Storm Prediction Center Highlights
EMC Annual Review
December 11, 2007

Steven Weiss, Russell Schneider, and David Bright
Storm Prediction Center, Norman, OK

National Weather Center
HAZARDOUS PHENOMENA

- Hail, Wind, Tornadoes
- Excessive rainfall
- Fire Weather
- Winter weather
Storm Prediction Center Primary Products

- Tornado and Severe Thunderstorm Watches
 - *Watch Status Reports*
- Severe Weather Outlooks through Day 8
- Short-Term Mesoscale Discussions
 - Severe Convective Weather
 - Heavy Rain
 - Hazardous Winter Weather
- Fire Weather Outlooks through Day 8
- Categorical and probabilistic products
Good News From SPC Perspective

• Model production suite timeliness and reliability
 • *Forecasters know when model output will be available*

• Continued excellent working relationship with EMC/NCO
 • *Responsive to inquiries and requests (RUC, NAM, SREF, etc.)*
 • *Assistance implementing SPC jobs on CCS; GEMPAK and dbnet*
 • *Implementation of Unified Post concept*
 • *Support and improvements to 4 km WRF-NMM*
 • Recent High Res Window Upgrade
 • *Outstanding collaboration/support for Hazardous Weather Testbed*
 • Special deterministic WRF runs and key partner in SSEF
SPC Operational Forecasting Examples

Part 1. GEFS and SREF Guidance for Fire Weather Forecasting
Ensemble Guidance at the SPC

• Develop specialized guidance for High Impact Events
 – Severe weather, fire weather, winter weather

• Design guidance that…
 – Helps blend deterministic and ensemble approaches
 – Supports probabilistic forecasts
 – Incorporates larger-scale environmental information to yield calibrated probabilistic guidance
 – Aids in decision support of impact weather
 • Gauge confidence
 • Alert for potentially significant events
SPC Fire Weather Outlooks

• National Fire Weather Guidance for use by NWS and other federal, state, and local government agencies

• Outlooks delineate areas where forecast weather conditions, combined with pre-existing fuel conditions, result in **significant** threat for wildfires

• Currently issued once per day during the overnight hours
 – Day 1, Day 2, and Day 3-8

• Critical, Extremely Critical, and Critical Dry Thunderstorm forecasts
 – Low RH
 – Moderate / strong winds
 – Antecedent conditions / drought (NFDRS)
 – Critical area for dry thunderstorms implies widespread lightning with minimal rainfall
Case Example – October 21, 2007

- Devastating Wildfires over Southern California
- More than 450,000 acres burned
 - 1700 homes and businesses destroyed, WFO SGX evacuated
 - 10 deaths and 64 injuries
Examples of GEFS Guidance

Focus on Medium-Range Pattern and Environment for Fire Weather
GEFS Ensemble: Mean 500 mb Height and Departure from Normal (# of SD)

120h Forecast Valid 00 UTC 22 Oct 2007
...DISCUSSION...

LATEST MEDIUM RANGE DETERMINISTIC MODELS/ENSEMBLES SUGGEST THE NEXT IN A SERIES OF UPPER TROUGHS WILL LIKELY CROSS THE WESTERN STATES THIS WEEKEND. MODEL CONSENSUS SUGGESTS THIS UPPER TROUGH MAY ULTIMATELY BECOME CUT-OFF OVER THE SOUTHWEST STATES...ALTHOUGH CONSIDERABLE DISCREPANCY EXISTS IN THE PLACEMENT DETAILS. REGARDLESS...IN THIS WAKE OF THIS SYSTEM...IT APPEARS AN OFFSHORE/SANTA ANA WIND EVENT MAY BECOME ESTABLISHED ACROSS SOUTHERN CA BY LATE DAY 4/SATURDAY AND DAY 5/SUNDAY INTO DAY 6/MONDAY. AS SUCH...THE POTENTIAL WOULD EXIST FOR NOCTURNALLY-ENHANCED GUSTY WINDS ACROSS SOUTHERN CA...ALONG WITH WARMER TEMPERATURES AND LOWER RH VALUES.
Examples of SREF Guidance

Focus on Ingredients-Based Environmental Factors Related to Fire Weather
Critical Conditions

- Pr [P12I ≤ 0.01”] X
- Pr [RH ≤ 15%] X
- Pr [WSPD ≥ 20 mph] X
- Pr [TMPF ≥ 60F]
75 hr SREF Maximum Fosberg Index (any member)

Fosberg Fire Weather Index (FFWI)
Non-linear, empirical relationship between weather and fire behavior

FFWI = \(F(\text{Wind speed}, \text{RH}, \text{Temp}) \)

- \(0 \leq \text{FFWI} \leq 100 \)
- \(\text{FFWI} > \sim 50-60 \rightarrow \text{significant conditions} \)
- \(\text{FFWI} > \sim 75 \rightarrow \text{extreme conditions} \)
...DISCUSSION...

