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Abstract

The use of data from future Déppler wind lidar (DWL) instruments is
addressed under three main headings; assimilation and quality control; data
representativeness errors; case studies of data utility. Recommendations on
the production of simulated DWL observations for further studies are given.

It is shown that data assimilation systems can use single-component
winds derived from a single lidar shot. Consequently, shot-pair processing
to obtain wind vectors is unnecessary for purposes of model assimilation.

Methods for extracting information from data with a high probability
of gross error (expected when the signal-to-noise ratio is low) are
described and tested. Consensus averaging is shown to be an effective
method of quality control for small groups of data with similar
line-of-sight. Data which are distributed in space may be treated using
nonlinear variational analysis, and results from a two-dimensional scheme
are presented. The scheme may be used either to detect observations with
gross errors, prior to a conventional (linear) analysis step, or to produce
the analysis directly. The latter, direct, method was shown to be more
accurate.

The average error implicit in taking single-shot data (which sample a
small volume of space) as representative of conditions over a 100km g{%d
box is estimated (using spectral analysis of wind data) to be 2-3ms .
Local enhancements to this background value are considered for a variety of
meteorological phenomena.

Simulation studies aimed at evaluating different scanning and
instrumental configurations are presented. For data assimilation, a
scanning instrument is to be preferred to a 4-fixed-beam instrument, if
other instrument characteristics are equal.

Case studies addressing the effect of cloud obscuration on utility for
numerical weather prediction and climate studies suggest that; a) the
impact of DWL winds in improving forecasts of cyclogenesis may not be
seriously hampered by cloud obscuration; b) cloud obscuration will bias the
distribution of lidar data towards regions of equatorward moisture flux,
especially in mid-latitudes by obscuring intense fluxes in frontal "warm
conveyor belts". Consequently, it will be better to use assimilated

analyses for climatological studies of moisture fluxes, rather than using
the DWL data directly.
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1 Introduction

The deployment of a satellite borne Ddppler wind lidar instrument could
provide observations of the 3-D wind field at high resolution on the global
scale. Such observations would represent a valuable data base for improving
our understanding of atmospheric processes - leading to better models for
weather and climate prediction. Global wind data coverage could also bring
improvements in initial conditions for numerical weather prediction (NWP)
models. The indirect relationships between remotely sensed data and the model
variables which are to be determined often give rise to errors and limitations
which make the data less useful than first expected. Déppler wind lidar
observations suffer less than some others in this way, however they have
several potentially limiting features: only a single component of the vector
wind is observed, poor signal-to-noise ratio in clean air may lead to a
significant proportion of bad data, and the measured velocity 1is the
line-of-sight velocity of a small volume of air rather than the horizontal
velocity average for a grid box. The purpose of this study is to investigate
the feasibility, given the above errors and limitations, of using Déppler
lidar data in NWP analysis and to examine the best techniques for assimilating
the data. In addition, some of the characteristic errors are evaluated and
presented in a form suitable for simulating lidar wind data in future
observation system simulation experiments (OSSEs). The relative benefits of
different scanning and instrumental options and general questions of the
utility of the lidar data for NWP and climate studies are also addressed.

Sections 2 3 and 4 are concerned with techniques for assimilating the
data into NWP models, and it is shown that the errors and limitations referred
to above are not serious problems. In section 2 we show that single-component
winds can be used directly in current and future analysis systems; there is no
need to arrange for coincident shots or observation preprocessing to give
vector winds. In section 3 we show that theoretically well-founded techniques
exist to cope with a large proportion of erroneous data, either in a
preprocessing "“quality control" step, or in a nonlinear variational analysis
that combines quality control with a direct analysis of single component
winds. By using all available information, the nonlinear scheme gives better
results than schemes which do a preliminary quality control on limited
information. In section 4 we study the errors of representativeness
associated with the poor sampling; they turn out to be not very different from
those associated with current radiosonde observations.

The utility of the lidar data for different purposes will depend tc¢ some
extent on the chosen scanning and instrumental configuration. In section 5 we

show that for NWP purposes a scanning configuration will be preferable to a



fixed beam configuration. The impact of cloud obscuration on the benefits of
lidar data for NWP purposes and for climate studies is investigated using case
study examples in section 6. A summary of results and recommendations for
future OSSEs is given in section 7.

This work, and a parallel study by Courtier et.al. (ESA contract study
8850/90/HGE-1, 1992) are within the framework of studies Al, A3 and A4
recommended by the ALADIN report (ESA SP-1112, 1989). The two studies have

been performed in close cooperation and are designed to be complementary.



2 Feasibility of Assimilating Single Component Winds

Most existing operational meteorological analysis schemes expect wind
data to be presented as vectors, or as u and v components in some predefined
coordinates. Thus in some studies of the instrument it was assumed this was a
requirement. Such a requirement is a severe constraint on the design of the
instrument or preprocessing system. The lidar provides only a line-of-sight
component, and the provision of coincident shots from different directions
requires careful alignment of observations forwards and backwards as the
satellite moves along its orbit. If this alignment is not achieved, then the
required interpolation of non-coincident single component winds would
introduce an averaging, which would cut the potential resolution of the data,
and cause erroneous data to corrupt several derived vectors. So in this
section we provide a clear demonstration that the single component winds can
be used directly in practical assimilation systems. Only horizontal winds are
considered here; the effect of the vertical components is considered in
section 4. Below we give examples using Optimal Interpolation (0OI), the most
commonly used analysis method, and another full operational scheme. At the

end of section 3 we give an example using a variational scheme; such schemes

are the subject of much current research.

2.1 Optimal Interpolation

OI forms the basis of the assimilation schemes at most ma jor operational
numerical prediction centres in the world. It combines information from a
background field with the observations so as to minimize the expected analysis
error variance. We use as an example a two-dimensional OI scheme derived from
Lorenc (1981). The analysis with the minimum expected error variance is found
from a system of linear equations, involving error covariances between the
observed parameters, and between the observed and analysis parameters.
Observational errors are assumed to be independent, so that covariances
between different observations are zero. Background error covariances are
modelled by a continuous function. Making the assumption that the background
wind errors are non-divergent and isotropic, all the required covariances can

be derived from that for streamfunction Y. For the u and v components usually

used to represent wind we have
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Here <:> represents an expected value over many realizations, and € is the
difference between the background value of a parameter (indicated by the
superscript) and a perfect "true" value. We assume that the background is
unbiased, so these terms are covariances. Introducing vector notation Vi for
(ui,vi)T, the four term in (2.1) make up the covariance tensor < V1VJT>. Now
a wind component wi(ﬁi) in any arbitrary direction 01 at point i1 is given by
the scalar product rnTVI, where n is the unit vector (cosﬂl,sinﬁl)T. To use
the Ol equations directly on single-component winds we need covariances

between these arbitrarily directioned components:
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Lorenc (1981) shows how this covariance model can be extended to a
sphere, and to geostrophically consistent covariances with the mass field. It

can also be extended to divergent winds by using also a covariance function

for the velocity potential.

Traditionally in OI the discrete representation of the background field
(e.g. at a grid of points) is not explicitly expressed in the equations;
background values at the observation positions and covariances of their errors
are represented by a vector b and matrix B. The elements of B are evaluated
using (2.2). Covariances are also needed between observation and grid point
positions, and background and analysis values are needed in the grid-point

representation. We use the same symbols for these; to avoid confusion we put



suffices 1 and j for observations and x and 1 for grid-points. Observational
and representativeness errors are assumed to be uncorrelated, and are

represented by diagonal matrices 0ij and Fij. The OI analysis equation is:

u =b + B  (B+0+F)"! (o0 -b ), (2.3)
k k 1k i3 i

where u is the vector of analysis values, and o, is the vector of observed
values.

An advantage of the OI analysis method is that the expected error
variance of the analysis can be calculated; use is made of this in section 5.

The full analysis error covariance is given by

(2.4)

A =B _ -B (B+«0+F)' B
k1 k1 ik 1j

i’

only the diagonal of this need be calculated to provide estimated error
variances.
Two examples using this system are given here; further examples can be

seen in section 5, where it is used to evaluate instrument scan scenarios.

Example 1

Observations were generated in a pattern simulating a 1lidar scan, in
circles of radius 1000km, with centres every 100km. Lidar winds were
obtained by interpolating the appropriate component of an assumed "true wind
field", adding Gaussian errors with a standard deviation of 2.5ms .. We put
40 observations per scan, making the average separation between adjacent
observations of the single component of the wind about 70km.
452 single-component observations were used, in a single matrix calculation,
to evaluate the analysis at all grid points within a box using (2.3).

The streamfunction covariance is assumed to be isotropic and homogeneous,

and the traditional assumption is that it has a Gaussian shape, i.e.

y Yy, _ 2
<818j> = E¢

exp(—riJZ/ZLZ) (2.5)
where

2 _ Y .52
rij = (xJ xi) +(yj yi) . (2.6)
We put L=500km and chose E¢ such that Ev, the standard deviation of the
background wind velocity components, was Sms—l. A background field was
generated by adding errors with this covariance structure to the "true wind
field". OI was then used to generate an analysed field, which when compared

with the "truth" had root mean square (r.m.s) error of 0.6ms . in each
component.



Example 2

The Gaussian shaped correlation function gives rather large values at
short distances, underestimating errors at shorter wavelengths. Functions

used operationally are more realistic. For instance Mitchell et al. (1990)

suggest the "double-Toar":

2

vy, _
<£18j> = EW

(1+2)71 { flo,r, ) +¢ fle/N,r )}
(2.7)
1 22

f(c,rlj) =(1+c I e ) exp(-c rij).

With parameters again chosen such that Ev=5ms_1, the r.m.s. error in the

analyzed u and v components was 1.2ms_{

2.2 Analysis Correction Scheme

As well as these idealized simulations, we wished also to demonstrate
that single-component winds could be used in a full-scale operational systen.
The Met Office uses the Analysis Correction method (Lorenc et al. 1991)
to produce global and regional analyses for operational NWP. The method
performs a repeated insertion of observational data into a forward running
assimilation model, with each insertion being similar to one iteration of a
successive correction method. If x is the model wind field, and y is the
observed vector, then the correction equation is
X X *WQ( y—K(xu)). (2.8)
W is a weight matrix proportional to the background error covariances. Q is a
normalization factor, depending on the data density. For optimal convergence

of the iteration it should be given by

Q= (I +KWL (2.9)

In practice a diagonal approximation to this is used.

If only one component of the wind is observed, then only that component
of the covariance tensor should be used. Rather than performing the
coordinate transformations required for this, we instead created a vector
increment with zero component in the unobserved direction, and used the W
appropriate for a full vector. This has identical effect, except in the
calculation of Q (which is already an approximation).

It was not our intention at this stage to simulate a full global
distribution of windlidar observations; full Observing System Simulation

Experiments are planned for later. We therefore obtained single-component



winds by taking only one component from conventional wind cbservations; in one
experiment radiosondes, in another, single level tropical winds (SATOBs and
AIREPs). Four days of operational data from December 1987, and the
operational assimilation system were used. In the tropical wind experiment,
four parallel data assimilations were run: controls using all, and none of the
single level data, and two simulations of windlidar winds. Of the two using
simulated lidar winds, the first used a single component of each wind, the
second simulated an instrument designed precisely to align the same number of
shots in pairs, giving vector observations at half the positions. Figure 2.1
shows the fit of the 6-hour forecasts (produced in the assimilation to aid
quality control of observations) to wind data. It can be seen that the two
windlidar simulations have the same accuracy; there 1is no advantage,
therefore, in aligning the shots to make vectors.

The tropical wind observations used to simulate the windlidar had a
suitably extensive horizontal coverage, but were only at a few levels. 1In the
experiment using radiosondes the vertical coverage was better, but
horizontally the data were sparser than a windlidar’s would be. Yet the main
conclusion was the same: the impact of the observations was as expected from

the number of data values; there was no detrimental effect from having single

component winds.



RMS fit to wind observations 22N-228.
6 hr forecasts using wind data:

——no wind obs.

— half obs, vector.

- « = all obs, single component.
—— all obs, vector.

W

Plotted every 6 hrs, for a 60 hr test period.

Figure 2.1. RMS fit of 6-hour forecasts to wind observations in the tropics.
Thick lines show results from control assimilations, using none and all of the
single level wind observations. Dots show results using a single component
from each wind. The thin line shows results using the same number of data as
the dots, but arranged to coincide to give vector winds.




3 Treatment of Gross Errors

Doppler windlidar requires the detection of a return signal from the
target volume, and the measurement of its frequency shift. An idealized
coherent signal processing system is to mix the return signal with a reference
signal, detect, digitize, and Fourier analysei. The peak frequency in the
power spectrum is detected, and its frequency calculated. It is assumed that
this is the beat frequency between the Ddppler shifted return signal and the
reference; hence the target velocity is calculated. In this section we are
concerned with cases where this assumption is incorrect, and the wind returned
contains no useful information about the real wind. Unless such occurrences
are very infrequent, the error distribution of the observations will be
significantly non-Gaussian. Most operational analysis methods, which are
linear in the observed values, have an implicit assumption that the
distribution is Gaussian (Lorenc 1988). For such methods, a preliminary

quality control step, passing data with an approximately Gaussian error

distribution, is necessary.

3.1 Error model

In practice it is necessary to limit the sampling of the signal in such a
way that the fourier analysis returns only a limited range of frequencies;
higher frequency signals alias onto this range. Noise from the instrument and
signal processing appears over the whole of the range; the signal has to be
detected as standing out above the noise. Where there is a strong reflector
in the atmosphere, this should be the case; a clear peak will be identifiable.
But clean air is likely to give a weak return signal, which rather often might
be only just detectable. In striving to detect these weak signals a
significant number of gross errors might be made by falsely identifying a
random peak in the background noise as the signal.

