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1. INTRODUCTION

The requirement of modern objective data
assimilation schemes to accommodate data of
different types and variable reliability has led
to an increasing emphasis on the use of
statistically based methods of analysis in the
preparation of initial fields for numerical
prediction models. Notable contributions to the
development of analysis schemes that are in some
statistical sense optimal have been made by
Sasaki (1958) and by Gandin (1963) who pioneered
the technique of optimum interpolation.
Developments by Rutherford (1972), Schlatter
(1975), Bergman (1979), and Lorenc (1981) have
established it as an effective practical
technique.

This paper describes a method of analysis
currently under development which generalizes the
linear formulation of optimum interpolation to an
essentially non-linear one, exploiting a
statistical approach based on Bayes' theorem of
conditional probabilities. While under special
restricted conditions the Bayesian approach
becomes identical to the linear optimum
interpolation, a more general non-linear
formulation appears formally to be able to handle
in a statistically consistent and unified way
several aspects of the data assimilation problem
that have hitherto been dealt with separately.
These include the problem of data "quality
control," i.e., how to treat the occasional, but
potentially damaging, occurrence of observations
that, for unknown reasons, possess abnormally
large errors; the consistent inclusion of
non-linear balancing procedures or
"initialization" and the direct insertion of
satellite derived data avoiding the separate
intermediate step of performing independent
single—column retrievals of temperature and
humidity. In addition, this formulation can
accommodate a number of adaptive features that
were sometimes present in empirical analysis
methods, such as the stretching or bending of
structure functions of "successive correction"
schemes according to the local flow features that
are intuitively desirable but which are lacking
in conventional optimum interpolation.

The Bayesian scheme is presented in relation
to conventional optimum interpolation. Being
non-linear it demands the use of iterative
methods and the recognition of this fact has
strongly influenced the composition of the
algorithms designed to achieve the desired
optimal analysis. Consideration has been given
to strategies that avoid where possible the
explicit manipulation (e.g., inversion) of very
large matrices which would consume an inordinate
amount of computation, and an outline is sketched
of the algorithmic structure developed to attain
this objective.
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2. OPTIMUM INTERPOLATION AND BAYESIAN

GENERALIZATIONS

In optimum interpolation an analysis A,
consisting of one or more variables at each
gridpoint i, is obtained as. a linear combination
of a "background" field B, (also known at each
gridpoint) and an incompl%te scatter of
observations O located at observations points .
The linear coefficients are chosen to minimize
the expected mean square of the analysis error
A.' and are derived from knowledge or estimates
of the covariances C.. of background field errors
B,' and from the covidliances E _ of
observational errors O ', assu%gng that all
errors are unbiased and that the set {0 '} are
uncorrelated with set {B,'}. It is con%enient
to use i,j,k, . . . to libel standard gridpoint
values and 0,85y, . . . to denote individual
observables, Also a function D (B) will be used
to express the composition of observable g
(e.g., a particular satellite radiance
observation) in terms of the standard gridpoint
values. With these conventions and assumptions
it will be stated without proof that the
analysis sought is given by the matrix equation
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Using the above subscript convention no confusion
will arise by identifying
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A significant feature of (1) that is immediately
evident is that a matrix inverse is required, the
order of the matrix being formally equal to the
number of observations considered. In a

large scale analysis system based on the Gandin
method it is of course impossible to solve the
formal system (1) and it is customary to restrict
severely the number of observations permitted to
influence each grid point.