LATEST MEDIUM RANGE DETERMINISTIC MODELS/MREF ENSEMBLES CONTINUE TO SUGGEST THAT THE NEXT UPPER TROUGH WILL CROSS THE WESTERN/CENTRAL STATES THROUGH DAY 3/SUNDAY...POSSIBLY BECOMING CUT-OFF/STALLING ACROSS THE SOUTHERN PLAINS EARLY NEXT WEEK. INITIALLY ON DAY 3/SUNDAY...STRONG GUSTY WINDS ASSOCIATED WITH THE UPPER TROUGH/STRONG JET COULD YIELD AT LEAST NEAR-CRITICAL CONDITIONS ACROSS THE SOUTH CENTRAL HIGH PLAINS.

AS HIGH PRESSURE PERSISTS ACROSS THE GREAT BASIN LATE THIS WEEKEND THROUGH EARLY NEXT WEEK...IT APPEARS A POTENTIALLY STRONG OFFSHORE/SANTA ANA WIND EVENT WILL OCCUR FROM EARLY DAY 3/SUNDAY INTO AT LEAST DAY 5/TUESDAY. THE POTENTIAL WILL EXIST FOR NOCTURNALLY-ENHANCED GUSTY WINDS ACROSS SOUTHERN CA...ALONG WITH WARMER TEMPERATURES AND LOWER RH VALUES THROUGH EARLY NEXT WEEK. THESE CONDITIONS...ALONG WITH EXTREME DROUGHT...SUGGEST A CONSIDERABLE FIRE DANGER WILL EXIST ACROSS SOUTHERN CA.
SPC Operational Forecasting Examples

Part 2. SREF and 4 km WRF Model Guidance for Severe Weather Forecasting
Use of SREF and 4 km WRF in SPC Operations

• SREF and 4 km WRF guidance complement (not replace) traditional deterministic models
• SREF provides systematic information
 – Possible range of forecast solutions
 – Measures of forecast uncertainty (probabilities)
• Convection-Allowing WRF models
 – Capable of generating explicit convective systems and basic stormscale structures
 – Unique guidance on convective initiation, mode, intensity, evolution
4 km WRF Models Used at SPC

- WRF-NMM (EMC) and WRF-ARW (NSSL)
 - Experimental models run once daily at 00 UTC
 - 36 hr forecast over eastern three quarters CONUS
 - Cold start with NAM initial and boundary conditions
 - No parameterized convection
 - Unique convective fields such as:
 - Simulated reflectivity
 - Measures of updraft rotation in model storms
High Res. WRF Configurations
(No Parameterized Convection)

<table>
<thead>
<tr>
<th></th>
<th>WRF-NMM</th>
<th>WRF-ARW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horiz. Grid Spacing (km)</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Vertical Levels</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>PBL/Turbulence</td>
<td>MYJ</td>
<td>MYJ</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Ferrier</td>
<td>WSM6</td>
</tr>
<tr>
<td>Radiation (SW/LW)</td>
<td>GFDL/GFDL</td>
<td>Dudhia/RRTM</td>
</tr>
<tr>
<td>Initial/Boundary Conditions</td>
<td>32 km NAM</td>
<td>40 km NAM</td>
</tr>
</tbody>
</table>

EMC NMM at http://www.emc.ncep.noaa.gov/mmb/mmbpll/cent4km/v2/
NSSL ARW at http://www.nssl.noaa.gov/wrf/
Case Example – May 4, 2007

• Local Severe Storm Outbreak Across Central Plains
• Several Long-Track Tornadic Supercells
 – 3 killer tornadoes and 12 deaths (EF-5 at Greensburg, KS)
Examples of SREF Guidance

Focus on Ingredients-Based Mesoscale Forecast Concepts
SREF 3 hr Calibrated Probability of Thunderstorms

21-24 hr Forecast Valid 00 – 03 UTC 5 May 2007

Uses past CG lightning events to calibrate product of

\[\text{Pr (CPTP)} \geq 1 \times \text{Pr (PCPN)} \geq .01" \]