This physical description of the error mechanism leads to a simple model
of the errors of the derived winds: either a wind is from a correct spectral
peak, in which case it will have errors which can be represented by a Gaussian
distribution, or it is from a false peak, in which case any value from the
processing output range is equally likely. The probability of the latter,
gross error, occurring is Pg. We assume that the output processing range is

centred on 6 (a prior estimate of the wind) and extends to *a. We neglect the

e note that real processing algorithms (e.g. pulse pair, covariance bascd

methods) may not use Fourier transforms, but the structure of their errors is
likely to be similar.



aliasing of good data with large Doppler shifts onto lower frequencies, and
the truncation of the Gaussian distribution. The probability of getting an

observed value between o and o+do, if the true value is u, is p(oju)do,

where:

2
(1-Pg) exp[— (o-u) ] + Pg

— , O0-a< o <bé+a
,— 2
plolu) = o vem 20 2a (3.1)

0 , otherwise

This type of error model is used for operational quality control at the

Met Office (Lorenc and Hammon, 1988). The example used for tests is shown in

figure 3.1.

Gaussian mean=7.0; sd.=3.0; median error=20 =.67*s.d.
total mean=395; sd.=11.0; median error=50 =.46*sd.

: ¢ true value (u) ]
200 |- — = gross error distribution .
. ++++ Gaussian distribution ]

150 total error distribution .
100 - .
50 |- .
- e — — ——— ‘

0 t+=r—t=r—s LI BN S R B s s T T T T T T L LS N B
-10 -5 0 5 10 15 20

Figure 3.1 Assumed distribution of errors for Doppler velocities from weak
signals. Parameters in (3.1) are: Pg=0.5,

for good data a Gaussian with u=7 ms-l. 0=3 (dotted),

for gross errors a constant density with 6=0 ms—l, a=25 ms (dashed).
The scaling is such that the total distribution (solid) can be compared with

with histograms of 1000 trials shown in later figures. Note that only a
portion of the range from -a to +a is shown.

10




Again ignoring the truncation of the Gaussian, the mean and variance of

pl(o]u) are:

o = (1-Pg) u + Pg & (3.2)

V = (1-Pg) (02+(u-0)%) + Pg (a%/3+(6-0)2) (3.3)

Note that for large Pg and a, the second term (corresponding to the long
tails of the distribution) will dominate in (3.3). The variance {or its
square root, the standard deviation) is not a good measure of the information
content of such a distribution. A simple measure which is less sensitive to
the tails is the median absolute error. For a Gaussian this equals 0.67¢, for
a long tailed distribution the ratio is less. These distribution parameters
are shown on figure 3.1 and subsequent similar figures.

It should be noted that while the median error better characterizes the
width of the peak of good data, it is the standard deviation which determines

the variance reduction in a linear analysis of the data.

3.2 Averaging techniques

In this section we study techniques for coping with gross errors if there
are several independent observations of the same parameter. That is, we
assume that data from the windlidar are close enough that differences in the
real wind due to separation in space are small compared to the observation
error. We study ways of combining several data to give a value which has an

error distribution more suitable for most analysis methods.

3.2.1 Simple average

The simplest way of combining the data is to take their mean. If we have
m data, then the variance will be V/m. Although the error distribution of
these meaned data will be more nearly Gaussian than (3.1), it will be biased

in accordance with (3.2), and have rather large variance. Figure 3.2
illustrates this.

11



mean=35, sd.=35 median error=24 =68*sd.

200 E- é
150 E— é
100 — —E
0 [ ;
0 : ! [N L R B S B A B R B O B B LI I :
-10 -5 0 5 10 15 20

Figure 3.2. Histogram of means of 10 observations generated at random from
the distribution shown in figure 3.1. Note that it is biased from the true
value u.

3.2.2 Angular average

Because of the frequency aliasing of the Doppler processing, the derived
velocity should be averaged 1like an angular variable. Defining complex
numbers a whose direction on the complex plane is related to o, we can find

the direction of their average, and convert back to an angular average wind:

in
exp( — o)

a =
i
a = = ; ai (3.4)
o =2 1n(a/lal)
ang im

Results using this method are shown in figure 3.3.

12




mean=6.7; s.d.=4.5; median error=2.1 =48*sd.
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Figure 3.3. As figure 3.2 for angular means made using (3.4). Note that the
bias is cured, but the standard deviation and median error are similar to
those of figure 3.2.

3.2.3 Consensus average

Neither of the above averaging methods take account of the non-Gaussian
nature of the observation errors. In our simple error model, gross errors
contain no useful information. So a reasonable approach is to choose a subsect
of data which agree and hence are less likely to have gross errors, and only
average those. This 1is called a consensus average. We find subsets
containing observations all within X ms ' of each other. The subset
containing the most observations is used to calculate the consensus average,
provided there are at least nc points contained in that subset. X and nc are
parameters set by the user. If a subset which contains at least nc points
cannot be found then no value is returned. Strauch et al (1984) used this
method to process the Doppler wind data from wind-profilers, with X=1-2 ms
and nc=4 for sets containing 12 observations.

A simple Monte Carlo simulation can be performed to determine the
effectiveness of the consensus average method. m random numbers are generated
from the probability distribution given by (3.1) and these represent a set of
observations of u. The consensus average is then determined as described
above. The results from 100C simulations using parameter values, u=7ms~1,
o=0Oms ™', c=3ms~}, a=25ms”’

3.2.

, Pg=0.5 and m=10 are summarized in tables 3.1 and

13



X (ms™h)
Nc
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
3 74% 91% 97% 100% 100% 100% 100% 100%
4 27% 52% T1% 83% 90% 95% 97% 99%
) 6% 19% 34% 51% 637% 72% 80% 85%
6 1% S% 12% 23% 35% 447 547% 61%

Table 3.1. Percentage of runs for which a value for the consensus average is

returned.
X (ms™h)

nlc

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
3 4.1 4.8 4.1 4.2 4.1 4.2 3.6 3.3
4 1.9 3.1 2.8 3.2 3.2 3.5 3.2 3.8
S 1.8 1.7 1.9 1.8 2.1 2.7 2.7 2.4
6 0.7 1.8 1.4 1.5 2.2 1.6 1.8 2.0

Table 3.2. The standard deviation of the returned consensus average values in

. -1
units of ms .

Table 3.1 shows the percentage of runs in which a value for the consensus
average is returned for various values of X and nc. The more strict criteria
for consensus, small X and large nc, are met less often. Table 3.2 shows the
standard deviation of the consensus averages. The more strict criteria give
more accurate results. As well as affecting the standard deviation, the
criterion also affects the shape of the distribution. A typical histogram for
the distribution of the consensus average values with X=9ms™! and ne=4 is
shown in figure 3.4. This is still significantly non-Gaussian, with long
tails. The shape of these histograms appear to be similar to figure 3.1. If
we assume that the probability density distribution for the consensus average
values is of the form given by (3.1) then a least squares fit can be used to
determine oca and cha where the subscript ca denotes that the parameters are
for the distribution of the consensus average values. For X=9ms ! and nc=4,
we find that o*ca=1.7ms-1 and Pg_=0.12. For X=5ms™' and nc=4 we find
o‘ca=1.8ms_1 and cha=0.06. We see from table 3.1 that this increase in

reliability is bought at a cost of having no return from 17% of the samples of
10 data.
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8; sd=38; median error=15 =39*sd.

3
Q]
joy
i
»
9]

200

150

100

50

L vl vrr bt g by v b

, ©
ST T I T T T T I T T T T T T
1
mj
.

N
o

Figure 3.4. As figure 3.2 for consensus averages. Note that both the
standard deviation and median error are smaller than those of figure 3.2 and
figure 3.3.

3.2.4 Maximum Probability Method
We have m observations of the same wind velocity 01’02'”'°m’ with known
error distribution. We can hence calculate the probability that the true

velocity is between u and u+du. Using Bayes theorem, the probability density

function is given by

p(ulol,o ,..om) = p(ol,oz,..omlu)p(u) / p(ol,oz,..o ) (3.5)

2 m

Assuming that the errors in each datum are independent, we have

m

p(°1'°2"'°mIU) =11 p(oilu). (3.6)

The simplest maximum probability method only requires relative probabilities;

the denominator of (3.5) is not needed:

p(ulol,oz,.‘om) < ] p(oilu) p(u). (3.7)
i=1

It can be found if needed for more sophisticated methods by integrating (3.7)

over all u.
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We assume no a priori knowledge of u and therefore p(u) is taken to be
constant. Using the above equations and (3.1) it is relatively simple to

calculate the probability density function p(ulol,oz,..om), provided that the

values for o and Pg are known. Examples of the form of the calculated

probability density function p(ulol,oz,...o ) are given in figure 3.5. Note
m

that there are usually secondary maxima. If Pg=0 then the individual and

combined functions would be Gaussian, and the maximum would be at the mean of
the observed data. For Pg>0 the most likely value for u corresponds to the

largest maximum.

0 ~1gf'——_-~‘55r~ va—

.06

04

1
-25 0 25

Figure 3.5. Typical probability density functions calculated using (3.6).
The Xs on the bottom axis mark the values of the ten simulated data, generated
randomly from the distribution shown in figure 3.1.
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The method can be extended to more sophisticated definitions of the best
value for u than this. For instance the integral over a limited range
(related to ¢) could be maximized. The value of this integral could be
related to a probability of gross error in the returned estimate u. If this
is too large, the estimate could be rejected. For instance we might well not
want a value returned from the second example in figure 3.5, since the
probability that the central peak is correct is only about 0.5. There are two
sub-groups, each with 4 data which agree. Criteria to flag results from such
cases as unreliable can be added to consensus average techniques also. Thus
both methods can be tuned to give more reliable estimates at the cost of

returning fewer results.

mean=68, sd.=39; median error=1.3 =.33*sd.
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Figure 3.6. As figure 3.2 for maximum probability values. Note that both the
standard deviation and median error are similar to those of figure 3.4.

Figure 3.6 shows the histogram resulting from a maximum probability
method. Results are very similar to the best results obtained from the
consensus average method. If we assume that there is some limit on the
ability of any algorithm to separate ‘good’ observations from ‘bad’, then the
similar performance of the consensus average and maximum probability methods
suggest that both of these methods can perform at or near this limit.
Therefore significant improvements cannot be expected by using more
sophisticated algorithms, unless more information is included in the
algorithm. An immediate advantage of the maximum probability method over the
consensus average method is that any a priori knowledge of u (e.g. from

short-range forecast) can easily be included by putting
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, (3.8)

where b is an estimate of u from the short range forecast. Results from this,
with ob=5ms—1, are shown 1in figure 3.7. The additional information is
particularly useful in reducing the number of returned values in the tails of

the distribution.

mean=71; sd.=2.3; median error=12 =54*sd. l

200 1 ;
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Figure 3.7. As figure 3.6, including information from an background estimate
in the maximum probability calculation. Note that the standard deviation ic

significantly smaller than that of figure 3.6. This distribution is more
nearly Gaussian.

This study shows that care must be taken when combining data from Ddppler
processing of weak signals. Minimum variance type methods are not sufficient;
it is necessary to examine the value returned by each observation before
deciding what weight to give it. Consensus averaging is a suitable practical
method. With appropriate parameters it gives similar results to the more
theoretically based maximum probability method.

Neither method gave results with an error distribution that was near
Gaussian in our tests, unless parameters were chosen which resulted in losing
many observations. This is in agreement with practical experience using
wind-profiler data data formed as consensus averages of ten 6-minute values.
These hourly average values are still in need of further quality control
(Brewster and Schlatter 1988).

If prior information is incorporated into the process of combining the

data, it can be very useful in avoiding gross errors. In our example it gave
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a distribution that was probably sufficiently near to Gaussian to allow the

data to be used directly in a linear analysis method.

3.3 Nonlinear analysis

We saw in figure 3.7 that the inclusion of a priori information into the
decision process significantly improved the decisions as to which data to
believe. It follows that ideally such decisions should be postponed until as
much independent outside information as possible has been collected. The
process of data assimilation is designed to bring together, organize, and
reconcile all available information; processing of non-Gaussian data should
ideally be an integral part of the assimilation, rather than a preliminary
step. Of course practical constraints on communications, computing, and
complexity of algorithm may 1limit this ideal. Here we investigate the
feasibility of extending the maximum probability method to observations
distributed in two-dimensions, combining the decision process with objective
analysis. Purser (1984) suggested how an analysis scheme could directly treat
observations containing non-Gaussian errors; some work on this method has
already been carried out by Lorenc (1988). We compare results from this

nonlinear combined quality control and analysis with more conventional

two-stage methods.

In the averaging example in 3.2.4, the best value of a single output
parameter had to be estimated. It was feasible to search all possible values
to find this. 1In the analysis problem, many parameters have to be estimated
(e.g. the values at a grid of points); it is not feasible to do a
comprehensive search of a multidimensional phase space. Instead we use an
iterative algorithm. For simplicity we derive this first for the averaging

problem. We start from (3.7), with p(u) given by (3.8), and define a penalty

function J:

1 2
J(u) = -ln{——exp|- (u=b) N plo, lu)} + constant. (3.9)
c / 202 i !
b 2n b
Minimizing J is equivalent to maximizing the probability. The logarithm

converts the product into a summation, which is easier to handle:
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2 (o -u)?
J(u) = WPy 1 (1-Pg) exp|- ——15——- + Pal (3.10)
2 1 o V2n 20 2a

We have substituted (3.1) and omitted the constant. A Newton iteration to

find the minimum of (3.10) is:

- - " -1 ’
U, =u -0 (ut)) J (ut), (3.11)

where t is the iteration counter, and J’ and J” are the first and second

derivatives of J with respect to u. Applying (3.11) to (3.10) we get

2
b—ut + ; o e(ol.ut) (oi ut)
ut+1 = ut + 5 R (3.12)
1+ Z o s(ol,ut)
where
(1-Pg) exp(— (oi ut)
1 o V2n 202 )
€(o ,u) = = (3.13)
1ot ol (o -u )3
(1-Pg) exp|- it + Eﬂ
o V2n { 202 ) 2a

The term that multiplies 1/6¢° in (3.13), reducing the weight given to the
observation, is the posterior probability that observation i does not have a
gross error, given that ut is correct (Lorenc and Hammon 1988). When this is
small, the observation is effectively rejected:

25
( (oi—ut)

(1-Pg) ex

c V2n | 202 )
P(glu ) = . (3.14)
) (1-Pg) ([ (o,~u )? P
ﬁgex __1_2t__ +_g
o V2n { 20 ) 2a

Note that the iteration (3.12) does not find the absolute minimum of J.
If it is started from uo=b, and b is reasonably accurate, then in most in
cases the minimum found (typically in five iterations in our example) is

acceptable. But without this background information, the iteration could
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converge to any of the secondary minima apparent in figure 3.5.

