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ABSTRACT

A new multivariable-based diagnostic fog-forecasting method has been developed at NCEP. The selection

of these variables, their thresholds, and the influences on fog forecasting are discussed. With the inclusion of

the algorithm in the model postprocessor, the fog forecast can now be provided centrally as direct NWP model

guidance. The method can be easily adapted to other NWP models. Currently, knowledge of how well fog

forecasts based on operational NWP models perform is lacking. To verify the new method and assess fog

forecast skill, as well as to account for forecast uncertainty, this fog-forecasting algorithm is applied to

a multimodel-based Mesoscale Ensemble Prediction System (MEPS). MEPS consists of 10 members using

two regional models [the NCEP Nonhydrostatic Mesoscale Model (NMM) version of the Weather Research

and Forecasting (WRF) model and the NCAR Advanced Research version of WRF (ARW)] with 15-km

horizontal resolution. Each model has five members (one control and four perturbed members) using the

breeding technique to perturb the initial conditions and was run once per day out to 36 h over eastern China

for seven months (February–September 2008). Both deterministic and probabilistic forecasts were produced

based on individual members, a one-model ensemble, and two-model ensembles. A case study and statistical

verification, using both deterministic and probabilistic measuring scores, were performed against fog ob-

servations from 13 cities in eastern China. The verification was focused on the 12- and 36-h forecasts.

By applying the various approaches, including the new fog detection scheme, ensemble technique, multi-

model approach, and the increase in ensemble size, the fog forecast accuracy was steadily and dramatically

improved in each of the approaches: from basically no skill at all [equitable threat score (ETS) 5 0.063] to

a skill level equivalent to that of warm-season precipitation forecasts of the current NWP models (0.334).

Specifically, 1) the multivariable-based fog diagnostic method has a much higher detection capability than the

liquid water content (LWC)-only based approach. Reasons why the multivariable approach works better than

the LWC-only method were also illustrated. 2) The ensemble-based forecasts are, in general, superior to

a single control forecast measured both deterministically and probabilistically. The case study also demon-

strates that the ensemble approach could provide more societal value than a single forecast to end users,

especially for low-probability significant events like fog. Deterministically, a forecast close to the ensemble

median is particularly helpful. 3) The reliability of probabilistic forecasts can be effectively improved by using

a multimodel ensemble instead of a single-model ensemble. For a small ensemble such as the one in this study,

the increase in ensemble size is also important in improving probabilistic forecasts, although this effect is

expected to decrease with the increase in ensemble size.

1. Introduction

Fog is frequently blamed for traffic disasters and bad

air quality in poor-visibility weather and has been ex-

tensively studied for more than a century (see the review

by Gultepe et al. 2007). However, progress in the op-

erational forecasting of fog at the National Centers for

Environmental Prediction (NCEP) and other numerical

weather prediction (NWP) centers has been slow due to

the complexity of predicting fog and limited computing

resources available for the task. For now, fog is still not

a direct model guidance product produced by NWP

centers but is diagnosed by local forecasters based either

on statistical methods such as model output statistics

(MOS; Koziara et al. 1983) and neural network (NN;
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Fabbian et al. 2007; Marzban et al. 2007) or on indirect

model output variables (e.g., Baker et al. 2002). The

major drawbacks to statistical forecasts are that the

models used at NWP centers are frequently upgraded or

changed while the statistical approach needs a long pe-

riod of past forecast data for training and both the MOS

and NN approaches are statistical but not flow depen-

dent. The diagnosis of fog from other indirect model

output variables strongly depends on the experience of

the local forecaster and remains a challenging forecast

problem. Thus, there have been growing efforts to nu-

merically predict fog over the last decade, either with local

fog models over small areas (e.g., Bott and Trautmann

2002; Bergot et al. 2005) or with NWP models over large

domains (e.g., Ballard et al. 1991; Teixeira 1999; Kong

2002; Pagowski et al. 2004; Koracin et al. 2005; Muller

2005; Gao et al. 2007; Toth and Burrows 2008). A recent

study done by Roquelaure and Bergot (2008) has shown

some promising results in predicting fog using a one-

dimensional local ensemble model (not a full NWP

model) for the Charles de Gaulle International Airport

in Paris, France.

Most of these fog forecasting efforts were determin-

istic in nature and did not consider forecast uncertainty.

Due to the chaotic and highly nonlinear nature of the

atmospheric system, initially small differences in either

initial conditions (ICs) or the model itself can amplify

over time and become large after a certain time period

(Lorenz 1965). Since an intrinsic uncertainty always

exists in both the ICs and model physics, a forecast

predicted by a single model run always has uncertainty.

Such forecast uncertainty varies from time to time, from

location to location, and from case to case. A dynamical

way to quantify such flow-dependent forecast uncer-

tainty is with ensemble forecasting (Leith 1974; Du

2007). Instead of one single integration, multiple model

integrations are made, initiated with either multiple

slightly different ICs and/or based on different model

configurations in an ensemble prediction system. Given

the intrinsic uncertainty of the model forecasts and the

fact that fog forecasting is believed to be extremely sen-

sitive to the initial conditions and the physics schemes

used in a prediction system (Bergot and Guedalia 1994;

Gayno 1994; Bergot et al. 2005), it is highly desirable to

have fog prediction be part of an ensemble framework.

This work is certainly one of the pioneering attempts in

the trend toward this new requirement.

To account for the uncertainty in weather forecasts,

a global medium-range ensemble prediction system was

operationally implemented at NCEP in 1992 (Tracton

and Kalnay 1993; Toth and Kalnay 1993, 1997). A re-

gional model-based Short-Range Ensemble Forecast

(SREF) system was also developed and operationally

implemented in 2001 (Stensrud et al. 1999; Tracton et al.