Calibration period previous 366 days

\textit{Shaded Area Prob } \geq 40\%
SREF Combined Probability
CAPE x Shear x Conv. Precipitation

24 hr Forecast Valid 03 UTC 5 May 2007

Prob (MUCAPE \geq 2000 Jkg$^{-1}$) \times

Prob (Eff. Shear \geq 40 kt) \times

Prob (3h Conv. Pcpn \geq 0.01 in)

Shaded Area Prob $>$ 20%

Max 30%
SREF Probability of STP ≥ 5

(Percent of members)

24 hr Forecast Valid 03 UTC 5 May 2007

Significant Tornado Parameter

- (MLCAPE / 1000 Jkg$^{-1}$)
- (6 km Shear / 40 kt)
- (0-1 km SRH / 100 m2s$^{-2}$)

Max 70%

Shaded Area Prob $\geq 10%$
Examples of 4 km WRF-NMM and WRF-ARW Guidance

Focus on Simulated Reflectivity to Provide Near-Stormscale Convective Characteristics
4 km WRF Forecasts and Radar

23 hr forecasts valid 23z 4 May 2007

Circles denote UH ≥ 50 m²s⁻² within 25 mi of grid pt

NMM4

ARW4

Radar
4 km WRF Forecasts and Radar
24 hr forecasts valid 00z 5 May 2007
4 km WRF Forecasts and Radar
25 hr forecasts valid 01z 5 May 2007
4 km WRF Forecasts and Radar
26 hr forecasts valid 02z 5 May 2007

NMM4

ARW4

Radar
4 km WRF Forecasts and Radar

27 hr forecasts valid 03z 5 May 2007

~02-04z EF3-EF5 tornadoes
12 fatalities
4 km WRF Forecasts and Radar
27 hr forecasts valid 03z 5 May 2007

“Star” Denotes Location of Greensburg KS
4 km WRF and NAM Forecasts
27 hr forecasts valid 03z 5 May 2007
Use of WRF Models in Severe Weather Forecasting

• Convection-allowing WRF models offer insights into convective initiation, evolution, intensity, and mode
 – Often credible mesoscale prediction of convective systems
 – 4 km grid length permits approximation of stormscale structures

• Key forecaster challenge – stormscale uncertainty
 – WRF convective forecasts often appear plausible
 – What level of confidence to place in convective details?
 • Uncertainty is inherent in convective forecasting

• Suggests role for Storm Scale Ensemble Forecast system
 • Hazardous Weather Testbed Spring Experiment 2007
 • Evolution toward “Warn-on-Forecast” concept
 – Focus on convective outlook and watch time scales
2007 Spring Experiment
http://hwt.nssl.noaa.gov/Spring_2007

When:
• 8 am to 4 pm daily from 30 April to 8 June

Where:
• National Weather Center HWT (between OUN WFO and SPC)

Participation:
• ~60 researchers and forecasters from government agencies, academia, and the private sector
• 6-10 active participants at any time
2007 Spring Experiment
http://hwt.nssl.noaa.gov/Spring_2007

Primary experimental focus

• **Continue to explore convection-allowing WRF models**
 - Five near-CONUS runs: $\Delta x = 2$ km (CAPS)
 $\Delta x = 3$ km (NCAR)
 $\Delta x = 4$ km (EMC, NSSL, CAPS)
 - Evaluate storm behavior, PBL structure, & impacts of physics, resolution

• **Explore convection-allowing WRF Storm Scale Ensemble Forecasts (SSEF) (2007-2009)**
 - **Year 1:**
 - 10 WRF-ARW members (run by CAPS and PSC)
 - $\Delta x = 4$ km over two-thirds CONUS
 - 6 members phys-only perturbations, 4 members with IC & phys perturbations
 - Use 21Z SREF for initial conditions. Focus on 21-33 h forecasts
HWT Spring Experiment 2007 Participating Institutions:

NOAA Agencies
- NCEP/AWC (2)
- NCEP/EMC (3)
- NCEP/HPC
- NCEP/SPC (9)
- NWS/BTV
- NWS/LWX
- NWS/MAF
- NWS/OCWWS
- NWS/OUN
- NWS/RAP
- NWS/SLC
- NWS/SRH
- OAR/NSSL (5)
- OAR/GSD (3)
- OAR/PSD