We can extend this to the analysis problem, with observations distributed
in space, by considering the u, and bi at each observation position. As in
section 2.1, we manipulate these in vectors u and b. (As we are for the
moment dealing only with values at observation positions, we do not need to
explicitly represent subscripts i and j, like we did in 2.1). We also use the

background error covariance, defined in 2.1. (3.10) becomes

(o -u )2
Jw = (5B wb) - § 1n (-Pg) upl- L K [ 19 (3.15)
1 o V2 20 2a

Substituting the derivatives of this in (3.11) we get the equivalent of (3.12)

= - -1,
U, =9 *Q (bu +B E (o u,)) (3.16)

where

Q =(1+BE')" (3.17)
and E;l is the a diagonal matrix whose 1 th diagonal element is given by
e(oi,ui t) as defined in (3.13). Iteration of (3.16) and (3.17) requires a
matrix inverse each step to evaluate Qt. An approximation for Qt’ similar to
that used in the AC scheme, is possible. We take Qt to be diagonal, with its

i th element qit given by

_ -1
q ., = (1 + ; 'ij| c(oj,uj’t) ) . (3.18)
This reduces the computation, while still converging to the same minima. Once
the best estimate analysis at the observation positions is

found, the analysis values at grid points can be found from

., S
u = BikBU(ui b ). (3.19)

Here we have used subscripts 1 and j to indicate values at observation

positions, and k to indicate values at grid points, as in section 2.1.
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To demonstrate this system, we repeated the examples of 2.1. With Pg set
to zero, results were identical, as expected (Lorenc 1986). With Pg=0.5 then
using (3.17) took about twenty iterations to converge. Using (3.18) took more
iterations, but less computation. Table 3.3 shows the convergence for one

simulation using (3.18).

Number of iterations, k= 0 1 10 20 50 100 200 300 500

RMS Error in components at

. < h s -1,/ 6.4 5.2 2.2 2.0 1.7 1.6 1.5 1.5 1.5
observation positions(ms™ ")

Table 3.3 RMS error of uk for observations distributed as in example 2 of

section 2.1, with Pg=0.5, ¢=2.5ms ', 0b=5ms_1.

Nine simulations with different random errors were performed; for each
the analysis was evaluated using (3.19) at an analysis grid like that used in
the OI example in section 2.1. Values of the analysis errors are shown in
column 1 of table 3.4. The average value of 1.8 ms ' is of course larger
than the 1.2 ms obtained using OI in section 2.1 (and using Pg=0 in this
scheme), because half of the data contained no useful information. It is only
very slightly larger than the OI error obtained with half the data (1.7 ms_l),
indicating that uncertainty about which data were incorrect contributed little
to the nonlinear analysis error. This analysis system is used to evaluate
various scenarios in section S5, with Pg up to 0.75. Even in this case the

nonlinear analysis performed well.

case Nonlinear QC in 500x500km boxes QC in 300x300km boxes
analysis then OI analysis then OI analysis

1 1.4 1.9 1.7
2 1.8 1.9 2.0
3 1.8 2.5 3.7
4 1.8 2.0 2.0
5 2.1 1.8 1.9
6 2.4 2.4 1.8
7 1.7 2.0 2.7
8 1.3 1.2 1.6
9 1.7 1.9 1.7
average 1.8 2.0 2.2

Table 3.4 RMS error in ms ! for analysed wind components over a simulated
swath of windlidar observations as in section 2.1 example 2. Results are
shown for the nonlinear analysis of section 3.3, and for separate quality
control and analysis steps as described in section 3.4.
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3.4 Variational analysis used for quality control

Using all observations together, as in the ideal nonlinear variational
analysis, is computationally expensive, and difficult to organize.
Preprocessing of observations in small batches, using a background field but
no other observations, is easier. In this section we set out to see how much
is lost by this approach. The observations were divided into small batches,
each of which was processed separately by the nonlinear variational scheme
(using the same background information as before). For each observation, its
posterior probability of a gross error, assuming the resulting mini-analysis
to be correct ( P(qlut) ), was calculated using (3.14). Only those
observations with P(glhk)>0.5 were passed to an OI analysis, which combined
all the observations using (2.3). The last two columns of table 3.4 show the
accuracy of analyses resulting from this scheme, for two sizes of
preprocessing box. It is clear that reducing the amount of information used
in the quality control stage significantly increases the analysis error. We
conclude that in the circumstances of our simulation, with a background field
available from a good short-period forecast, a nonlinear analysis accounting
for non-Gaussian errors is better than a (simpler) prior quality control step

and a linear analysis.
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4 Estimation of errors of representativeness in single-shot single-

component Dippler lidar winds.

4.1 Introduction

The procedure for simulating observations for use in an observation

system simulation experiment (OSSE) may be considered to comprise three steps.

1) Interpolation of the NWP "nature" run to obtain the "observed" variable at

the required observation time and location.

2) Adjustment of the interpolated value to take account of the small scale
atmospheric variability which is not represented in the NWP "nature" run, but

which will be sampled by the observation - i.e. consideration of the so-called

representativeness errors.

3) Further adjustment to take account of the measurement error characteristic

of the observing instrument and any errors incurred during data processing.

The purpose of this section is to specify the representativeness errors
(step 2) appropriate for the simulation of single-shot single component
Doppler lidar winds.

The magnitude of the representativeness errors will depend on the
resolution of the NWP model used to generate the nature run, we shall assume
that the model used has a grid resolution of 100km. In part of our analysis
we shall refer to fields from the UK Cyber global model, which has a

horizontal grid of resolution ~170km. We consider the representativeness error

to comprise three parts;

a) Horizontal representativeness error: The lidar shots will have a horizontal
scale of order ~10m and will sample motion on this scale. By comparison the
shortest scales that can be resolved in the nature run are of order ~200km
(twice the model grid length). It is clear that small scale structure in the
wind field, which will be resolved by the lidar observations, will not be
present in the nature run. This small scale "roughness" must therefore be

quantified and modelled in order to produce a realistic simulation of the
lidar data.

b) Vertical representativeness error: Errors of vertical representation are
likely to be much smaller than those of horizontal representation - since the

vertical resolution of the nature run and the vertical scale of the lidar shot
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are similar (~500m). However, errors of vertical representation will increase
where aerosol stratification reduces the effective vertical resolution of the
shot, and consideration of this effect will therefore be included in our

analysis.

c) Vertical velocity "aliasing": The horizontal wind component will be readily
obtained from the measured line of sight (LOS) wind if the component of
vertical velocity along the LOS is neglected (alternatively the component of
vertical velocity could be estimated from an NWP "first guess" field). Errors
arising from the neglect of the vertical component are termed vertical
velocity "aliasing" errors - and we shall include an assessment of their
magnitude in our estimate of the representativeness error. Vertical wind
speeds are typically small compared to horizontal wind speeds, and therefore
the neglect of the vertical component will be Justified in most cases.
However, in local regions where the vertical velocity is large (order ims™' or

more), its neglect will result in significant error in the derived horizontal
wind.

In section 4.2 spectral analysis of wind data and NWP model wind fields
is used to estimate typical values of the three error components described
above. The estimates are derived from averaged spectra, and will therefore
represent an "average" or ‘"background" contribution to the 1local
representativeness error. The "background" value should be appropriate for
most situations; however, in meteorological regimes characterised by above
average ‘"roughness" in the wind field the background value will be an
underestimate. We therefore give special consideration, in section 4.3, to a
number of regimes (e.g. boundary layer flows), for which wind variability is

typically above average.

4.2 Use of spectral analysis to estimate "background" representativeness

errors
4.2.1 Horizontal representativeness errors

To estimate the horizontal representativeness error we have analysed wind

spectra from 3 sources, described below.

1) Published spectra: Lilly and Petersen (1983) have presented a number of
wind spectra, obtained by various workers, in a common format. The individual

spectra show similar characteristics, and suggest an overall average which we
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shall use as a reference, and refer to as the LP spectrum.

2) Spectra obtained from Meteorological Research Flight (MRF) wind
measurements. Wind spectra have been derived from measurements made by the MRF
C130 over 35 flight segments of average length 490km, and at altitudes between
20,000 and 26,000ft. Of the 35 segments 32 were obtained during the Mesoscale
Frontal Dynamics Project (MFDP), and therefore include flights in or near cold
front jet streams. We use this dataset to provide information on the increase
in representativeness error likely in jet flows.

The method of processing the MRF data was as follows. The raw data
(recorded at 16Hz resolution) were extracted at S5sec resolution and smoothed
over 3sec intervals. Spectral analysis of the wind speed was performed using a
fixed baseline of 1024 grid points for each flight sector. The data were first
de-meaned and tapered (25% at each end) using a split cosine bell function,
and then either padded with zeros or wrapped around depending on whether the
actual number of S5sec means was less than or greater than 1024. Using Taylor's
"frozen" turbulence hypothesis, and assuming an aircraft speed of 150ms-1, the
frequency spectra were converted to wavenumber representation. Spectra from
individual sectors were combined by weighting each according to the length of
the sector. To investigate the dependence of wind variability on wind speed,
each sector was classified according to the mean wind speed along the sector;

1

four wind speed bands were considered - 0-30ms-1, 30-40ms™ ", 40-50ms™! and

50~60ms-1. Combined spectra were then produced for each of these mean wind
speed bands.

3) Model wind spectra. Wind spectra derived from NWP wind analyses have been
used to estimate the wind variance, on scales longer than 2 grid lengths, that
will not be resolved by the nature run. For this purpose wind spectra were
derived from the UKMO Cyber NWP model fields by sampling the model winds at
400mb along longitude lines from 90N to 90S. Ten such samples were spectrally

analysed and average spectral amplitudes found.

The method of estimating representativeness errors from wind spectra is
best illustrated by reference to figure 4.1, which shows the range of spectra
discussed by Lilly and Petersen (continuous lines), the MRF combined spectrum
for all 35 sectors (+s) and the spectrum derived from the model fields
(circles). A line representing the average amplitude of the spectra discussed
by Lilly and Petersen is also shown, and will be referred to as the LP

spectrum. Note first that the model spectrum is truncated at a wavelength of
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Figure 4.1: Wind variance power spectra generated from the MRF dataset (+s)
and UK Cyber model winds (circles). The range of amplitudes in the spectra
discussed by Lilly and Petersen (1983) is shown schematically, a line
representing the average amplitude (over the range 10~ >k > 10_4'3) is
also shown, and is referred to in the text as the "LP" spectrum.

~340km, twice the model grid length (the corresponding wavenumber will be
referred to as kzg); variance contributed by motion on scales smaller than
this cannot be resolved by the NWP model. Area under the spectral curves shown
in figure 4.1 represents wind variance, and integration of the LP spectrum
over all wavenumbers higher than k29 gives an estimate for the magnitude of
the variance unresolved by the Cyber NWP model. In the wavenumber interval
k29 > o the spectrum has a slope of -5/3, and the integration may therefore be

written,
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0% (w,k_ )= TE(k)dk = 3k_E(k_) . (4.1)
29 =5 29 29
2
k
2g
Taking values of k and E(k ) from figure 4.1 gives ¢ (m k ) 3. 95m2§e.
Integration of the LP spectrum therefore suggests that the loss of small scale
detail in wind fields represented on a finite grid of grid length ~170km will

result in an rms representativeness error in single wind components of
olw,k_ ) = 1.9ms”?
29

Comparison of the model spectrum in figure 4.1 with the LP spectrum shows
that energy in the model spectrum decreases more rapidly with increasing
wavenumber. This implies that higher wavenumbers are not fully resolved in the
model field. To estimate the unresolved variance at wavenumbers greater than
kzq we assume that 4 grid length waves (i.e. wavenumber k-k ) are fully
resolved by the model and adjust the model spectrum (retaining the slope of
the spectrum) to intersect the LP spectrum at k—k . The triangular area
marked A on figure 4.1 represents the unresolved variance over the wavenumber

range k g< k < k g’ and has been measured at o (k k4g) = 1.96m°s™2. The

overall unresolved variance may now be written

’

2 _ 2 2 _ _ 2 -2
oh =0 (0k, )+ 0 (ky k) = 3.95 + 1.96 = 5.91n"s

giving an overall horizontal representativeness error of o = 2.4ms™?

The range of spectra discussed by Lilly and Petersen are strongly
weighted to the level of the upper tropospheric wind maximum. As a result the
estimate o= 2.4ms™! is likely to be on the high side for low atmospheric
levels and on the low side for the level of the jet stream itself. To assess
the representativeness error appropriate for jet stream situations we discuss
the results of spectral analysis of the MRF dataset which, as mentioned
previously, contains a high percentage of measurements through jet streams.

Further reference to figure 4.1 shows that, at wavelengths shorter than
40km, the MRF spectrum and the LP spectrum have the same slope (-5/3). There
is less energy in the MRF spectrum, however this is thought to be an artifact
of the differences in initial smoothing and tapering of the data, and the
amplitude of the MRF spectrum has been adjusted accordingly (continuous thick
line in figure 4.1) so that the two spectra coincide at wavelengths below

40km. At wavelengths greater than 40km the energy in the ad justed MRF spectrum
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exceeds that of the LP spectrum - as a result of a more negative spectral
slope in the former. The greater energy at these wavelengths is presumably a
result of the greater sampling of jet stream activity in the MRF dataset in
comparison to the datasets used in the Lilly and Petersen cases. The
triangular area marked "B" in figure 4.1 represents a measure of the
additional wind variance on scales < k29 that will be unresolved by the model
in the vicinity of Jjet streams, and has been evaluated at

oi(m,kzg) = 8.75m°s 2. Assuming the wunresolved variance in the range
k4

<k < k2 remains unchanged, the unresolved variance in jet stream flows may
g g

be estimated as

oZ = o%(m,k_) + 65(w, k. ) + 02(k. ,k ) = 3.95 + 8.75 + 1.96
h 2g J 2g 2g’  4q 2 2
= 14.66ms .
o= 3.8ms™

A representativeness error of 3.8ms_1would therefore appear more appropriate
for jet stream situations. Since this value is specific to Jjet flows it should
represent an overestimate if used as a general rms error for the level of the
Jet stream. For a cautious estimate of the representativeness error associated

with grids of resolution ~170km we may therefore specify o, in the range

2.4 - 3.8ms-1, where the lower value is determined from the Lg spectrum and
the higher value, assumed to apply at jet levels, from the MRF spectrum.