1998; Du and Tracton 2001; Du et al. 2003, 2004, 2006).

From 2003, with support from the Federal Aviation

Administration (FAA), the development of ensemble

products based on the NCEP SREF system and partic-

ularly tailored to aviation weather forecasting has been

carried out. Many aviation weather products have been

developed including ceiling, icing, turbulence, visibility,

and fog (Zhou et al. 2004). Although subjective evalu-

ations against satellite-detected fog over the continental

United States suggested that probabilistic fog forecasts

derived from the NCEP SREF system can generally

capture fog events (Zhou et al. 2007), no objective and

systematic verification has been done yet at NCEP. This

work can fill that gap.

During the 2008 Summer Olympic Games, in Beijing,

China, a subcomponent of the NCEP SREF system was

reconfigured to support daily weather forecasts in China

for the event as part of the Research Demonstration

Project (hereafter referred as SREF-B08RDP) under

the auspices of the World Weather Research Program

(WWRP) of the World Meteorological Organization

(WMO). Taking advantage of this SREF-B08RDP

project, a fog prediction scheme was quantitatively and

objectively verified using this mesoscale ensemble data

over eastern China to fulfill three goals. The first goal is

to examine the effectiveness of a new diagnostic fog-

forecasting method compared to a conventional method

used in current practice; the second goal is to examine

the forecast skill level of current operational NWP

models in predicting fog with various approaches, in-

cluding ensemble technique, multimodel approach, and

the increase in ensemble size; and the last goal is to

compare the performances of a single-model-based en-

semble and multimodel-based ensembles, as well as to

examine the impacts of ensemble size on probabilistic

forecasts when the ensemble size is small. To the best of

our knowledge, this is the first attempt to apply a sophis-

ticated ensemble technique to a state-of-the-art opera-

tional NWP model to centrally predict and systematically

evaluate this important but difficult and complex low-

probability phenomenon although the ensemble tech-

nique has been applied to many other weather-related

variables such as precipitation, convection, temperature,

and cyclones (Du et al. 1997; Hamill and Colucci 1997,

1998; Eckel and Walters 1998; Hou et al. 2001; Stensrud

and Yussouf 2003, 2007; Yuan et al. 2005, 2007; Jones

et al. 2007; Schwartz et al. 2010; Clark et al. 2009; Charles

and Colle 2009). The paper is organized as follows. The

ensemble system’s configuration is described in section

2, with the fog diagnostic method outlined in section

3. Section 4 summarizes the verification methods and

data. Evaluation results and discussions are presented in

304 W E A T H E R A N D F O R E C A S T I N G VOLUME 25



section 5, and a summary and plans for future work are

given in the last section.

2. Configuration of a multimodel mesoscale
ensemble prediction system

As part of the WMO/WWRP Research Demonstra-

tion Project (on mesoscale ensemble forecasting) for

B08RDP (Duan et al. 2009), a subcomponent of the

larger NCEP SREF system was reconfigured to the

China region and run once per day from 29 January to 7

September 2008. The forecast domain, centered near

Beijing (at 408N, 1158E) and covering 3555 km in the

east–west direction (238 grid points) and 2910 km in the

north–south direction (195 grid points), covers most of

northern and eastern China as shown in Fig. 1. This

subsystem, SREF-B08RDP, is a multimodel-based me-

soscale ensemble prediction system designed to include

physics diversity, which consists of 10 members using two

regional models: the Nonhydrostatic Mesoscale Model

(NMM; Janjić et al. 2001) component of the National

Centers for Environmental Prediction’s (NCEP) Weather

Research and Forecasting (WRF) model and the National

Center for Atmospheric Research’s (NCAR) Advanced

Research version of the WRF (ARW; Skamarock et al.

2005). Each model has five members, one control and four

perturbed, to address uncertainty in the initial condi-

tions (ICs). The SREF-B08RDP ran once per day with a

forecast length of 36 h initiating at 1200 UTC or 2000

Beijing time (BT, or local time). The control ICs came

from the NCEP Global Data Assimilation System

(GDAS; information online at http://www.emc.ncep.

noaa.gov/gmb/gdas). IC perturbations were created us-

ing the breeding method (Toth and Kalnay 1993, 1997)

and lateral boundary condition (LBC) perturbations

were provided by the NCEP Global Ensemble System

(GENS; Toth and Kalnay 1993). The horizontal resolu-

tion of both models is 15 km. The vertical resolutions are

set at 52 sigma levels, with the lowest values at 1.0, 0.9925,

0.9840, 0.9744, etc., for NMM and 51 sigma levels at 1.0,

0.9938, 0.9864, 0.9778, etc., for ARW. The sigma values

for the lowest levels indicate that the lowest vertical

resolutions (above the surface) for both models are

equivalent to about 50 m.

