result among the other choices of humidity variables.

Multivariate
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Time average analysis RMS error comparison in 
multivariate  experiments

Black: control, Red: ln(q); Blue: pseudo-RH; Green: q; Purple: RH;

• Assimilation of humidity improves the analysis accuracy for wind and temperature.

• With pseudo-RH, the analysis results of zonal wind and temperature are even better 
than with ln(q) assimilation

u (m/s) T (K)



Time average total precipitation 6-hour forecast RMS error comparison 
between humidity (multivariate) and control run

ln(q) – control (mm/day)
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Precipitation forecast becomes worse in most of the regions in q and RH experiments.
The 6-hour precipitation forecast accuracy is improved in most of the area  in pseudo-

RH and ln(q) experiments. 
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Assimilation of real humidity data 
AIRS humidity retrievals (from Chris Barnet) on NCEP GFS with LETKF

Control Run: Non-radiance data (Szunyogh, et al. 2007) plus 
AIRS temperature retrievals (Li et al., 2007).

Humidity Run: 
• Added AIRS specific  humidity retrievals 

within 30ºS and 30ºN (below 200hPa) 
globe (below 200hPa)

• Multivariate assimilation of humidity variable (for the first time) 
with the choice of q and pseudo-RH.

Verification: Operational NCEP analysis at T254L64,  assimilating 
all operational observations. 



Specific humidity observation error standard deviation (L) & relative humidity 
RMS error difference between humidity run and control run (R)
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• The impact mainly concentrates over the region where we assimilate 
specific humidity retrievals.

• Positive impact on the upper tropics, negative impact on the lower tropics 
where errors are large.
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Zonal wind RMS error difference (shaded) between humidity 
run and control run & time average zonal wind field (contour)

(assimilating q) (assimilating pseudo-RH)
Humidity obs between 30°S and 30°N

• Strong positive impact (blue color) in wind in the upper tropics and the NH

• with the choice of pseudo-RH, the analysis accuracy is further improved
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Zonal wind RMS error difference (shaded) between humidity 
run and control run & time average zonal wind field (contour)

30°S -30°N Global humidity obs.
(assimilating pseudo-RH)

• Adding more data in high latitudes further improve the analysis accuracy.



44

Conclusions of humidity assimilation

EnKF reflects time-changing error statistics and automatically couples
the errors of the dynamical variables including humidity.

Based on perfect model assimilation:
Pseudo-RH gives better results than RH and specific humidity. 
Multivariate experiments are better than uni-variate experiments.

Based on real data assimilation:
Preliminary result with multivariate assimilation of AIRS specific 
humidity retrievals shows positive impact on wind analysis results.
Pseudo-RH gives better results than the choice of specific humidity
Global assimilation of pseudo-humidity improves the winds
throughout the globe.
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Outline

New applications of the LETKF
– Adaptive observations

– Analysis sensitivity

– Observation impact

– Assimilation of Moisture

Summary
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Summary

Application Main results

Adaptive 
observations

Analysis 
sensitivity 

Observation 
impact study

Assimilation of 
moisture

LETKF-based ensemble spread strategy (with constraint) 
is very effective

Proposed a method to calculate observation information 
content within the LETKF without approximation

Derived an ensemble sensitivity method without using 
adjoint model: very powerful tool to check quality of 
observation

Pseudo-RH gives better results than q 
First multivariate assimilation of real humidity

observations with improved winds