As a check on the above estimate we may refer to values determined using
other techniques for radiosonde wind observations, which sample the wind field
on a scale similar to that of the single lidar shots. By comparing radiosonde
observations with short range forecast fields Hollingsworth (1986) calculated
vector rms observation errors for radiosondes in the range 2-3.5ms™ {single
wind components), with the higher value corresponding to the jet stream level
(~250mb). Hollingsworth’s estimate, valid for a grid resolution of ~300km, is
similar to the those obtained for a grid resolution of ~170km using the
spectral method described above. For a second comparison we refer to the work
of Kitchen (1989) who, using data from the U.K radiosonde network, found
errors in the range 1.7-2.3ms”" for "ideal" radiosondes (which were considered
to remain vertically above the point of release), and a grid resolution of
150km. The results of both the above studies support our assertion that the
characteristics of LP and MRF spectra result in a tendency to over estimate
the error. However, to err on the cautious side is considered preferable for

the purposes of an OSSE - since it is clearly desirable to avoid the over
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optimistic results that may result from under specification of the observation
errors.

The advantage of the spectral analysis method is that it can be easily
applied to any grid resolution and, having established that the method should
give errors which are on the "safe" side, a similar analysis to that described
above was repeated assuming a horizontal grid resolution of 100km (the nominal
resolution of the nature run). The contributions to the unresolved variances
are summarised in table 4.1 (rows 1&2) and give oy in the range 1.7 - 2.4ms”}
where the upper values refers to the level of the Jjet streanm.

In further analysis of the MRF data combined spectra were produced for
', 40-50ms™' and

50-60ms . Comparison of all four spectra showed very similar amplitudes and

sectors with mean wind speeds in the range <30ms™), 30-40ms”

slopes, suggesting there was no basis for modulating the representativeness
error according to the mean wind speed on scales of ~500km.

The wind spectra discussed above, and the derived representativeness
errors, pertain to mid-latitude wind regimes, and we therefore need to assess
their applicability in tropical regions. Nastrom and Gage (1985) have
performed a comparison of spectra over a range of latitude bands and found
spectral slopes to be independent of latitude, whilst spectral amplitudes
were found to be 1lowest in the tropics and highest in mid-latitudes. The
horizontal representativeness errors quoted above will therefore tend to
overestimate the error in tropical regions. However, for the reasons stated
previously it is considered preferable to err on the cautious side, and for
this reason we propose that the errors derived from mid-latitude datasets be
used at all latitudes. Moreover, although, in principle, it would be possible
to take account of latitudinal variations, to do so would be inconsistent with
the specification of errors for the currently deployed components of the
observing system - which will follow those used in operational analysis

schemes - and which do not generally include latitudinal variations in error

for a given observation type.
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170km grids 100km grids

average Jjet average Jet
Unresolved variance
2-4 grid lengths 1.96 1.96 0.53 0.53
gn§§3°;vedisaili“fﬁs 3.95 12.7 2.37 5.07
© grid ‘eng (8.75+3.95)
32;?:22;63 vertical 0.25 0.75 0.25 0.5

(3*0.25) (2*0.25)

Vertical velocity 0.04 0.04 0.04 0.04
aliasing
Instrument error 1.0 1.0 1.0 1.0
Total error, 7.2 16.45 4.19 7.14
variance (¢°)
ObserYiglon error 5. 7 4.1 2.0 5. 7

Table 4.1 Summary of contributions to "background"_observation errors in
lidar wind observations. An instrument error of 1ms has been assumed.

* For the "jet" case the vertical variance has been scaled by the ratio
of the horizontal variances in the "jet" and "average" cases,
i.e. 12.7/3.95 ~ 3.

4.2.2 Vertical representativeness errors

The vertical resolution of the lidar shots is likely to be of order 500m,
similar to the vertical resolution of nature run, and the representativeness
error arising from vertical variability in the wind field might therefore be
expected to be small. However, as discussed below, vertical structure in the
aerosol distribution will tend to enhance the vertical representativeness
error. Campaigns to investigate backscatter characteristics have found that
the backscatter coefficient is prone to vary by several orders of magnitude
over a few 10s of meters (as a result of aerosol stratification). An example,
reproduced from Vaughan et. al. (1987) is shown in figure 4.2 which shows a
plot of backscatter (at 10um) against height. Very strong backscatter was
observed near 6km and 8km while near 8.5km the backscatter dropped to the

minimum detectable. The example illustrates how the lidar return from a single
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Figure 4.2: Vertical profiles of backscatter (Beta) at 10um and temperature
(from an example in Vaughan et.al., 1987). Note the very strong backscatter
at levels marked "a" and minimum detectable at level “m".

shot may be overwhelmed by backscatter from a thin horizontal slab within the
target volume. In such cases the effective vertical resolution of the lidar

data may be reduced to a scale much smaller than the vertical resolution of
the NWP model.

To estimate the vertical representativeness error we refer to the work of
Endlich et. al. (1969), who performed a spectral analysis of vertical profiles
of the horizontal wind speed. The vertical profiles were obtained by radar
tracking of rising balloons, and were processed to yield 50m layer averages at
height intervals of 25m. Figure 4.3 shows spectra obtained for three different
cases characterised by strong (April case), medium (November case) and light

{(July case) winds. Each spectrum shown in figure 4.3
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Figure 4.3: Spectra derived from vertical profiles of the horizontal wind
by Endlich et.al. (1969). The April, November and July spectra correspond
to wind profiles classified as "strong", "medium" and "light", respectively.

represents a graphical average of individual spectra obtained from several
profiles measured at 1-2hr intervals. All three spectra show a slope of ~-2.8
for vertical wavelengths shorter than 1km. Slightly greater amplitudes are
evident in the strong wind case. Spectra for separate zonal and meridional
components were also obtained and found to be similar to the combined speed,
except for long wavelengths which exhibited more energy in the zonal component
due to the westerly character of the flow in each case. Assuming a -2.8 power
law, we can integrate the spectrum and determine the representativeness error
associated with a given wvertical grid resolution (assuming "pin point"
vertical resolution of the lidar shots). The result is shown in table 4.2,

which shows the vertical representativeness error (Um) as a function vertical
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grid resolution. Since, in practice, aerosol stratification will not
contaminate all shots, the values in table 4.2 should be overestimates, and
for this reason we propose a value of o= O.Sms-l, somewhat smaller than that
indicated in table 4.2, for grids with vertical spacing of ~500m. To obtain
a value for o appropriate for the jet stream level we assume that the
vertical error variance increases in the same proportion as the horizontal
error variance (i.e. by about a factor of 3, for grids of ~170km). The

resulting values are summarised in table 4.1 (row 3).

Vert. grid Vert. rep;1
resolution |error {(ms™ )

S00m 0.8
250m 0.4
200m 0.2
100m 0.1

Table 4.2 "Background" vertical representativeness errors for

different vertical grid resolutions derived from spectra published by
Endlich et.al. (1969).

4.2.3 Vertical velocity "aliasing"

The contribution from vertical velocity aliasing will be most important
in localised regions where the vertical velocity is large, and specific
meteorological situations which may give rise to large vertical velocities are
considered in section 4.5. In this subsection we specify the small
contribution to errors of this type which will arise from "background"
structure in the vertical velocity field. Ecklund et.al. (1986) have presented
vertical velocity spectra derived from Déppler radar measurements at Poker
Flat, Alaska; Platteville, Colorado; Rhone Delta, France and at Ponape in the
central Equatorial Pacific. They produced spectra for "quiet" and "active"
periods by separating the data into periods when the wind speed throughout the
troposphere was less than or greater than 10ms—1. The quiet-time spectra,
reproduced in figure 4.4, show similar characteristics for all datasets. The
spectra are flat over the range of periods greater than the Brunt-Vaisala
(B-V) period (10mins), with a rapid decrease in amplitude occurring at periods
less than the B-V period. A peak in the spectra at periods slightly longer
than the B-V period is typical. By integrating the spectra, Ecklund et.al

estimate the "background" variance of the vertical wind to lie in the range
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50 - 200cm25_2 (0.07 - 0.14ms—1. rms), which is in accord with measurements
made by Roll (1965). For comparison with the results of Ecklund et.al., which
pertain to conditions over rough terrain, a vertical velocity spectrum was
produced for the MRF dataset - which pertains to conditions in jet streams
over the Atlantic. The spectral slope and amplitude of the MRF vertical
velocity spectrum were found to 1lie between those for quiet-time and
active-time spectra found by Ecklund et.al. (Ecklund et.al show that the

active-time spectra, 1like the horizontal wind spectra, exhibit a slope of
-5/3). Integration of the MRF spectrum gives a total vertical wind variasnce
of O.Oszs—2 (O.22ms—1 rms). Considering both the results of Ecklund ci.&).

and those obtained with the MRF dataset, a value of ow = 0.2ms-1 would seem a

reasonable estimate for the background contribution from vertical velocity

aliasing.

Power Spectral Density (m? 8-2 Hz~")

| { - ! ]

@ @ Q)] XY 15
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Figure 4.4: Intercomparison of quiet-time vertical velocity spectra observed
at Poker Flat, Alsaka; Plateville, Colorado; Rhone Delta, France, and Ponape ,
central Equatorial Pacific {from Ecklund et.al., 1986).
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4.2.4 Summary

In the above we have attempted to specify "background" values of the
representativeness error for Déppler lidar winds, contributions arising from
the finite horizontal and vertical resolution of the NWP grid and from
vertical velocity aliasing have been considered. The results are summarised in
table 4.1 with reference to NWP model horizontal grid resolutions of 170km and
100km and with a separate column showing errors appropriate for the jet stream
level. Overall observation errors are also shown, assuming an instrument error
of 1ms_1, and that all errors are independent. For grid lengths of 100km the
observation errors for single component winds lie in the range 2 - 2. ms™

14

with errors of horizontal representation dominating the overall errors.

4.3 Local enhancement of the "background" representativeness error

The background representativeness error discussed above will
underestimate the error in regions where small scale "roughness” in the wind
field is above average - in the planetary boundary layer (PBL), for example.
In this section, therefore, we give special consideration to the errors likely
to be associated with specific meteorological situations characterised by
above average wind variability. Errors from regions affected by the following

meteorological phenomena will be considered,

a) Boundary layer flows
b) Clear air turbulence
c) Orographic gravity waves
d) Stratiform cloud tops

e) Convective cloud tops

We shall refer to statistics from existing observational studies and, in the

case of (a) and (c) to case study simulations performed with the UK Met.

Of fice mesoscale model.

4.3.1 Observational studies

Some published statistics on wind variability associated with the
meteorological phenomena listed above are summarised in table 4.3, and give an
idea of the likely error that will result in the lidar observations. Further

details of the specific studies are given below.
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Standard deviations (ms™}) Source

o = 1.26(land);0.88(ocean)| Hicks (1981); Minnesota
Vo~ g, and Coral Sea field
Convective PBLs o 1.16(land);0.6(ocean) experiments.
= 0.9

Assuming isotropy,

oy = 1/vV2 = 0.7

Stable PBLs oy = 0.5 Mesoscale model case study

o= 3.8; c,= 3.3; o~ 2.5 | Kennedy and Shapiro (1980)

C.A.T. X
Assuming isotropy,
o= 3.2/V2 = 2.3
_ 1-2 (K) UK ~ Brown (1983)
Orographic ¥ 2-3.5 (Rockies) Mes. model studies
gravity waves Rockies - Vergeiner and
Lilly (1970)
TV 0.3; L 0.4 Nicholls (1984)
Stratiform ’
cloud tops Assuming isotropy,
oy 0.35/¥V2 = 0.2
. w =25 Lopez (1977)
Convective max .
X LeMone and Zipser (1980)
cloud tops represent with log-normal
. . ; Roach (1967)
distribution

Table 4.3 Summary of error standard deviations, appropriate for various
meteorological conditions, for use in simulating lidar data.

a) Boundary layer turbulence.

Turbulent fluctuations in the convective PBL have a coherent structure on
a scale which is comparable to that of the lidar shots. Lidar returns from the
boundary layer will therefore reflect the turbulent motion, and appropriate
representativeness errors should be included in the simulated data. Turbulent
motions in the stable boundary layer are generally of smaller scale and
amplitude (with the exception of shear driven mechanical turbulence, important
in strong wind conditions), and will have less impact on the larger scale
representativeness of the 1lidar winds. Turbulence statistics for the

convective PBL, taken from Hicks (1985), are shown in table 4.3 and refer to
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studies of the convective planetary boundary layer (PBL) in a Minnesota field
experiment (Izumi and Caughey, 1976) and over the Coral Sea (Warner,
1972,1973). Standard deviations for the transverse and vertical turbulent
velocity components are shown - o, and o respectively. Data at heights
between 0.1Z and 0.92 were used where Z is the height of the mixed layer. For
the Minnesota data values of ov=1.26ms-1, cJ'W=O.88ms-1 were found; slightly
lower values were found for the tropical ocean dataset. If we assume, for
simplicity, that the turbulent fluctuations are isotropic with a standard
deviation of ~1lms™’ then, for the line of sight (LO0S), clos= o, o= 1.Oms—1.
Horizontal single-shot 1lidar winds in such regions are likely to possess
corresponding errors i.e. oh = oLOS/VQ = 0.7ms™" (assuming a scan angle of
150).