The physics schemes employed by the SREF-B08RDP

are listed in Table 1. In addition to the difference in the

dynamic cores, the following physics are also different in

the two models: convection, planetary boundary layer

(PBL), surface boundary layer, and long- and shortwave

radiation. The cloud microphysics and land surface

schemes are the same in both models. For convection

the Betts–Miller–Janjić scheme (BMJ; Janjić 1994) is

used in NMM and the Kain–Fritsch scheme (KF, Kain

and Fritsch 1990) in ARW. For the PBL, the Mellor–

Yamada–Janjić scheme (Janjić 1994) is used in NMM

and the Yonsei University scheme (YSU; Hong and

Dudhia 2003) in ARW. For the surface boundary layer,

the Janjić similarity scheme (Janjić; Janjić 1996) is used

in NMM and the classical Monin–Obukhov scheme is

employed in ARW. For longwave radiation the Geo-

physical Fluid Dynamics Laboratory scheme (GFDL;

Schwarzkopf and Fels 1991) is used in NMM and the

Rapid Radiative Transfer Model (RRTM; Mlawer

et al. 1997) in ARW. For shortwave radiation the

GFDL scheme (Lacis and Hansen 1974) is used in NMM

FIG. 1. NCEP SREF-B08RDP ensemble forecast model domain

(outer) and the forecast output domain (inner) with the locations of

the 13 fog verification cities.

TABLE 1. Configuration of the NCEP B08RDP ensemble forecasting system.

Models

(members)

Convection

physics Microphysics

Resolution (km)

and levels PBL

Surface

boundary layer

Base ICs

and BCs

Longwave

radiation

Shortwave

radiation

Land

surface

WRF NMM

(five)

NCEP

(BMJ)

Ferrier 15 (52) MYJ Janjić GDAS

(GENS)

GFDL GFDL Noah

WRF ARW

(five)

NCAR

(KF)

Ferrier 15 (51) YSU Monin–Obukhov GDAS

(GENS)

RRTM Dudhia Noah
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and the Dudhia shortwave transfer model (Dudhia

1989) in ARW. Ferrier’s microphysics cloud scheme

(Ferrier et al. 2002) and the Noah land surface model

(Noah; Ek et al. 2003) are used in both models.

3. A multivariable-based diagnostic method
for fog detection

Although one hopes that the liquid water content

(LWC) at the lowest model level can be explicitly used

as fog, experience indicates that an LWC-only approach

does not work well with the current NWP models due

mainly to two reasons: one is the too coarse model

spatial resolution and the other is a lack of sophisticated

fog physics. Therefore, it is necessary to find a fog de-

tection scheme based on other model output variables.

In such a scheme, one should expect that the performance

of a fog forecast depends on how the fog is detected. In

previous studies, LWC at the lowest model level was

commonly used to represent fog (hereafter referred to

as the LWC-only approach). However, these fog pre-

dictions or simulations were for case studies in which the

model resolutions could be very high. For operational

models such as at NCEP, model resolutions are still too

coarse to properly resolve important physics for fog near

the surface due to computing resource limitations. Ad-

ditionally, physical schemes or parameterizations in the

operational models are not designed for near-ground

fog but for precipitation or clouds at higher levels. As

a result, the LWC from the models is usually not reliable

enough to represent fog and tends to seriously under-

forecast fog in many cases (G. Toth 2009, personal com-

munication). To better detect fog, other variables besides

LWC were considered to enhance the performance of

the forecasting.

Fog forecasting is in essence the prediction of visibility

in foggy conditions. However, the commonly used visi-

bility computation in fog has a very large error (over

50%) as shown by Gultepe et al. (2006, 2009). The un-

reliable LWC from the operational models causes an

even larger visibility computation error. Due to these

two facts, only fog occurrence, and not fog intensity

(visibility), is diagnosed in the current SREF system.

Below is a description of a new multivariable-based

approach we propose in the postprocessor of the SREF

system for fog forecasting.

It is well known that fog has different types with dif-

ferent creation mechanisms (Tardif and Rasmussen 2008).

Some build from stratus subsidence, some from advec-

tion, and some from radiative cooling near the ground.

To deal with different fog types, the proposed diagnosis

consists of the following criteria or rules with appro-

priate thresholds:

LWC at the model lowest level $ 0.015 g kg�1 or,

(1a)

cloud top # 400 m and cloud base # 50 m, or (1b)

10-m wind speed # 2 m s�1 and 2-m RH $ 90%. (1c)

This diagnosis is similar to the conceptual scheme sug-

gested by Croft et al. (1997). The LWC rule in (1a)

came from the definition of fog visibility range. With

Kunkel’s equation (Kunkel 1984), LWC $ 0.015 g kg21

is equivalent to visibility #1000 m, the definition of

fog from the World Meteorology Organization (WMO

1966).

The cloud-top threshold in (1b) follows the general

features of fog. Observations indicated that the depth of

most fogs on land is about 100 ; 200 m. Some marine

fogs or advection fogs are deeper, but rarely exceed

400 m. The cloud-base threshold in (1b) reflects the

lowest level of our models. The current NMM and ARW

used in the SREF system have a vertical grid spacing of

about 50 m near the ground (the cloud bases and tops

are defined as cloud LWC ;1023 g kg21 in both the

NMM and ARW models). At a grid point, if the cloud

base touches the lowest model level and the cloud top is

less than 400 m as well, the cloud at this location is as-

sumed to be fog. An evaluation with satellite-detected

fog data over the conterminous United States (CONUS)

showed that the full NCEP SREF system using this

cloud rule can diagnose large-scale fog events well, par-

ticularly marine fog or coastal fog, but not shallow fog

or ground fog because this type of fog usually builds

upward from the ground and may lie below the lowest

model level (Zhou et al. 2007).

To deal with ground fog, the RH–wind rule (1c) was

included. Choosing general and centralized thresholds

for surface wind and RH over large domains in a model

is more difficult than for the LWC and cloud rules be-

cause 1) ground fog is more local and 2) different models

have different RH and wind biases. In many cases fog

was reported while the model RH was less than 100%.