An alternative approach to analysis
optimization can be developed from probabilistic
principles. Imagine a "state" of the system,
i.e., its N gridpoint values, as represented by a
point in an N-dimensional space whose coordinates
are the possible gridpoint values themselves,
thus both the analysis A and background B can be
regarded as position vectors in this
"state-space." Similarly the M observables may
be thought of as defining a point in an
M-dimensional "observation space." Each
individual observable a is associated with a
continuous family of (N-1)-dimensional surfaces
in state-space parametrized naturally by the
values of D . In practice, knowledge of the
state is always somewhat vague and may be
formally regarded at any time as a probability
density function in state-space, for example, the
prior knowledge or assumptions of the "location"
of the atmospheric state are summarized by a
probability demsity, P (E') of the errors Q' of
the initial guess E comprising the locally most
probable state. Note that this choice for %
implies
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Similarly, the observations are known to contain
random errors or to be contaminated by effects
too small or too transient to be significant so
it is natural to express this degree of vagueness
also in probabilistic terms. For example, by

assuming that the observation errors O ' are-each’

distributed independently by a probabigity

density P (0 '"). Assuming the prior distribution
P, is obt3in&d independently frpom the new
ogservations (e.g., using climatology, a previous
forecast together with dynamical constraints)

then it is possible to combine the two sources of
information into a single conditional probability
distribution, say P,, using Bayes' rule for
conditional probabiéities.
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where p is a normalizing factor. Figure 1
illustrates schematically the typical application
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Figure 1: Schematic illustration of Bayes' rule
in one dimension. g

of this rule to one dimension, the conditional
probability density P, being peaked between the
peaks of distributions P, and P,, to be narrower
than either of them and go be c?oser to the
narrower distribution P, than to P,. Following
the spirit of Gandin's Optimum interpolation ome
would consider the centroid of P, as the optimal
analysis since only at this location in
state-space is the expectation squared error of
each component of A, of the analysis
simultaneously minimized. However, a simpler
procedure, though one that is arguably less
"optimal," is to redefine the optimal analysis
as that which maximizes P, itself (or
equivalently, its 1ogaritém) with respect to
local variations of the components A,, i.e.,

i
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This general formulation can be shown to
reduce to standard linear optimum interpolation
with independent observational errors under the

assumptions of Gaussian structures to PB and Pa
and the linearity of function D.
Then
1 b
P.(B') aexp {-—ZC, !B 'B '}
BN 2 13 i i j
. (5)
: 1 2
1] P = [}
P (0,") o exp { . E, "0, }
reducing (4) to
zc,. 18"+ 2, E "lo “=0
e ioTa o
ij
hence
= “l(o -
Ai Bi+ z CiijuEa (Ou Aq) (6)

which is equivalent to (1) when A is eliminated
from the right side. N

Under more general circumstances "effective"
statistics can be obtained to replace E ! and
Ci . In principle these are obtained ffom the
loéal behavior of the probahility densities P
and P in the vicinity of B and O and forma?ly
yield pseudo-covariance Cij whose matrix inverse
is

*
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and the pseudo~-variance Ea whose inverse is
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An important point to make here is mot that
one should attempt to catalogue a comprehensive
tabulation ‘of probabilities P, and P and extract
effective statistics as in (79 but rather that
one should recognize that the Bayesian method is
flexible enough to accommodate effective
statistics that are adaptive to the situation
being analyzed and that it provides guidance as
to how this might be done.

A suggestion of the versatility and
potential of the adaptive formalism is provided
by illustrating its handling of observations
known occasionally to contain gross errors, i.e.,
those for which a traditional analysis method
requires a separate quality control procedure.
For simplicity suppose the errors of observable
o have a probability density:

02
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as illustrated in Figure 2a for a=2E =2. Note
the existence of non-vanishing tails in this
distribution, consistent with the occasional
appearance of gross errors. The impact of such
an observable on the analysis as a function of
its final departure from that analysis is given
by the "forcing function:"
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(Figure 2b). It is evident that the impact of
the observation is negligible if a large
disparity persists between it and the analysis.
To complete the picture (Figure 2c) the effective
weight is, by (8):

*
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This artificial example demonstrates the
ability of the formalism to incorporate in a
natural way a form of quality control, but by
continuous weighting rather than by an explicit
rejection—acceptance criterion.