Errors arising from the mean structure of the PBL wind profile, rather

than the turbulent fluctuations, are discussed in section 4.3.2,

b) Clear air turbulence.

Kennedy and Shapiro (1980) have made measurements of wind variance
associated with a zone of moderate to severe clear air turbulence (CAT). The
mean standard deviations found on two passes through the zone at 407mb and
358mb are given in table 4.3 (the direction of the u-component being defined
along the principle component of the flow). Approximating the turbulence with
isotropic fluctuations of standard deviation 3.5ms™ suggests an rms error in
observations of the horizontal wind of order oy = 3.5/V¥2 = 2.5ms™},

Algorithms are available for predicting the occurrence and intensity of
CAT from NWP model fields and could be used to modulate the rms errors. Dutton
(1980), for example, has described a simple empirical index defined by a
linear combination of the horizontal wind shear and the square of the vertical
wind shear. However, the algorithms are generally tuned for aviation safety
purposes and tend to over predict the occurrence of CAT. Some tuning of the
algorithms, and adaptation to work with the NWP model used to generate the

nature-run, would therefore be a necessary preliminary step.

c) Orographic gravity waves

Brown (1983), has analysed vertical velocity measurements associated with
gravity waves measuredduring five separate research flights over the U.K.. His
results suggest that vertical velocity aliasing errors of o 1-2ms”" will be

typical in gravity wave activity associated with orography on the scale of
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that in the U.K.. Vergeiner and Lilly (1970) have published a large number of
vertical velocity measurements made in gravity waves over the Rockies. They
note that wave amplitudes were typically in the range 3—5ms—1 which, if we
assume that the waves are sinusoidal, may be interpreted as corresponding to
rms vertical velocity in the range o= 2-3.5ms . The above figures suggest
the probable range of errors associated with orographic waves. The actual
error at a given location will depend on details of the terrain and the flow
type, and it may be possible to simulate some of the structure in the errors
by modulating the errors, within the range 0-3.5ms”" (rms), according to the
intensity of gravity wave activity as specified by output from the gravity
wave drag scheme in the nature run (see Courtier et.al., 1992). This strategy
would provide a means of modelling the errors from weakly trapped waves which
dissipate quickly on the downstream side of the mountain, but would not
address errors resulting from trapped lee waves - which may propagate for
large distances (~1000km) downstream. Simulation of errors from the weakly
trapped waves is probably more important, however, since these waves propagate
vertically and can disturb the local flow over the entire troposphere.
Moreover the cases discussed by Brown (1983) indicate that the weakly trapped
waves frequently correspond with those of largest amplitude (largest aliasing
errors). Use of the gravity wave drag scheme to modulate the errors should,
therefore, enable simulation of the errors associated with orographic waves in
the regions where such errors are likely to be most significant.

To complement the observational studies mentioned above, a number of 3-D

simulations of orographic gravity waves, using the UK Met. Office meso-scale

model, are presented in section 4.3.2.

d) Returns from stratiform cloud tops

Returns from cloud tops will sample the small scale turbulent motion of
the cloud particles, plus any bulk motion of the cloud particles in the cloud
system, in addition to the large-scale flow. Nicholls (1984) has presented
measurements of the variance of the turbulent wind components in daytime
stratocumulus over the North Sea. For the purposes of specifying typical
errors these measurements are probably reasonably representative of other
stratiform cloud types. Values of 02 = O.lSmas-2 were found near the cloud top
and dropped rapidly to oi = O.Oszs_2 above cloud top. Variance for each of
the horizontal components was found to be similar at 02 = osz O.lmzs_z.

Assuming, once again, that the fluctuations may be approximated by isotropic
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turbulence, the rms error in the horizontal wind arising from turbulence at

stratiform cloud top may be estimated as 0.35/V2 ~ O.st_l.

d) Returns from convective cloud tops

Shots striking convective cloud tops will sample the bulk upward motion
of cloud particles in convective turrets, and vertical velocity aliasing
errors will be important in these cases. Shots striking the cloud walls will,
presumably, also sample upward velocity although of lesser magnitude.
Descending particles will only rarely be encountered (in rain, for example)
since in dissipating convective turrets, the particles are evaporating rather
than descending.

As a simplification to the problem we therefore seek a distribution which
will describe the growth rate of convective cloud tops in a population of
cumulus clouds. The vertical velocity contamination may then be simulated by
first deciding whether the shot strikes a cumulus top - an eventuality which
may be expressed as a simple function of the convective cloud cover (i.e. for
3/4 cover, 3 out of 4 shots will strike a cumulus top). Secondly, for those
shots which strike cloud the vertical velocity contamination is determined by
the distribution describing the growth rate of the cloud tops.

Lopez (1977) has shown that cloud height in both tropical and
extratropical cumulus populations closely follows a log-normal distribution,
and it would seem reasonable to assume that the growth rate of convective
turrets follows a similar distribution. In a study of convective storm tops in
Oklahoma, Roach (1967) observed that the growth rate of convective turrets,
could reach 25ms ! in exceptional cases; a log-normal distribution with a tail
allowing a small probability of cloud top growth rates of 25ms ™! might
therefore provide a reasonable simulation of the distribution of cloud top

vertical velocities. Cumulative probabilities based on a log-normal

distribution defined by,

F(x) =1 exp[—l 2(ln(x/xo))z], (4.2)

V2nlsx 2s

are shown in figure 4.5. The parameters s and x are set at s= 1.0 and x0= 1.7
respectively, which gives a probability of cloud top velocities greater than
20ms ™! of 0.004. A one-tailed Gaussian distribution with a zero mean and an
rms of 7ms (which produces as similar probability of cloud top vertical

velocities of 20ms_1) is shown for comparison. For the lognormal distribution
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Figure 4.5: Growth rate of convective turrets as modelled assuming log-normal
and Gaussian distributions, and specifying (arbitrarily) that the probability

of a growth rate in excess of 20ms ~ should be ~0.004.
distribution is shown in dotted line and the Gaussian

The log-normal
in solid line. The

cumulative probability of growth rates below a given abssisca value are shown

for the log-normal distribution (dashed) and the Gauss

15% of all shots striking cloud top would have errors
5% would have errors greater than IOmS-{
distribution would imply that 50%

errors of more than 5ms = and 15% would have errors g

In contrast,

ian (dash-dot).

greater than SmS_l, and

use of the Gaussian

of shots striking cloud top would have

reater than 10ms .. This

suggests that use of a Gaussian distribution to simulate vertical velocity

aliasing errors in returns from convective cloud tops would seriously over

estimate the errors.
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4.3.2 Studies with the UK mesoscale model

a) Unrepresentative sampling of the mean boundary layer wind profile

Vertical wind shear and marked inhomogeneities in aerosol distribution
are relatively common features of the PBL, and will contribute to
representativeness errors in winds from this level. Consider, for example, a
region in which the aerosol is concentrated in the surface layers and a
typical boundary layer wind profile exists - i.e. decreasing speed and
backing direction with decreasing height. The lidar shots will sample the
low-speed, aerosol rich regions and consequently will show a bias with respect
to the mean boundary layer wind: the bias in wind speed will be negative, and

the bias in direction will reflect a measured wind direction consistently

backed from the true direction.

FLIGHT 744

14,

12.-

Height (km)

-12. -11. -10. -g. -8. -7. -6.
Log(Beta(1/msr))
L | | ! | { | | ] | |
-78. -60. -50. -40. -30. -20. -18. ©. 18. 20. 30.

Static Temp (o’

Figure 4.6: Example vertical profiles of backscatter at 10um (Beta) and
temperature (from Vaughan et.al., 1987). Note strong backscatter below the

low-level temperature inversion, decreasing rapidly by 3 orders of magnitude
above the inversion.
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It is well known that low-level temperature inversions can lead to marked
discontinuities in the vertical distribution of aerosol. An example of this
effect (taken from Vaughan et.al., 1987) is illustrated in Fig.4.6. The
temperature trace (on the right) shows a marked temperature inversion with a
base at about 600m; backscatter below the inversion is about 3 orders of

magnitude greater than above the inversion, with the transition occuring

across a layer about 250m deep.

To investigate the errors associated with unrepresentative sampling of
the PBL wind profile, the following experiment has been performed using output
fields from the UK mesoscale model (Golding 1987, 1990). Shots were considered
to be located at all the model grid points, and only low level shots, which
for convenience were assumed to sample the vertical interval 5-480m (which
represents model levels 3-12), were considered. The shots were assumed to have
a vertical scale equal to the above interval (475m). The model fields were
checked for increasing temperature with height equal to 1K/500m over a depth
of 50m or more. When such an inversion was found, aerosol trapping was assumed
to occur at that grid point, and the wind perceived by the lidar shot was
assigned as equal to the mean wind in the sub-inversion layer (i.e., it was
assumed that returns from the aerosol rich part of the target volume below the
inversion overwhelm those from above the inversion). The error in the
perceived horizontal wind was defined as Ve = Vs - Vm, where Vm is the mean
velocity over the full layer (5~480m) and VS is the mean velocity over the
sub-inversion layer. Since the depth 5-480m is similar to the resolution of
the nature run, the error may be interpreted as a representativeness error.

Figures 4.7 and 4.8 show results from a case study using analysis fields
valid for OOGMT 9 Feb 1991. Figure 4.7 depicts the mean wind over the 5-480m
layer (Vm) and shows a weak cyclonic circulation situated over the Channel,
with a NE'ly flow present across much of the U.K. The wind errors, Ve, are
shown in figure 4.8; regions where [Vel > 2ms™' have been shaded. The tendency
for the perceived wind vector to be too weak in magnitude and to be oriented
to the left of the actual flow is evident. The appearance of the error vectors
suggests that the cyclonic vorticity of the flow is under estimated and the
convergence in the flow is over estimated. Note that, for the simple model
described here, the error is zero over the sea, where low-level temperature
inversions of the required strength were not present in the model fields. In
practice, although low-level temperature inversions are less common over the

sea, unrepresentative sampling of the boundary layer wind profile is still
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Figure 4.7: Mean wind over the layer 5-480m (V_) obtained from the mesoscale

model analysis field valid at OOGMT 8 Feb.1991" Solid lines are isotachs
at intervals of §ms_
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Figure 4.8: Difference (Ve) between the mean wind speed below the inversion

and the mean wind speed in the 5-480m layer (Vm). Regions where |Ve| > 2ms_1
have been shaded. The magnitude of the wind vectors has been multiplied by a
factor of five compared with those in figure 4.7. Isotachs are shown in 2ms

intervals. Note the confluent pattern in Ve over northern France and southern
England.
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Figure 4.9: Vertical profile of the rms vector difference between the mean
wind over 300m interval and the mean wind over the lower half that interval,
from mesoscale model analysis fields valid at 06GMT (dotted) and 15GMT
(dashed) 27 April 1991.
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Figure 4.10: As figure 4.9, but for the 06GMT field only and showing the
profiles obtained with vertical intervals of 100m (dotted), 200m (dashed) an d

300m (solid).
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likely to occur (high levels of near surface aerosol in the form of sea-spray
might give rise to similar effects, for example).

To assess the potential for errors at higher levels in the boundary
layer, additional experiments have been performed in which it was assumed, for
simplicity, that for all shots the target depth is exactly bisected by a
discontinuity in aerosol concentration. The rms vector differences between the
wind in the lower half of the shot depth and that over the full shot depth
give a measure of the potential error from this source at a given level.
Fig.4.9 shows results from a case study using analysis fields valid at O6GMT
and 15GMT 27 April 1991. The case was chosen because of the presence of
temperature inversions on the morning of that day which were "warmed out"
during the afternoon. Errors are shown for 06GMT, when nocturnal inversions
would have been near maximum strength, and at 15GMT when the boundary layer
should have been well mixed. The vertical scale of each shot is assumed to be
300m. At both times rms errors of 0.3 - 0.5ms | are present above 300m - with
slightly larger values in the 06GMT field - and show, in general, a decreasing
trend with height. For the 06GMT case there is a rapid increase in the rms
error below 300m to around 0.9ms™} near 200m. The effect of reducing the
vertical resolution of the shot is shown in figure 4.10, which shows rms
errors for the same case at 06GMT for resolutions of 100m, 200m, and 300m. The
difference is most marked below 300m where the error reduction from increasing
the resolution is almost twice that above 500m.

The experiments described above illustrate that in the presence of
backscatter discontinuities, "near surface" returns are likely to possess
negative biases in wind speed, and directions which are backed from the actual
wind direction. Errors are likely to be largest in "near surface" shots, and
for stable boundary layers where the absence of mixing can result in the

maintenance of strong vertical shear.

b) Vertical velocity aliasing in orographic waves

A research version of the operational mesoscale model, with 3km
horizontal resolution, has been proved capable of simulating certain classes
of long orographic lee waves with some accuracy. An example of the success of
the model (Shutts, 1990) is given in figure 4.11, which shows results of an
evaluation of model performance for a case study of lee wave activity over the
Welsh mountains. The continuous line shows the actual vertical velocity as

measured by the ascent rate of a sonde balloon, and the crosses show the
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vertical velocity predicted by the model along the trajectory of the balloon.
A close correspondence in both the amplitude and phase of the simulated and
actual vertical velocity is clear. In the following we take advantage of the
success of the model in simulating this case of lee wave activity to probe the
magnitude, vertical structure and dependence on orographic height of the
vertical velocity aliasing errors associated with orographic waves.