On the other hand, ground fog is generally a radiation or

radiation-related type of fog. Thus, weak turbulence is

a necessary condition for this type of fog. With appro-

priate thresholds for RH and for turbulence intensity

[e.g., those suggested for radiation fog by Zhou and

Ferrier (2008)], grid-scale ground fog in a model can be

diagnosed. Unfortunately, the turbulence intensity was

not output from the B08RDP’s postprocessor. An al-

ternative approach is to use a combination of surface

RH and wind speed. Surely, since there is no quantita-

tive relationship between wind speed and turbulence

intensity, which threshold value should be used for wind
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speed in the diagnosis is somewhat empirical and needs

to be tuned based on past data. Local forecasters usually

use 2-m RH (.90% ; 100%, some use dewpoint tem-

perature) and 10-m wind speed (,2 ; 3 m s21) to check

for local fog, depending on the location and model em-

ployed. For centralized fog forecasting in this study, the

optimized RH and wind thresholds of 90% and 2 m s21

for both NMM and ARW, shown in Eq. (1c), were ob-

tained through a tuning iteration procedure using the

NMM and ARW control forecasts during February

2008. During the process of iteration, the thresholds for

the LWC and cloud rules were kept the same but the

thresholds for RH and wind speed were tuned around the

empirical value ranges. Then, with the tuned thresholds,

fog forecasts from both the NMM and ARW control runs

in the iteration were compared with the fog data in 13

cities over eastern China to acquire overall forecast skill

scores. The forecast skill score computations and the

observed fog data will be discussed in the next section.

After the tuning procedure was run through all of its

iteration steps, the thresholds for RH and wind were

selected from the best performance scores (Table 2).

Table 2a shows that the combination of 90% RH and

2 m s21 10-m wind speed gave the highest equitable

threat score (ETS) for both the NMM (ETS 5 0.211) and

ARW (0.109) control runs in February. The selected

thresholds were then applied to the rest of the verifica-

tion period (March–August) for fog forecasting. To ex-

amine if the February-based thresholds were also valid

for other months, ETSs were calculated for other months

with the all threshold combinations. The mean ETSs aver-

aged over the entire 7-month period (February–August)

are listed in Table 2b, which shows that although the

thresholds were tuned using the February data, they

seem to work equally well for the other months too with

the highest mean ETS (0.192) associated with the com-

bination of the 90% 2-m RH and 2 m s21 10-m wind

speed thresholds. Note that since both the NMM and

ARW control forecasts had similar patterns of behavior

in the tuning process and they shared the same opti-

mal RH–wind thresholds (see Table 2a), what are listed

in Table 2b are the mean scores averaged over the two

models.

Now, let us evaluate the influences of the RH–wind

rule on fog forecasting since this process should be in-

sightful for other similar works in the future. To be more

representative, the results based on the entire time pe-

riod and the two models (i.e., Table 2b) are discussed

here. If the RH threshold is too large (;100%) or the

wind threshold too small (;1 m s21), the ETS value

generally hits the 0.095 bound, implying that the RH–

wind relation has no impact on fog forecasts and only the

clouds and LWCs play roles under such circumstances.

On the other hand, if the threshold for RH is too low

or the wind is too strong (e.g., 85% and 3 m s21), the

overall ETS is only 0.054 due to too many false alarms.

This is even lower than the value of 0.063, which is the

overall ETS of the LWC-only approach (see Fig. 2d).

The ETS of the LWC-only indicates that inappropriate

RH–wind thresholds may cause a negative contribution

to the diagnosis. Since the overall ETS with the LWC and

cloud diagnosis (without the impacts from the RH–wind

relationship) is 0.095, as shown in Table 2, the RH–

wind’s contribution to the overall ETS can range from

0.097 (0.192–0.095) to 0.192. The overall ETS for the

cloud rule alone can range from 0.032 (0.095–0.063) to

0.095. Thus, the contributions of the LWC, cloud, and

RH–wind rules to the forecast score are 0.063, 0.032–0.095,

and 0.097–0.192, respectively. These numbers roughly re-

veal the relative contributions to a fog forecast by the

different rules used in diagnosing fog [Eq. (1)] from the

NMM and ARW models in this study. The ETS indicates

that the RH and wind variables are critical to a successful

fog forecast using a coarse-resolution model with the fog

physics missing. By the way, the large variations in ETS

either at a fixed column (except for the 100% RH) or row

(except for the 1.0 m s21 wind) in Table 2 imply that RH-

only or wind-only rules would not work well.

TABLE 2. ETSs of fog forecasts using different combinations of 2-m RH and 10-m wind speed thresholds for (a) the NMM (ARW)

control runs in Feb 2008 and (b) the average of the NMM and ARW control runs during Feb–Aug 2008. The highest ETS of all com-

binations is shown in boldface.

(a)

Feb $85% $90% $95% 5100%

#1 m s21 0.036 (0.036) 0.038 (0.032) 0.041 (0.018) 0.041 (0.018)

#2 m s21 0.102 (0.077) 0.211 (0.109) 0.080 (0.036) 0.041 (0.018)

#3 m s21 0.084 (0.061) 0.149 (0.065) 0.116 (0.023) 0.041 (0.018)

(b)

Feb–Aug $85% $90% $95% 5100%

#1 m s21 0.113 0.095 0.095 0.095

#2 m s21 0.094 0.192 0.112 0.095

#3 m s21 0.054 0.133 0.126 0.095
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Under the selected thresholds in Eq. (1), fog fore-

casting from the NMM and ARW control runs and en-

sembles can then be conducted in the following study.