3. COMPUTATIONAL CONSIDERATIONS

The implicit optimal analysis equation (6)
forms the core of the iterative methods. Since
it contains no non-trivial matrix inverse it is
simple to verify. Suppose an approximation A to
the optimal analysis is obtained by replacing
Eu_l(oa_A') in (6) by an approximation to the
forcing, %a. The degree of inconsistency between
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Figure 2b: X as a function of Ou'°
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Figure 2c: Ea

as a function of Oa'.
these approximations is measured by evaluating
the residual,

g 1 = =
Ra_Eu (0(x Au) Xa (12)

for each observable (only when the residual
vanishes for every observable is the analysis
obtained in this way "optimal"). The
sensitivity of R to changes in X is

BRa
N
(B, "Cop*lyg)
X
B
where I is the unit matrix. Then provided an

approximation to the inverse of this matrix is
available, one may obtain an improved estimate of
X and hence of A by means of the correction:

Xy, = Xy * é G&BRB (13)

where

~ . -1
GaB = (E “C+I) -

The repetition of this procedure will lead to
successively better analyses, A. Adaptive
features of the Bayesian method discussed
earlier, i.e., the updating of C, D, E !, may be
included. In addition, it becomes feasible to



incorporate periodically adjustments that insure
that a state of dynamical balance is maintained,
thereby combining "analysis" and "initialization"
in a single scheme. Briefly, this is achieved hy
inserting the unbalanced analysis, now denoted A
into the forecast model which is then run forward
for two timesteps. The first and second time
derivatives of divergence provide convenient
diagnostics of dynamic imbalance which can be
corrected by applying these diagnostic fields as
forcings to equations amalogous to the balance
and omega equations to obtain correction fields
that bring the analysis back towards a state of
balance, A. Symbolically this procedure is
written,

A =J (&)

o a v
and the iterative scheme I have described then
matches the flow diagram, Figure 3.
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Figure 3: TFlow chart for an iterative Bayesian

analysis algorithm.

A major difficulty with this algorithm is
obtaining an estimate for G _ which is good
enough to give a reasonablyagapid convergence of
the algorithm yet which does not require the
direct computation of large matrix inverses.

There are indications that the problem is 5
alleviated by using a method able to discriminate
between the different spatial scales at which
analysis corrections are required and to treat
these scales separately. One approach is to
organize the observations into small clusters and
to exploit the fact that the forcing, X formed
by the sum of forcings X in a tight cl&ster B
and acting at the centrofd of this cluster, has
an impact almost identical to that of the

original forcings X . In this way it is possible
to approximate the gnalysis problem by a
coarser-scale representation containing fewer
elements. The corrections deduced at the coarser
scale are enforced as temporary strong

constraints of a modified analysis problem when
the iterative algorithm descends back to the

finer scale. The clustering procedure, and the
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associated adjustments to the analysis algorithm
are readily extended to a hierarchy of levels of
clustering. It is found that reliably good
approximations G to the correction matrices at
each level of th%Bhierarchy may now be obtained
without excessive computation. This strategy is
analogous to the "multigrid" algorithm developed
by Bramdt (1977) and others to accelerate the
¢onvergence of iterative solutions of elliptic
equations.

4. CONCLUSION

An alternative statistical formalism for
dealing with general problems in meteorological
data assimilation has been introduced. This
enables several aspects of the problem previously
treated separately, notably those implicitly
requiring nonlinear treatments, to be brought
together within a unified framework. Methods of
solving the resulting equations are necessarily
iterative and this fact is used to advantage in
the design of algorithms that avoid the direct
and costly inversion of large matrix systems
which appear in conventional optimum
interpolation.” By transforming the problem into
a series of ,representations at progressively
coarser scales it is possible to enhance the
efficiency of the algorithm as a whole. A
high-priority application of the technique is to
the three dimensional assimilation of satellite
radiances to circumvent the somewhat dubious
custom of treating retrieved satellite
temperatures in an analysis.as if they comprise a
set of observations with errors independent of
those of the background field. If successful a
unified and consistent approach to the analysis
of mixed satellite and ground based observation
would be of obvious benefit.
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