Figure 4.12 shows the rms vertical velocity (or rms aliasing error) as a
function of height derived from a model simulation of the case described above
{06 October 1989). Results of three runs are shown; run "A" is for the
standard model orography (the model uses smoothed orography with a peak height
of 741m corresponding to Mt. Snowdon (actual height, 1085m). Runs B and C are
for elevated orography; B = 2 x standard, C = 2.5 x standard. The rms error is
calculated for all points in which the orographic height is greater than 200m.
All three runs show rms errors of ~1ms_1 or more extending over the entire
depth of the troposphere. The shape of the profile is probably typical for

deeply propagating, weakly trapped waves. The profiles are fairly constant
1

’

with height in the troposphere and give approximate rms errors of 1ms
1.6ms™} and 1.8ms™’ for runs A,B and C respectively; the magnitude of the
errors decreases rapidly between 12-14km. A frequency histogram of vertical
velocity, for the layer 5-10km is shown in figure 4.13 for run C. The expected
frequencies from a Gaussian distribution with the same rms vertical velocity
are shown for comparison. The Gaussian is seen to underestimate the frequency
at the peaks and tails and to overestimate the middle ranges. However, for the
purposes of simulating lidar data, the agreement is probably good enough to
Justify its use in modelling the errors associated with orographic gravity
waves close to the source of the disturbance. Values of o= 1-2ms_1, found
with the model studies described above, are in agreement with those of Brown

(1983) for orography of the stature of that in the U.K.
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Figure 4.11: Verification of a simulation of lee wave flow over Wales, on

6 Oct 1989, by the high resolution (3km) version of the UK mesoscale model.
The continuous lines shows the ascent rate of a radiosonde balloon released
at a field site (an appropriate "still air" ascent rate has been subtracted)
The crosses show the vertical velocity from the model simulation along the
trajectory of the balloon. Note the excellent correspondance in both phase
and amplitude. (From Shutts 1990).
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Figure 4.12: Vertical profiles of rms vertical velocity(i.e. aliasing error)
from a model simulation of lee wave activity over Wales on 6 October 1989.
Three profiles are shown: A - standard model orography;B - standard

orography x 2; C - standard orography x 2.5. Only model grid points where
orographic height > 200m are considered.
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Figure 4.13: Histogram showing the frequency of vertical velocities of

a given magnitude (lms = bins) for run "C" (figure 4.12) over the 5-10km
layer (dark bars). The overall rms vertical velocity is 1.74ms™ ' and the
equivalent histogram for a Gaussian distribution of this rms is shown by the

thin blank bars. Note that the Gaussian distribution underestimates the peak
and tail of the actual distribution.
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4.4 Summary

The conclusions of this section are best summarised by reference to
table 4.4, which shows proposed lidar observation errors based on estimates of
the representativeness errors, discussed in the preceding sub-sections, and
assuming an instrument error of 1ms'1. The background representativeness
errors discussed 1in section 4.2 have been modified slightly to give maximum
errors at 250mb, and are in the range 2-3ms”!. The vertical distribution of
the background errors has been based on that currently used for radiosondes in
the UK. Met. Office Unified model (shown in column 3 for comparison). Examples
of local enhancements to the background error, from the effects discussed
above, are shown in column 2, and assume that the errors follow a Gaussian
distribution and are independent. Orographic wave activity and CAT are seen to
put a considerable increment on the rms background error values. A typical
rms error of 2ms . has been assumed for both orographic and CAT effects. In
practice these errors could be modulated according to output from the gravity
wave drag scheme in the nature run and CAT prediction algorithms although, to
ensure a reasonable distribution of errors, this would require some tuning and
experimentation with the NWP run used to generate the nature run . The effects
of convection are also likely to be significant, as reference to Fig.4.5 will
confirm, however since it is proposed that errors associated with convection
are modelled using a log-normal distribution these errors cannot be included
in an overall rms figure. An rms error of 0.7ms ™ has been assumed to apply
for all boundary layer types and covers the estimates given for convective
PBLs and those found for the stable PBL in the model case study (0.3 -
O.9ms—1). Errors from stratiform cloud tops make a negligible increment on the

background errors and are not shown.

S0



Pressure background Orog/C.A.T Radiosonde errors
(mb) error (ms™ ') (2.0) (UK unified model)
1000 2.1 2.9 2.0
850 2.0 2.8 1.8
700 2.0 " 1.6
500 2.0 " 2.1
400 2.6 3.3 2.6
300 2.9 3.5 3.0
250 3.0 3.6 3.2
200 2.6 3.3 2.7
150 2.4 3.1 2.4
100 2.0 2.8 2.1
70 # H n
30 " " "
20 " " "
10 " " "
Table 4.4

Proposed observation errors for simulated Doppler lidar winds, assuming an
instrument error of Ims .. The error for the 1000mb level includes a
background error of 2ms_1, and a contribution of 0.7ms'1 rms from the effects
of PBL turbulence. In column 2 a typical rms errors of 2ms” ! has been assumed
to illustrate the likely increase in the rms observation error in regions of
orographic wave activity or C.A.T. Column 3 shows observation errors currently
assumed for radiosondes in the UK Met. Office Unified model analysis scheme.
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5 Simulation Studies

In this section we use the analysis tools developed in sections 2 and 3

to assess various instrument scenarios.

5.1 OI studies of scan patterns

The minimum variance formulation of OI enables the analysis error
covariance to be calculated using (2.4), without simulating observed values
with random errors. As long as error distributions are Gaussian, the effect
of observations on the analysis error, can be calculated directly.

Our first study follows on from section 2.1. What is the best way to
distribute shots across the swath of a scanning instrument? A constant pulse
rate will put more shots near the edge (figure 5.1), while a cosine shot

management will distribute the shots more evenly on the ground (figure 5.2).

PR .o - .
’ - -
N g v v ’ P 0—' LI
AR o . . .
" \ v . ~ . - . o
’ o) . - -
g, ) © -" c
. --( -
. . - - - - -
BTN CRNR A T .o .- -G o-.
. - -
L8 < - o T
A B . ; o.
o e A ’ - v ~ - P -~ o
RN A o o &
. " ’ - - .- i
[ Q\ - - c . -
ot S [ . L7 o - .- " 0--_
LI | @ v -~ ¢ < .- - -~ .o
B',:\ 2N PN s~ oo~ -0 e.
N, . N P N - ~ - -
v 1y O ~ e -
‘8 ) 8 \g g G
" ; N PR o S
' N Q\ - - - .
Wy S [ e ~ . S~ o I o .
« @ v “ ‘(’ e -~ P ~ - P
AN S AN P Py ¢ % O
r - -~ - - - -
W I ’ . . . N ~ - -~ - - ~
dign 2 P - O -0
8 SN I L . Qo
v S . . . . ~. . .o e - - )
v o @ v - < ~ 7 ~- - ~ - .-
8'\ [AT S PR [N PR ’—‘G~~ "0~
N e v ’ N . ~ Ve -~ PR T e - S
~ o} N - "0 - -
h o D 5 < e QT
MY S « /7 <L N . . ,--G‘ O-__
v ! @ v v < -~ -* -
~ - - i
8'\ LA A 2 7~ PR —‘Q~- .- IS A
' . SN . ~ N - - . N
gy o N - Qg |
) I O R . P ~ . & ---" e LS
LN . N s . - ~. - - - " ~ -
[ @ v v < ~ ~~ - -~ -
g'\ " ‘N 2 [ PR P’ ¢ g Il >
LA . . . - 4 ~ - - " -
[y \r . Q ~ Y -~ - --G _e_—— -~
- -
[ "~ W - - -
Vv PR Q\ . L7 ~. & - - “e-—\__--o
LML T [ -~ - - o PR -~ -
v ( @ v -~ < ~ -~ - ae .
EH (AT AR N PR Y . -*Qs_ . - £
N N ’ ’ v ~ - - - - -
d\ v O < .- G-- -_e_—
l‘ ”\ N Q\ ’ P S e e_-—-""e“--~-o
"y . ~ ’ ~ - - - -
v od v .~ - -~ - -~ - -~ .
~ < -~ -y - - -
B8 o X o~ R o
a N . ~

2O
‘;cas
1S
m\
53}
00
f
]
!
&

’
~
’

Figure 5.1. Portion of idealized distribution of shots from a conically
scanning constant pulse-rate lidar. Observation positions are shown as O; the
component radial to the scan tracks {(dotted) is observed.
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Figure 5.2. As figure 5.1 with cosine shot management, to give a constant

density of shots on the ground.

The analysis error distributions for the along track and cross track wind
components are shown in figure 5 .3 and figure 5.4. The solid lines were
obtained using the "double TOAR" covariance function (2.7), while the thin
lines used the Gaussian shaped function (2.5). The latter implies greater
correlations, making more observations of use in decreasing the error at each
point and improving extrapolation. But the qualitative results about shot
management with the two functions were similar: The cosine shot management
improves accuracy in the middle of the swath, but extrapolation from the edge
is less accurate. Probably the optimal pattern is between the two.
Underneath the satellite, a conical scan only observes the along-orbit
component (figure 5.3). The cross orbit component (figure 5.4) has larger

errors. Note however that Ol interpolates information, so that this is much

lower than the background error (5 ms-l)
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Ol analysis of single component winds.
Analysis error of along-track component.

— constant pulse rate
— = COS shot management

h——-———_——'

I I I l
-1500 -1000 -500 0 500 1000 1500
Distance across track (km).
Figure 5.3. OI analysis errors in the along-track component, obtained using
single component wind data from conical scan patterns shown in figures 5.1 and
5.2. Errors are plotted against distance from the centre of a 1500 km swath.

The thick lines were obtained using a "double TOAR" covariance function, the
thin lines using a Gaussian shaped function.

Ol analysis of single component winds.
Analysis error of cross-track component.

= constant pulse rate
— — COS shot management

m/sec.

1 T T | |
-1600 -1000 -500 0 500 1000 1500

Distance across track (km).

Figure 5.4. As figure 5.3 for the cross-track component.

54




5.2 Comparison of fixed and scanning instruments

Proposed LAWS and ALADIN instruments both have scanning lidar systems,
like that considered above. A technologically less demanding alternative is
to use fixed mirrors to produce four lines of shots: forward and backwards on
each side of the satellite path. The forward and backward looks can be
processed to give a line of vector winds on each side. A possible benefit of
the 4-beam configuration is that shots are closer together, enabling better
quality control of data from regions of poor signal-to-noise ratio. In order
to assess this we used the nonlinear variational method of section 3.3, as
well as the Ol analysis error calculation. As expected, the variational
method gave the same results as Ol when Pg=0. A lower orbital height than in
the previous tests, giving a narrower swath, was assumed. We simulated
observations from a portion of an idealized satellite track, analysed them,
and calculated the r.m.s. analysis error. Results from the two configurations
were compared, with the same number of shots, with the same error
characteristics, in eachl. Background fields, with correlated, non-divergent,
errors, were simulated and used in each analysis, using "double TOAR"
background error covariances (2.7). The simulated errors for the background
(r.m.s. 5ms ' in each component), and for good observations (r.m.s.
2.5 ms-l), were Gaussian. The possibility of gross observational errors due to
poor signal to noise ratio was allowed for by setting a proportion (Pg) of the
observations to a number chosen at random between -25 ms ' and +25 ms'. The
experiments performed are listed in table 5.1.

All observations in a 1500x1500km box were included in the analysis. For
a pulse rate of 2Hz this gave 392 data, for 10Hz 1949 data. The conical scan
data were placed with a cosine shot management similar to figure 5.2, to give
the quoted average pulse rate. The analysis error was calculated for a strip
across the orbit, in the middle of the box. The results presented are from an
average of nine realizations of each configuration. Figure 5.5 shows as an
example the results for along-track and cross-track wind components, for a 2Hz
pulse rate, with Pg=0.5. The ratio of the analysis error to the background
error is plotted. Because of the statistical noise of only 9 realizations,
the curves have been slightly smoothed, and forced to be symmetrical. This
smoothing, with a scale of ~150 km, has an effect on the minima of the 4-beam
curves in particular, increasing them by about 0.5 ms~{ From the 4-beam
curves, we see that the along-track component information does not extrapolate

as well in the cross-track direction as does the cross-track component;

In practice, optimal pulse rates and povwers for the two instruments will
differ.
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analysis errors for the former are higher in the middle of the two lines of
observations, and in extrapolations. This result follows from the covariance
properties of a non-divergent wind error field. The same effect is seen when
extrapolating the conical scan data. In the centre of the swath the conical

scan across-track wind analyses are less accurate, as only the along track

component is observed here. This effect was also noted in figure 5.3 and
figure 5.4.

Table 5.1: 4-beam v conical lidar scan experiments

Satellite Scan LIDAR Observation errors |Analysis plotted

altitude type pulse Eo/Eb Pg error in
(km) rate (Hz) Ea/Eb figure
450 4-beam 2 .5 .75 .68 S.6bottom
450 4-beam 2 .5 5 .57 5.5,5.6bot
450 4-beam 2 .5 0 .50 S5.6bottom
450 conical 2 .S .75 .63 S.6top
450 conical 2 .S 5 .47 5.5,5.6top
450 conical 2 .5 0 .41 S5.6top
450 4-beam 10 .S .15 .57 S.7bottom
450 4-beam 10 .5 .5 .49 5.7bottom
450 4-beam 10 .5 0] .48 5.7bottom
450 conical 10 .S .75 .42 5.7top
450 conical 10 .S .S .37 5.7top
450 conical 10 .5 0 .35 S.7top

Analysis errors are the rms vector errors

for the cross-orbit section shown in the figures.

The different characteristics of the along-track and across-track
components were similar in all the experiments. From now on we present the
r.m.s. vector error, combining the two. Figure 5.6 and figure 5.7 show the
errors for 4-beam and conical scans, 2Hz and 10Hz average pulse rates, with
curves for Pg=0, 0.5, and 0.75. The average values across the swath of these
curves are shown in the last column of table 1.

Given an appropriate background error covariance model, and Gaussian
error distributions, the Ol equations can be used directly to predict the
analysis error variance for any variable related to the observations. Because
the method is intrinsically cheaper, and Monte Carlo simulations are not
needed, a wide range of scenarios can be studied easily. We used OI to study
the wutility of the 4-beam and conical scan configurations in providing
information on the vorticity and divergence fields, as well as on wind
components. A Gaussian shaped covariance model was used; with this model
covariances for all derivatives of the wind field are well defined. One set
of experiments used a non-divergent covariance model (2.5). But in the

Tropics, we wish to observe both the divergent and the rotational flows; the
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non-divergent covariance function used in the earlier experiment is not
appropriate since it assumes the divergence of the background field is
perfectly accurate. Yet, even in the Tropics, flow is largely non-divergent.
We therefore assume that 25% of the background error variance is divergent.
Streamfunction and velocity potential autocorrelations are both Gaussian
shaped, and the cross correlation is zero.