However, can this new method be easily adapted to other

NWP models? Although the diagnosis certainly depends

on the models and training data, as already discussed

above, it does not seem to be that difficult to apply this

fog method to other models. Our discussion has men-

tioned that the LWC criteria [Eq. (1a)] can be generally

used (no tuning is needed) and the cloud-base–top cri-

teria [Eq. (1b)] can also be easily determined by the

model vertical resolution setting (no tuning either). Al-

though the RH–wind rule [Eq. (1c)] is important and

needs a simple tuning based on a particular model and its

performance, the fact that the same rule worked quite

well for both the NMM and ARW and all months from

February to August (Table 2) suggests that the RH–wind

rule is not that particularly sensitive to the model or sea-

son. Therefore, although the threshold values in Eq. (1)

are optimized for NMM and ARW models over eastern

China, we believe that they can be used as approximate

criteria for other models too (the RH–wind rule can at

least be used to provide reference values for a simple

tuning such as the 12 unique combinations involved in

our tuning process). As for a very high-resolution model

with sophisticated fog physics, the cloud and/or RH–wind

rule might be removed (but that remains to be proven).

However, without sophisticated fog physics (not currently

available), the cloud and RH–wind rule might still well be

needed even in a finescale model.

4. Verification methodology and data

a. Verification method

The following scores are used to verify a deterministic

forecast against an observation of a binary event (yes or

no; 1 or 0), where F, H, and O refer to the numbers of

forecast points, correctly forecast points (hits), and ob-

served points, while N is the total number of points in

a verification domain:

hit rate [HR, or probability of detection (POD)] 5
H

O
,

(2)

FIG. 2. Monthly scores of (a) bias, (b) HR, (c) FAR, and (d) ETS for the single NMM and ARW

control runs using the ‘‘multivariable’’ and ‘‘LWC only’’ methods.
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false alarm ratio [FAR, or probability of false alarm

(POFA)] 5
F �H

F
, (3)

false alarm rate [FARt, or probability of false

detection (POFD)] 5
F �H

N �O
, (4)

missing rate (MR) 5
O�H

O
, (5)

correct rejection rate (CRR) 5
N �O� F 1 H

N �O
, (6)

bias 5
F

O
, (7)

threat score (TS) 5
H

F 1 O�H
, (8)

and

ETS 5
H � R

F 1 O�H � R
, (9)

where R 5 F 3 O/N is a random hit penalty. Since the

bias is defined here as the ratio of total forecast points to

total observed points, the best value for the bias is 1.0,

while values less than 1.0 indicate underprediction and

values greater than 1.0 indicate overprediction. TS or

ETS is a positively oriented score; that is, the larger the

TS or ETS, the better a forecast will be. From the formula

one can see that ETS is a more restricted version of TS.

For those who are not familiar with this score, one might

keep the current capability in predicting precipitation in

mind as a reference when comparing the results described

in section 5. Using a current state-of-the-art NWP model,

ETS is about 0.3 in predicting warm season precipitation

and 0.4 in predicting cold season precipitation. Note that

for a particular given probability threshold, a probability

forecast can also be viewed as a deterministic forecast.

Therefore, probabilistic forecasts could also be verified

deterministically, which will be shown in section 5.

For verifying probabilistic forecasts, the following

four scores—Brier score (BS), Brier skill score (BSS),

relative operating characteristic (ROC), and reliability

diagram—are used:

BSS 5 1� BS

BS
r

, (10)

where

BS 5
1

n
�

i
�

j
(p

ij
� o

ij
)2, (11)

and

BS
r
5

1

n
�

i
�

j
( f

ij
� o

ij
)2, (12)

where i and j denote, respectively, the verifying point

(out of the total points) and the forecast number (out of

the total number of forecasts); n is the total number of

forecast–observation pairs for all forecasts over all veri-

fying locations; pij (oij) is the forecast (observed) proba-

bility at location i from the jth forecast, where the forecast

probability ranges in value from 0 to 1 but the observed

probability is either 1 (yes event) or 0 (no event); fij is

a reference forecast at location i from the jth forecast,

with a value that either ranges from 0 to 1 (if a probabi-

listic forecast is used) or is a 1 or 0 (if a single deterministic

forecast used). In this study, a single deterministic (con-

trol) forecast will be used as a reference. Obviously, the

perfect BS is 0.0 and the perfect BSS is 1.0. The smaller

the BS or the larger the BSS, the better a probabilistic

forecast will be. A positive BSS indicates a skillful prob-

abilistic forecast with respect to its reference forecast;

otherwise, the probabilistic forecast has no skill.

The Brier score can be further decomposed into three

components to reflect the characteristics of the joint dis-

tribution as derived by Murthy (1973):

BS 5 BS
rel
� BS

res
1 UNC, (13)

where BSrel is the reliability, BSres the resolution, and

UNC the uncertainty. The meaning of the reliability and

resolution will be briefly mentioned in the following

discussion about reliability diagrams. The uncertainty

reflects the underlying uncertainty of the observations.

Since BS is negatively oriented, a good probabilistic

forecast (i.e., a smaller value of BS) should have a smaller

value of reliability (BSrel), a larger value of resolution

(BSres), and a smaller value of uncertainty (UNC).

A ROC curve is generated by plotting the HR against

the FARt (POFD) in a 1.0 3 1.0 coordinate system [with

FARt (POFD) on the x axis and HR on the y axis] for

all possible decision probability thresholds (Mason 1982;

Toth et al. 2003). Each point on the ROC curve repre-

sents a pair of (HR, FARt, or POFD). If the curve is

above the diagonal line (climatology), it indicates a

skillful forecast; otherwise, there is no skill compared to

climatology. Normally, forecast accuracy can be quan-

tified by estimating the area enclosed below a ROC curve.