Universities
- Albany-SUNY (2)
- Arizona (2)
- Colorado State
- Iowa State
- North Carolina State (4)
- Oklahoma (2)
- Penn State
- Purdue (2)
- UNC-Charlotte
- York (Ontario)

Gov’t Agencies
- NCAR (5)
- Environ. Canada (6)
- UK Met Office
- USRA (Huntsville)

Private Sector
- Merrill Lynch
- FirstEnergy
Some Types of SSEF Products

Focus on Thunderstorm Characteristics

- Simulated Reflectivity
 - Spaghetti, mean, median, probability matching, exceedance probability, maximum, postage stamps, linear mode
 - Microphysics dependent

- Updraft Helicity (Supercell Indicator)
 - Exceedance probability, maximum
 - Resolution dependent

- Maximum Updraft Vertical Velocity (Hail)
 - Resolution dependent

- Lowest Level Maximum Wind (Wind Gust Potential)
 - Exceedance probability, maximum
“Spaghetti” Plot for Reflectivity ≥ 40 dBZ
Probability of Reflectivity > 40 dBZ Within a Radius

@ grid point

+ 10 miles

+ 25 miles

BREF > 40 dBZ
Probability of Reflectivity > 40 dBZ Within a Radius

@ grid point

+ 10 miles

+ 25 miles

BREF > 40 dBZ
Daily Forecast and Evaluation:

• **Produce a preliminary SPC-like probabilistic forecast for severe weather over region of interest by 16Z**

 - Forecast valid from 18-00Z, 21-03Z, or 00-06Z

 - Use information currently available to SPC operations; *includes output from 2-4 km deterministic WRF model forecasts*

• **Produce an updated graphical forecast by 17Z after interrogating SSEF output**
Preliminary forecast:

Final forecast:
6 hr Probability of Linear Convective Mode
(Refl > 35 dBZ; Aspect Ratio 5:1; Length > 200 mi)
6 hr Probability Linear Convective Mode
HWT Spring Experiment
SSEF Summary - I

• SSEF proof-of-concept testing and initial product design was successful
 – Probabilistic thunderstorm forecast information shows promise
 • High Impact Events - Severe Weather, QPF/Flooding, Aviation Support
 – Spread-skill relationship more apparent in strongly forced situations
 – Detailed convective mode information required examination of simulated reflectivity from individual members
 • Postage stamp displays considered very informative
 – SSEF appears to have value for outlook and watch time scales
 • Very complex data assimilation, storm modeling, and computing challenges must be solved for warning applications (Warn-on-Forecast)
HWT Spring Experiment
SSEF Summary - II

• **Some Key Challenges**
 – Large IC sensitivity often evident
 • 21z versus 00z and impact of IC perturbations
 – Cold start for model integrations
 • How will new data assimilation (including radar, lightning, etc.) methods impact convection-allowing model forecasts?
 – What are appropriate perturbation strategies for SSEF?
 – Resolution sensitivity of convective scale parameters
 • What are meaningful threshold values (e.g., updraft helicity)?
 – Better ensemble systems result from better models
 • WRF model systems still under development
HWT Spring Experiment
SSEF Summary - III

- **Tentative Future Plans**
 - SSEF is multi-year project partially funded by CSTAR
 - 2008
 - Build off 2007 results to construct better ensemble with improved statistical attributes and physical processes
 - Include WRF-NMM members for multi-model diversity
 - Incorporate 3DVAR cloud and radar data into 2 members
 - Launch On-Demand 2 km WRF runs over movable regional domain
 - 2009
 - Increase resolution - SSEF at 2 km and On-Demand at 1 km
 - Replace 3DVAR with GSI – radar and satellite data assimilation
 - Test automated storm mode object-oriented algorithms
 - Continue to leverage new high performance computing and networking capabilities
SPC Request List

- **SREF and GEFS Ensemble Forecast Systems**
 - Continued access to all member grids including non-bias corrected
- **SREF**
 - Comparable grid length and increased resolution for all base models
 - Move toward better integration with NAM cycles (00, 06, 12, 18 UTC)
- **NAEFS**
 - Addition of moisture and instability variables to output
- **RUC/Rapid Refresh**
 - Support for larger domain into Alaska (SPC/AK Fire Weather Initiative)
 - Develop convection-allowing nest within RUC/RR to provide hourly convective scale forecasts to 6-9 hrs
- **Hi Res Window**
 - Hourly output grids
 - Real-time creation of hourly GEMPAK grids as models run
 - Move toward CONUS scale convection-allowing model