Wind component errors predicted by OI are shown in figure 5.8 for both
the non-divergent (Rdiv=0) and the tropical (Rdiv=.25) covariance models. The
Gaussian shaped correlations imply that the background is more accurate at
small scales than the TOAR function correlations do. Thus, particularly for
the non-divergent correlations, extrapolation and interpolation in the
direction of the wind component is more accurate. When divergence is allowed,
we have less prior knowledge about the flow, and analyses are less accurate.
In particular, extrapolation of the cross-track component is less accurate.
OI can also predict the errors in the vorticity and divergence analyses; these
are shown in figure 5§.9. The more widely spread observations from a scanning
instrument are better at defining these derived quantities than the 4-beam
configuration. Note that the errors with the 4-beam configuration actually
have local maxima near the lines of observations, since an observation

provides little information about derivatives at the point.

It is clear from all the figures that analyses from a conically scanning
instrument are nearly always superior to those from a 4-beam type instrument
with all the shots concentrated in two strips. This is even true for large
gross error rates (Pg=.75 and Pg=.5), when one might have expected that the
close observations would have aided the quality control process. We can
therefore conclude that, if the data are to be used in an analysis scheme, the

conical scan instrument is to be preferred.
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Pg=.5
average analysis error/background error

wind components

pulse rate=2Hz
altitude=450km

conical cross-trk — = conical along-trk

I I
-1000 -500 0 500 1000
cross track distance (km)

Pg=.5
average analysis error/background error

wind components

pulse rate=2Hz
] altitude=450km

—— 4-beam cross-track — - 4-beam along-track

0 I I I
-1000 -500 0 500 1000
cross track distance (km)
Figure 5.5. RMS analysis error/background error for along-track and

cross-track components, from nine simulations, plotted against distance from
the centre of the swath.
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conical scan
average analysis error/background error

vector wind

pulse rate=2Hz |
altitude=450km ;
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cross track distance (km)

4-beam .
average analysis error/background error

vector wind

pulse rate=2Hz

] altitude=450km
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0! — e :
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Figure 5.6. RMS vector wind analysis error/background error, for various

probabilities of gross error, for conical scan and 4-beam configurations with
a 2Hz pulse rate.
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Figure 5.7. As figure 5.6 for a 10Hz pulse rate.
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Effect of divergence in covariance model
predicted analysis error/background error

conical scan

pulse rate=2Hz
altitude=450km

-+ -+ U (Rdiv=.25)
— = U (Rdiv=0)

V (Rdiv=.25)
—— V (Rdiv=0)
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0 1 :
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cross track distance (km)
U = cross-track component
V = along-track component

Effect of divergence in covariance model
predicted analysis error/background error

4-beam

pulse rate=2Hz
altitude=450km

- N U (Rdiv=.25) — - V (Rdiv=.25) il
s L - N\ — —U (Rdiv=0) »~—>.V (Rdiv=0) '
5 N\ ' /
25 | N \ 7/
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T | —— S— e S e -
0 ' :
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cross track distance (km)
U = cross-track component
V = along-track component
Figure 5.8. RMS wind component analysis error/background error, using OI
(with Pg=0)}, and a covariance function allowing for a fraction Rdiv of the

background errors to be in the divergent wind.
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Effect of divergence in covariance model
predicted analysis error/background error

conical scan
pulse rate=2Hz

- vorticity (Rdiv=.25) — - divergence (Rdiv=.25)

— = vorticity (Rdiv=0)
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divergence values are undefined for Rdiv=0

Effect of divergence in covariance model
predicted analysis error/background error

4-beam
pulse rate=2Hz

- vorticity (Rdiv=.25) — - divergence (Rdiv=.25)
= vorticity (Rdiv=0)
f
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divergence values are undefined for Rdiv=0

Figure 5.9. As figure 5.8, showing the relative analysis errors for vorticity
and divergence.
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6. Case studies of the effect of cloud obscuration on the utility of 1lidar

winds
6.1 Impact on predictions of extratropical cyclogenesis

Intense extratropical cyclones are often associated with winds of
damaging strength, and their accurate prediction is clearly desirable. Such
systems typically form in oceanic regions, and may intensify very quickly. The
precision with which NWP models are able to predict rapid cyclogenesis is
greatly hampered by the current scarcity of observations over the oceans, and
it is reasonable to expect that the increased wind data coverage that a space
borne Déppler lidar would bring, would significantly improve NWP forecasts of
these events. However, cyclogenesis is invariably accompanied by widespread
cloud, and if structure in the wind field important to the cyclogenesis is
regularly obscured, the benefit of the lidar data may be less than at first
expected. To get a feel for the likely impact of cloud on the utility of the
lidar data three case studies of cyclogenesis are presented below. The
approach is to first identify the flow structure important to the onset of
cyclogenesis, and then to ascertain the degree to which cloud cover would
obscure the structure from observation by lidar. The cases selected have been
the subject of observation sensitivity studies, and the flow structure
important to the cyclogenesis has therefore already been established. The
degree of cloud cover is estimated by NWP model relative humidity levels - 70%

or greater humidity has been taken to imply complete cloud cover.

Case 1: 15/16 October 1987

The first case is taken from a study by Lorenc et.al. (1988) of the
violent storm which affected southern England during 15/16 October 1987.
Figure 6.1 shows the 250mb contour and isotach analysis, prior to the onset of
the storm, at OOGMT 15 Oct. 1987 (solid lines are contours; dashed lines are
isotachs, in knots). A strong jet core (160kn) is evident to the south-west of
Newfoundland between 30-45W. Two 24hr forecasts of mean sea level pressure
(PMSL) from initial analyses at this time are shown in insets a&b. The plotted
data in the main part of figure 6.1 are AIREP observations of wind and
temperature that were included in the initial analysis for forecast b but not
in the initial analysis for forecast a. It can be seen that the observations
are well placed to define the structure of the Jet core in the NWP analysis,

and the resulting impact may be appreciated by comparison of the two
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[a b\ 0 RS _250M8 T+O OOGMT 15/10/87

Figure 6.1: Nominal initial analysis at OOGMT 15/10/87 for the two 24hr
forecasts shown in the insets a and b. Continuous lines are height contours
in decametres; dashed lines are isotachs in knots. The plotted data are
aircraft observations of wind and temperature that were used in the analysis
for forecast b but not for forecast a. Areas covered by extensive cloud

(as inferred from model humidity levels) have been delineated. The actual
position of the low at OOGMT 16/10/87 is marked "e" in the insets.

forecasts. The actual position of the low at OOGMT 16 October is shown in both
figures. Forecast a is clearly very poor, whilst forecast b succeeds in
predicting the position of the low with considerable accuracy (the central
pressure was also well predicted). Although there were other differences
between the initial analyses for forecasts a and b (see Lorenc et.al.,1988),
the role of the wind part of the AIREP report was considered to be crucial.

We ncw ask the question; how much of the critical regicn of the jet core
would have been visible to a satellite borne lidar on an overhead pass? The

region in which the model humidity (at 300mb) is equal to or greater than 70%
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has been outlined in figure 6.1, and may be assumed to represent total cloud
cover. It is clear that the main cloud head is located well to the east of the
jet core (the jet core itself was in a region of relatively low humidity,
10-50%). We can conclude that, in this case at least, lidar observations
would have made an important contribution to the satisfactory definition of

the jet structure in the initial analysis.

Case 2: 12GMT 28 October 1989

A further example, taken from a study of the impact of Atlantic TEMPSHIP
data on NWP forecasts (Graham, 1989), is illustrated in figure 6.2. The main
figure shows the 250mb contour and isotach analysis at OOGMT 27 October 1989,
some 36hrs before a cyclone, initially positioned at "X", intensified and
moved over the UK. Two 36hr forecasts of PMSL from initial analyses at OOGMT
27 October are shown in the insets "a" and "b" - the actual position of the
low at 12GMT 28 October is marked on both figures. Referring to the main
figure, a strong jet core (140kn) may be seen in mid-Atlantic on the western
flank of a trough in the 250mb flow. The plotted data represent the 250mb
observations from TEMPSHIP wind profiles that were used in the initial
analysis for forecast b, but not in that for forecast a. The impact of the
data may be appreciated by comparison of the two forecasts. Although both
forecasts produced a central pressure which was too low by 10mb, forecast b
has made a much better prediction of the low position. Graham showed that much
of the impact derived from three observations (singled out with arrows in
figure 6.2), which were distributed both across the trough axis and within the
strong shear on the northern side of the jet. Although the impact of the
temperature and wind parts of the TEMPSHIP data were not separated; the large
impact of the data on the analysis of the wind field suggested that the wind
part was by far the most important. The largest impact on the wind speed
analysis was at the 400mb level.

The region in which relative humidity was equal to or greater than 70%
has been delineated, and may be taken to represent the area of total cloud
cover. In this case much of the northern part of the trough, below 300mb,
would have been obscured by cloud, and the benefit of lidar data for this case
is less clear cut than in the former case. However, much of the region of the
Jet core, and the region of strong wind shear to its north and east would have

been visible, and may well have compensated for the lack of coverage at the

trough axis.
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Figure 6.2 Nominal initial analysis at 250mb, OOGMT 27/10/89 for the two

36 hour forecasts shown in the insets a and b. Plotting conventions are as
figure 6.1. The plotted data are the 250mb observations from vertical profiles
of wind and temperature (from TEMPSHIPS) which were used in the initial
analysis for forecast b but not for forecast a. The position of the low is
marked "X" (OOGMT 27/10/89) and "e" (12GMT 28/10/89 (insets)).

Case 3: 15 September 1989

To complement cases 1&2, we include a case (taken from Graham, 1991) in
which a good analysis of the low-level wind field, rather than the jet stream,
is crucial to the success of the forecast. Figure 6.3 shows the 700mb flow
over the Atlantic at 12GMT 12 September 1989. An old hurricane circulation
("Gabrielle") was located at "X" and subsequently tracked north-eastward and
intensified to be positioned west of Scotland at 12GMT 15 September. Two 72hr
forecasts from slightly different initial analyses are shown in the insets "a"
and "b". The plotted data on the main figure are the 700mb observations from

TEMPSHIP profiles used in the initial analysis for forecast a but not for
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Figure 6.3 Nominal initial analysis at 700mb, 12GMT 12/09/89 for the two

72 hour forecasts shown in the insets a and b. Plotting conventions are as
figure 6.1. The plotted data are the 700mb observations from vertical profiles
of wind and temperature (from TEMPSHIPS) used in the initial analysis for
forecast b but not for forecast a. The position of "Gabrielle" is marked "X"
(12GMT 12/09/89) and "e" (12GMT 15/09/89 (insets)).

forecast b. The impact of the data may be appreciated by comparison of the two
forecasts. In both forecasts the central pressure of the depression was too
high (by ~10mb) and the position was south-west of the actual position (marked
®). However forecast a is clearly better guidance to the position of the low.
Graham showed that most of the impact is due to the two observations singled
out on the eastern side of "Gabrielle" which defined the band of enhanced low
level wind strengths on the eastern flank of the circulation.

In this case cloud cover above the 700mb level was estimated using a 70%
humidity threshold, at 700mb, 500mb and 300mb and assuming maximum overlap of

the cloud at these levels. As can be seen from figure 6.3, the crucial wind

67



structure would have been visible to the lidar, despite being at low altitude.

The overall conclusion suggested by the case studies is that cloud
obscuration may not seriously effect the impact of lidar in improving NWP
forecasts of cyclogenesis. The reason for this is that flow structures (i.e.
Jet streams) closely associated with cyclogenesis are often well defined some

time in advance of the event, when they are not necessarily accompanied by

widespread cloud.

6.2 Impact on utility for calculating moisture budgets

Part of the aim of the GEWEX experiment is an improved understanding of
global and regional moisture transport, and deployment of a satellite Déppler
lidar instrument is generally considered necessary to obtain the high
resolution wind data necessary to achieve this goal. The benefit of lidar data
in this respect will be impaired by the fact that low-level wind systems
giving rise to significant moisture transport are frequently located beneath
clouds - and therefore will not be observed by the lidar. To demonstrate this
point, two examples of moisture transport associated with mid-latitude frontal
systems are given below, using both synoptic observations and simulations from
the UK Met. Office mesoscale model. Subsequently, with the aid of the UK Met.
Office Unified model, we 1illustrate how cloud obscuration will introduce

sampling biases in global observation of moisture flux based on lidar winds.

6.2.1 Impact on regional scales

Case 1 : 23 November 1990

Figure 6.4 shows a 12hr mesoscale model forecast of the 1.5km wind field
over the UK valid for 12GMT 23 November 1990, the cloud fraction at the 4km
level is also shown. A marked front lies approximately north-south across the
British Isles, and may be appreciated by the marked wind shift across the
front (along the eastern coast of Ireland, for example) and the band of
extensive cloud cover. A vertical cross section through the 1line shown in
figure 6.4 is reproduced in figure 6.5, which shows wind speed perpendicular
to the cross section (approximately parallel to the front) - regions where
cloud cover is 7/8 or more are shown shaded. A well defined maximum in the
low-level flow, reaching 18ms-1, may be seen ahead of the front at a height of
~1.5km. It is clear from figure 6.5 that the wind maximum will be completely

obscured to observation from above by the accompanying frontal cloud. Shortly
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we shall show, u$ing the mesoscale model fields, that the low-level jet -
which will not be visible to the lidar - plays a dominant role in the local
moisture transport. First, however, we verify that the main features of the
model simulation are reasonable representations of the observed structure. The
synoptic observatjons at 12GMT 23 November are shown in figure 6.6. An area of
continuous rainfall associated with the front has been delineated and clearly
corresponds wWell with the cloud band in the forecast (figure 6.4) The inset to
figure 6.6 shows a time series, generated from radiosonde data at Cambourne
(marked X), of the vertical profile of the wind component parallel to the
front; the area of the cross-section corresponds to the enclosed part of the
cross section in figure 6.5. It is clear that the low-level jet is a well
defined feature of the actual flow and that the model has made a reasonable
simulation of the flow structure. Such low-level jet structures ahead of the
cold fronts are ‘well documented and are known as "warm conveyor belts"
(Browning, 1986).