Thus, if a ROC area is .0.5, the forecast is considered

skillful. Since the best values for HR and FARt (POFD)

are 1.0 and 0.0, respectively, the perfect ROC area is 1.0.

In verifying probabilistic forecasts, HR–FARt (POFD)
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pairs are calculated at all given decision probability

thresholds to construct the ROC curve.

The ROC curve, however, does not provide a full de-

piction of the joint distribution of forecasts and obser-

vations (Wilks 2006). Specifically, it does not reveal the

reliability aspect although it is a good indicator of the

resolution aspect of a forecast system (Toth et al. 2003),

where resolution refers to the ability of a forecasting

system to distinguish a forecast from averaged observa-

tion data or climatology. Reliability (also called statistical

consistency) is another important quality of a probabilistic

forecast, and measures whether the forecast probability

is statistically consistent with the observed frequency of

the occurrence of the event considered over a long pe-

riod of time or over many cases. Therefore, a reliability

diagram (also called the probability bias) is also veri-

fied in this study and can be obtained by plotting an

equal-interval predicted probability (x axis) against the

observed frequencies (y axis). A reliable probabilistic

forecast should yield a reliability curve close to the

diagonal line, which indicates a perfectly reliable prob-

abilistic forecast. A reliability diagram can provide ad-

ditional information associated with resolution, data

uncertainty, and skill margins (see section 5c).

b. Verification data

Because of a current lack of fog analysis data, it is

impossible to verify fog forecasts grid point by grid point

over the entire domain. Instead, 13 big metropolitan

areas are chosen for verification and tuning in this study

(Fig. 1). Since the forecast is binary, there was no in-

terpolation from the grid points to the observation sta-

tions but the forecasts at grid points nearest to the

observation stations were verified. Although the num-

ber of sampled cities seems small, they are uniformly

spread over the eastern part of the forecast domain

where fog occurrence is most frequent. As a matter of

fact, there were a total of 242 foggy days during the

verification period (Table 3), which should be large

enough in temporal space to compensate for an in-

sufficient number of spatial sampling points. Further-

more, fog is a local weather phenomenon that is strongly

influenced by factors such as terrain, local flows, and

local surface boundary layer conditions and therefore

may well be a subgrid-scale event on many occasions. As

a result of this, a model with coarser horizontal resolu-

tion may not capture all fog events well. Thus, a ro-

bust assessment of the systematic performance of fog

forecasts can only be obtained from verifications over

a long period of time or over a large number of cases.

In this study, a total of about 5460 forecasts [7 months 3

30 days 3 2 forecasts per day (f12h and f36h) 3 13 cities]

were used in the verification to make sure that the ver-

ification results are representative. Considering that

each forecast was actually predicted by 10 ensemble

members, the total number of forecasts reached 54 600.

Fog is a relatively frequent weather phenomenon over

eastern China, particularly along the coast. The fre-

quency of dense fog events in some coastal cities can

reach as high as 50% in the foggy season (Liu et al.

2005). The verification data for this study were daily fog

reports issued by local weather services or airports in 13

cities in eastern China from February to September 2008

during the SREF-B08RDP operating period. Since the

observational data were reported only for morning fog

events, the verification had to be done on both the 12- and

36-h forecasts of a particular cycle, which correspond,

respectively, to 0800 BT on the first and the second days

after the model initiation time (1200 UTC or 2000 BT).

The foggy days in the 13 cities during the 7 months are

summarized in Table 3 and include both dense fog (visi-

bility ,500 m) and light fog (visibility between 500 and

1000 m) events. There were a total of 242 fog events

observed with an average monthly fog occurrence fre-

quency of nearly 8.8% (or about 2.7 days per month) at

any given city. This percentage was used as the fog cli-

matology level in the reliability diagram (Fig. 10) to de-

termine the resolution of fog forecasting in this study.

What is the quality of this observational dataset?

Table 3 shows a seasonal and geographic distribution of

fog events over eastern China: the east coast has more

fog events and the western interior lands fewer; the

southeast coast has more fog in the cold season and the

northeast coast more fog in the warm season. This sea-

sonal and geographic distribution demonstrated by Table 3

is generally in agreement with 50 yr of fog statistics in

China, as reported by Liu et al. (2005). Two cities on the

northeast coast, Tianjin and Qingdao, are well recognized

as ‘‘foggy’’ cities in China due to their specific locations,

TABLE 3. Number of fog-observed days for the 13 cities in eastern

China from Feb to Aug 2008.

City Feb Mar Apr May Jun Jul Aug Total

1) Shenyang (SY) 0 2 1 2 4 5 5 19

2) Beijing (BJ) 0 1 1 2 4 5 4 17

3) Tianjin (TJ) 2 2 1 4 1 12 4 26

4) Shijiazhuang (SJZ) 0 3 3 4 2 4 3 19

5) Zhengzhou (ZZ) 1 1 4 0 0 6 4 18

6) Dalian (DL) 0 2 3 4 4 7 3 23

7) Qingdao (QD) 1 1 3 5 9 8 2 29

8) Jinan (JN) 0 1 0 1 2 2 2 8

9) Xian (XA) 1 2 2 1 2 1 0 9

10) Nanjing (NJ) 4 2 3 0 5 3 2 19

11) Shanghai (SH) 5 1 5 3 4 1 3 22

12) Hangzhou (HZ) 5 2 4 3 4 2 2 22

13) Wuhan (WH) 3 2 4 1 1 1 1 13

Total 22 22 34 30 42 57 35 242
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where continuous marine fog events frequently appear

under dominant high pressure weather systems during

late spring and early summer when warm and moist air

flows northward over cold waters or cold air flows

southward over warm waters along the coast. This fact

is indeed reflected in Table 3. For example, Tianjin re-

ported 12 foggy days in July and Qingdao reported 9 days

in June and 8 days in July, which were significantly more

than other cities during the same months. All this suggests

that the observational fog data collected are reliable. By

the way, based on Liu et al. (2005), the highest frequency

of fog occurrence over eastern China is in the autumn–

winter period (November–January), which is, unfort-

unately, outside of the SREF-B08RDP operating period.