The total and meridional moisture fluxes at 1.5km are shown in figures
6.786.8 respectively. The striking feature of both figures is the narrow band
of strong northwafd moisture flux (max 9x10_2Kgm-2s_1) associated with the low
level jet. Comparison of figures 6.88&6.4 will confirm that this narrow band of
strong moisture tﬁansport is located squarely beneath the frontal cloud band -

and consequently would not be visible to the lidar.
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Figure 6.4 12hr forecast, valid 12GMT 23 Nov. 1991, for ‘the flow pattern
at 1.5km and cloud cover at 4km associated with a front over the British
Isles. Cloud cover greater than 7/8 is shown shaded. The line drawn through
south-west England shows the plane of the vertical cross section in

figure 6.5.
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Figure 6.5 Vertical cross section (for T+12 forecast valid 12GMT 23 Nov.
1991) along the line shown in Fig.6.4. Continuous lines show wind speed
perpendicular to the cross section (approximately parallel to the front);
Regions more than 7/8 cloud cover are shown shaded. The enclosed region
corresponds to that shown in the inset of figure 6.6.
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Figure 6.6 Synoptic observations at 12GMT 23 Nov. 1991. The band of

of continuous rainfall associated with the front has been delineated. The
inset shows a vertical cross section of the wind speed parallel to the front
derived from radiosonde data from Cambourne (X).
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Figure 6.7 Total moisture flux (units 10 °Kgm ®s™') at 1.5km derivedfrom
the forecast fields. Times are the same as for figure 6.4.

Figure 6.8 As for figure 6.7 but for the meridional component of the
moisture flux.
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Case 2: 4 April 1991

A similar example is illustrated in figures 6.9 - 6.11, for a front which
crossed the U.K.on 4th April 1991. The rainband associated with the front, at
06GMT, is shown in figure 6.9, in which the region covered by rainfall of
moderate or heavy intensity has been delineated. The inset to figure 6.9 is a
time series of radiosonde winds from Cambourne - and shows a low-level wind
maximum of 32ms-1 situated ahead of, and parallel to, the front at a height of
lkm. Comparison of the radiosonde wind profiles with vertical cross sections
obtained from mesoscale model fields showed that the low-level wind maximum
was reasonably well simulated by the model. The total and meridional moisture
flux at 1.5km calculated from the mesoscale model fields are shown in figures
6.10&6.11 respectively. A region of strong northward moisture flux within a
narrow band associated with the wind maximum is again visible. The moisture
flux reaches a maximum of 12x10 %kgm °s™' over Wales and south-western

England, directly beneath the main band of cloud and rain shown in figure 6.9.
The two cases described above illustrate that, in mid-latitudes at least,

the presence of cloud in regions of marked moisture transport will frequently

obscure such regions from observation by lidar.
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Figure 6.9 Synoptic observations valid O6GMT 4 April 1991. Theband of
moderate to heavy continuous rainfall associated with the frontis shown.

The inset shows a vertical cross section of wind speed parallelto the front
derived from radiosonde data at Cambourne (X).
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L IR

Figure 6.10 Moisture flux at 1.5km (units 10 %Kgm 2s”') derived from model
éhr forecast valid 06GMT 04 April 1991.

~—

Figure 6.11 As for figure 6.10 but for the meridional componentof the
moisture flux.
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6.2.2 Impact on the global scale

The case studies discussed above suggest that, in mid-latitudes, lidar
wind observations will be most numerous in regions of weak moisture flux. The
utility of the observations for climate studies will be hampered by this bias
in the sampling, and best use of the data is 1likely to come from its
incorporation in an NWP 4-D data assimilation process. To illustrate the
difficulties in using the observations, without a data assimilation process,
to estimate global moisture transport we have performed the following study.
Model analysis fields (from the UK Met. Office unified model) were used to
compare the moisture flux across selected latitude circles with that part of
the moisture flux which occurs beneath clear skies. Since the greater part of
the moisture flux occurs at low-levels, only the flux at 850mb has been
considered. The procedure, which was applied using an analysis for 12GMT 20
June 1991, was as follows. First, the 850mb meridional moisture flux across
each model grid length was calculated along selected latitude circles. Second,
to obtain the part of the flux occurring under clear skies, the flux across
each grid length was multiplied by the fraction of clear sky, above 850mb,
assigned to the grid square corresponding to the grid length. The fraction of

clear sky 1s calculated by assuming a random overlap of high-level,

medium-level and convective clouds, i.e.

fraction of clear sky above 850mb = (1 - high cloud fraction)
x{(1 - medium cloud fraction)

x(1 - convective cloud fraction).

High, medium and convective cloud amounts were obtained from the model output
fields. Low cloud amounts were not used in the above equation because the
850mb level falls within the height range assigned for "low" clouds and
therefore, in some cases, the top of the low cloud may be below 850mb (i.e.
stratus), and observation of the 850mb level would not be affected. The
omission of low clouds will contribute to under estimation of the degree of
obscuration. Finally, the total and "“"clear sky" moisture fluxes were
partitioned into the contributions from a range of flux intensity bands; each
band being of width 5x10 %Kgm 's™!. 4

The moisture fluxes across SON and 30N are shown in figures 6.12 and 6.13
respectively for a number of categories of flux intensity. The histograms show
the moisture flux integrated over each intensity band; the full bars show the
total moisture flux and the black bars the "clear sky" moisture flux. Total

and “"clear sky" fluxes integrated over all intensity bands are shown in
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table 6.1. Referring first to figures 6.12 and 6.13 the following points are
evident for both latitudes;

° More than half the total poleward flux is contributed by regions where
the flux exceeds 5x10 Kgm 's™, and in these regions the "clear sky" flux is
less than half the total flux (about 1/4 at 50N). Nearly all regions with
poleward fluxes exceeding 10x10 °Kgm 's™' are completely obscured by cloud - a

result that is consistent with the conclusions of the case studies of frontal

systems.

Reference to table 6.1 shows that;

e About half (less at S50N) the total poleward flux occurs beneath clear
skies. In contrast there is little obscuration of the equatorward flux, about
80% of which occurs beneath clear skies. As a result the net "clear sky"
poleward flux is considerably smaller than the net total flux, and is negative
at SON and 30N. Because of the strong weighting of lidar wind observations to
clear sky regions, the smaller net poleward flux in the "“clear sky" case

would be likely to appear as a bias in flux estimates based on lidar wind
data.

At 10N (figure 6.14) the pattern is somewhat different, with poleward
moisture flux in the range 5-10x10 Kgm 's™' being the most obscured. The

"clear sky" flux at this latitude is about .64 the total poleward flux.

The results given above suggest that the proportion of poleward moisture
flux that occurs beneath clear sky increases with decreasing latitude. Because
the results are very dependent on the model cloud formulation the reliability
of this trend must be treated with caution. It may, however, reflect the
organisation of mid-latitude weather systems in which poleward moving,
ascending currents of moist cloudy air are a characteristic feature - as
illustrated by the case studies in the previous subsection. Also, the greater
proportion of clear sky flux at 10N may be influenced by poleward moisture
flux in the south-west monsoon - a significant part of which may not be
associated with widespread cloud.

The results suggest that it will be difficult to obtain reliable
estimates of global moisture transport from data based on lidar wind
observations, because the distribution of lidar data will be weighted towards
regions of equatorward moisture flux. For the purpose of climate studies best
use of the data will come from its incorporation in an NWP model assimilation

process. The need for an NWP assimilation implies that, for the purpose of
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climate models, there is little advantage in making simultaneous measurements

of wind and moisture from the same platform.
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Figure 6.12 The meridional moisture flux, integrated over intensity bands,
across SON at 850mb (as derived from a global model analysis at 12GMT 21 June
1991. The full bars show the total moisture flux, the black bars the “clear
sky" moisture flux, in the given intensity band.
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Figure 6.13 As figure 6.12 but for 30N.
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Figure 6.14 As figure 6.12 but for 10N.

i I’

! Poleward flux Equatorward flux|| Net flux .
(Kgs™ 1) (Kgs™ 1) (Poleward)

latitude total clear ratioftotal clear ratiojtotal clear
sky sky sky
50N 389 148 0.38f 330 | 267 0.81)+ 59 |-119
30N 611 355 0.58] 507 420 0.83(+104 |- 65
10N 785 501 0.64f 393 | 329 0.84(+392 {+172

Table 6.1: Total and "clear sky" moisture flux at 850mb across latitudes

50, 30 and 10N. Note that the net poleward moisture flux under clear sky is

considerably smaller than the total flux, and is of opposite sign at 50N and
30N, illustrating the difficulties of estimating global moisture transports

from flux observations based on Doppler lidar winds.

6.4 Comments on the utility of a low povwer lidar instrument.

The use of low power lasers has been proposed as an option in lidar
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similar at all levels above the boundary layer in mid to high latitudes. It it
is difficult, therefore, to justify selective targeting of the jet level on
the basis of the vertical distribution of the ageostrophic wind. Because of
the dynamical importance of the jet streams, selective targeting of the jet
stream (as compared, say, to full vertical profiles at a lower resolution) may
have some advantages - but this needs to be demonstrated by other means.
Further reference to figure 6.18 shows, as expected, that the ratio of
the ageostrophic wind component to the total wind speed wind is much larger at
low latitudes than at high latitudes (the ratio is about 1.0 near 10N between
700 and 600mb). The high degree of ageostrophy in these regions highlights the
well established requirement for increasing the number of direct measurements

of the wind field in tropical latitudes.
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6.5 Summary
The results of this section are summarised below.

® The results of three cases studies suggests that cloud obscuration may

not seriously impair the potential of Doppler lidar wind data to improve NWP

forecasts of cyclogenesis.

) Case studies of frontal structure suggest that, in mid-latitudes, regions

of strong poleward moisture flux will be largely obscured from observation by

extensive cloud cover.

° Estimates of global moisture transport based on lidar observations will
be prone to underestimate the net poleward moisture flux, because the
distribution of the data will be weighted away from regions of strong poleward
moisture flux. This implies that best use of the data will come from its
incorporation in an NWP data assimilation process. If model assimilated
datasets are used there is 1little advantage, for the purpose of climate

studies, in the BEST-type instrument configuration of simultaneous wind and

moisture observations.

° Statistics for the ageostrophic wind speed obtained from the UK Cyber NWP
model suggest that, in mid and high latitudes, the component of the wind that
cannot be specified by temperature sounders (the ageostrophic part) is a
similar proportion of the total wind speed at all levels. It is difficult,
therefore, to justify selective targeting of the jet level on the basis of the
ability of lidar observations to measure the ageostrophic component of the

wind (in addition to the geostrophic component).
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7 Summary and recommendations for an OSSE

In section 2 we have shown that single component winds can be used
directly in practical assimilation systems; there is no advantage in aligning
laser shots to obtain vectors.

As shown in section 3, care must be taken when combining data from
Doppler processing of weak signals. Consensus averaging is a suitable
practical method. With appropriate parameters it gives similar results to the
more theoretically based maximum probability method. If prior information is
incorporated into the process of combining the data, it can be very useful in
avoiding gross errors.

In the circumstances of the simulation described in section 3, with the
use of a background field from a good short-period forecast, a nonlinear
analysis accounting for non-Gaussian errors is better than a (simpler) prior
quality control step and a linear analysis.

Representativeness errors appropriate for the single-shot single
component winds have been estimated in section 4. Combined with an instrument
error assumed to be ~1ms-1, they give "background" observation errors in the
range 2-3ms”} (rms), a suggested vertical profile is given in table 4.4. Our
studies suggest that the effects of orographic wave activity, clear air
turbulence and convection will cause significant local increases in the rms
observation errors above this background value: errors associated with
orographic effects could be modelled with a Gaussian distribution, while those
associated with convection probably follow a lognormal distribution.

In section 5 various different instrumental and scanning configurations
were evaluated. It was shown that a conical scanning instrument is to be
preferred to a fixed instrument with the shots concentrated in two strips. Our
studies also suggest that with shot management across the swath, to give a
constant spatial density, accuracy in the middle of the swath is improved, but
extrapolation from the edge is less accurate.

Some aspects of the utility of Doppler lidar winds, in the light of
the fact that observation will not be possible below clouds, have been
addressed, in section 6. Our studies suggest that, in relation to NWP, the
impact of Doppler lidar winds in improving forecasts of cyclogenesis - by
improving initial conditions - may not be seriously reduced by the lack of
observations beneath cloud.

In relation to utility for climate studies, it was shown that much of the

poleward moisture flux occurs beneath extensive cloud cover, particularly in
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mid-latitudes. Consequently, the distribution of lidar winds will be weighted
towards regions of weak or equatorward moisture flux, and estimates of global
moisture transport, using flux measurements based on 1lidar winds, will be
difficult. For climate studies, therefore, best use of the data is likely to
come from its incorporation in a 4-D NWP data assimilation process. The need
for an NWP assimilation implies that, for purposes of climate studies, there

is less advantage in making simultaneous measurements of wind and moisture.

7.1 Recommendations for the simulation of DSppler lidar wind data

Our recommendations for the simulation of Ddppler lidar wind data from

the OSSE nature run are given below.

. Single component winds should be generated rather than vector winds.
] "Background" observation errors should be in the range 2-3ms™' rms.
' Local effects that will increase the observation errors, i.e. orographic

gravity waves, convection, and C.A.T. could also be simulated using the
methods and error distributions suggested. However, some experimentation with

the model used to generate the nature run would be necessary as a prior step.

] In regions of 1low backscatter, processing to allow for non-Gaussian
errors will be necessary. High density observations with a high proportion of
gross errors should be generated, for those wishing to investigate this. A
lower density of simulated preprocessed data should be generated for other

users. (The possibility of including some gross errors even in preprocessed

data should be considered.)
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