Otherwise, more fog events would have been evaluated.

5. Verifications and discussions

a. Effectiveness of the new fog detection method

Since most of the current fog forecasts from NWP

models use the model’s lowest-level LWC as fog, it will

be meaningful to compare how well the multivariable-

based diagnosis performs against the LWC-only ap-

proach. Figure 2 shows the monthly verification statistics

from the NMM and ARW control forecasts (note that

given no distinguishing differences in performance be-

tween the 12- and 36-h forecasts, all the statistical scores

throughout this paper were averaged over both the 12-

and 36-h forecasts to increase the sample size). Although

all forecasts (with the exception of the multivariable-

based NMM forecast in the summer season) underes-

timate the number of fog events, the multivariable-based

method exhibits less bias (is closer to value 1.0) than the

LWC-only method for both models (Fig. 2a). This can

be further confirmed from the HR plot shown in Fig. 2b

where the multivariable-based approach has a consis-

tently higher hit rate than the LWC-only approach, ex-

cept for the month of May. The hit rate of the LWC-only

approach is particularly low (near zero) for the ARW

model in the winter and summer seasons, which dem-

onstrates that the LWC-only method is not reliable, al-

though the LWC-only method was only slightly worse

than the multivariable-based method in May. Given the

fact that more diagnostic parameters are included by the

logical operator or in the new method [Eq. (1)], it is

expected that the FAR might increase for the new ap-

proach. Figure 2c shows, however, that in the new ap-

proach such an increase in FAR is not that significant;

FAR remained at a similar level for the NMM model in

all months, while for the ARW model it became better

for February–April and worse for May–August. Com-

bining both HR and FAR, a comprehensive measure is

given by ETS (Fig. 2d), which clearly shows that the new

multivariable-based approach is superior to the LWC-

only approach in predicting fog events. On average (for

the two models and the 7 months), the improvement in

ETS reached 205%, increasing from 0.063 to 0.192.

Therefore, this new multivariable-based fog detection

algorithm will be employed in the rest of this study.

To examine in detail the effectiveness of different di-

agnostic rules and how well the multivariable diagnosis

in fog forecasting does from a single model, a large-scale

fog event is presented below. The event occurred over

a large area along the east coast of China on the morning

of 7 April 2008 (Fig. 3a). Besides the areas of observed

fog, the 9-h forecasts of surface wind speeds, 2-m RH,

cloud tops and bases, and the LWC from the NMM

control are also displayed in Fig. 3. The sea level pressure

map (not shown) indicates that the entire costal region

from south to north was controlled by a steady high

pressure system centered on the Beijing–Tianjin region.

This high pressure system caused a stable planetary

boundary layer and a weak surface wind environment

along the coast (Fig. 3b). The air over the water was

nearly saturated, as shown in Fig. 3c, while the surface

temperature gradually decreased from south to north

(not shown). The cloud-top and -base forecasts are pre-

sented in Figs. 3d and 3e, where the blank areas indicate

no cloud, showing that the sky that night was cloud free

along the southern coastal region. Figure 3b indicates that

the surface wind directions were mostly southeasterly

(warm and moist) over land and northwesterly (cold)

over the water. Over land, the southeasterly wind brought

warm and moist air toward the north (warm advection),

which was gradually cooled down during its transport and

was further cooled down by strong radiative cooling near

the ground along the southern coast during the night of

6 April (clear sky under high pressure). Over the water,

on the other hand, the northwesterly cold-air movement

(cold advection) cooled the near-saturated air above the

water down to its condensation temperature. Under such

a favorable combination of wind, temperature, and hu-

midity conditions, a large-scale marine-radiation fog ep-

isode developed both on land and over the water along

the coast from Hangzhou and Shanghai in the south to

Qingdao, Tianjin, Dalian, and Beijing in the north, during

the early morning of 7 April as shown in Fig. 3a. The

large-scale fog region shown in Fig. 3a is a composite

of the observed fog areas derived from the following

sources: fog observation mosaics issued by the National

Meteorological Center of China, fog reports by local

weather stations, and fog images from satellites issued

by the National Satellite Meteorological Center of China.

The fog mostly dissipated over land after 1000 BT, al-

though it still remained over the water, as can be seen

from satellite images (not shown). It was not clear
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whether or not fog developed in the northeast area near

Dalian because no fog data were available from there

for this fog event. During this large-scale fog episode,

numerous traffic interruptions including local traffic tie-

ups, shutdowns of several highways, closures of sea

harbors, and hours-long delays for many airlines were

reported in all the affected cities. Several casualties from

a series of fatal car accidents on highways were also

reported by local police offices. The societal impacts of

accurate fog forecasting are high in such major events.

However, this fog episode was mostly missed by the

LWC-only forecasts from the NMM (Fig. 3f) and the

ARW (not shown). If the LWC-only approach is used,

the fog forecast in this case would be significantly un-

derpredicted. From the above analysis, we can expect

that the fog was of the advection type over water and of

the radiation type on land along the southern coast. But

the LWC-only approach failed to detect both types of

fog over most of the region. By using the multivariable

diagnosis, however, the fog areas derived from the

NMM and the ARW control forecasts were obviously

expanded as shown in Figs. 4a and 4b, respectively. By

examining the NMM control’s forecast distributions of

2-m RH, 10-m wind speeds, and cloud bases and tops in

Figs. 3b–e, one can observe that the surface RH and

wind speed on land near Shanghai and over the water to

the south of Dalian met the ‘‘RH–wind’’ thresholds

while the cloud bases and tops over the water to the east

of Qingdao met the ‘‘cloud top and base’’ thresholds. As

a result, the NMM with the multivariable diagnosis

successfully predicted the fog events in Shanghai and

over the water to the south of Dalian and the east of

Qingdao, as shown in Fig. 4a (which were missed by

LWC-only approach in Fig. 3f). This fog case demon-

strates that by using the LWC-only approach the single

models in the SREF system would seriously under-

forecast the fog, while using the multivariable diagnosis

would greatly improve the forecast. Although the fore-

cast fog areal coverage was still smaller than the ob-

served, it is much better than the forecast made with the

LWC-only approach (cf. Figs. 3f and 4a).

b. Single deterministic forecast versus ensemble
forecasts

As with the two control forecasts, fog occurrence (1 or 0)

can also be diagnosed for all perturbed ensemble mem-

bers. Based on all individual member forecasts, the

probability (relative frequency) of fog occurrence can be

calculated. A probabilistic forecast can be evaluated

both probabilistically and deterministically. For a given

FIG. 3. (a) Observed fog episode at 0500 BT 7 Apr 2008; 9-h forecasts (verified at 0500 BT 7 Apr 2008) of (b) 10-m wind speeds and

directions, (c) 2-m RH, (d) cloud base, (e) cloud top, and (f) LWC distributions, from the NMM control run.
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specific percentage threshold (such as 10%), a probabi-

listic forecast can be viewed as a deterministic forecast

in the way that an event is expected to occur when the

forecast probability is greater than or equal to the selected

threshold. Figure 5 shows the fog prediction skill verified

with deterministic measures (HR, FAR, MR, CRR, bias,

and ETS) of the five subgroups that are the NMM and

ARW controls, 5 NMM member-, 5 ARW member-, and

the 10 SREF-B08RDP (NMM 1 ARW) member-based

probabilistic forecasts. Here, the probabilistic forecasts

were treated as deterministic forecasts with the per-

centage thresholds fixed at 20%, 40%, 60%, 80%, and

100%. Theoretically, the ensemble mean or median (the

50% probability) forecast should have the most skill on

average (Leith 1974), so verifying the median forecast is

certainly desirable. Unfortunately, since the prevailing

number of ensemble members in this study is five, the

50% probability threshold is not available. Therefore,

we have to use either a 40% or a 60% forecast to ap-

proximate the ensemble median forecast. For a complete

picture, the 20%, 80%, and 100% probability thresholds

were also verified. By comparing the single control fore-

casts and their corresponding (same model) ensemble-

based forecasts, the benefits from the ensemble-based

forecasts are obvious and are true for both models. For

example, the probabilistic forecast HR (MR) is much

higher (lower) than for the NMM and ARW control

forecasts when the probability threshold is less than

60% (Figs. 5a and 5c). The penalty for this is, however,

a slight increase in FAR especially at the 20% threshold

(Fig. 5b). But the overall combined score measured by

ETS (Fig. 5f) is a net gain at thresholds of less than 60%

for the probabilistic forecasts over the single control

forecasts, where the 40% probabilistic forecasts per-

formed the best. Bias scores also seem to suggest that the

40% probabilistic forecast is the best because of an

overforecasting tendency when thresholds are less than

40% and an underforecasting tendency when they are

greater than 40% (Fig. 5e). Apparently, the bias paral-

lels the behavior of HR (MR). Because of the shrinkage

in the forecast area, HR (MR) should be expected to

decrease (increase) with the increase in probability thresh-

olds. Therefore, at the high end of the probability thresh-

olds (80% and higher), the HR (MR) became worse for

probabilistic forecasts although a reduced false alarm

ratio (FAR) was a natural reward in return (Figs. 5a–c).

Considering that fog is a relatively rare event, on many

occasions there should be no fog in both the forecast

and the observation, which implies that the correct re-

jection rate (CRR) must be quite high for all kinds of

fog forecasts. In other words, CRR will be less sensitive

to which model groups or probability thresholds are

selected. This characteristic is indeed shown in Fig. 5d

where CRR, unlike other scores, shows less variation

over the different probability thresholds and retains sim-

ilar values between the single control forecasts and the

probabilistic forecasts. The above results demonstrate

a clear benefit from the ensemble approach over a single

deterministic run in two ways. One is that a much im-

proved deterministic forecast can be achieved by using a

forecast close to the ensemble median (50% probability),

such as the 40% threshold in this study. The improvement

FIG. 4. The 9-h single forecasts of the 7 Apr 2008 fog episode (all verified at 0500 BT 7 Apr 2008) of the (a) NMM and (b) ARW

control runs.
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with the 40% forecasts over the single control forecasts in

ETS averaged over the two models is a 17.2% increase

from 0.192 to 0.225 (see Fig. 5f). Second, the ensemble-

based forecast can provide useful information to various

types of users with their own unique requirements, ob-

jectives, and economic values. For example, some users

may prefer a higher hit rate and need not worry about

the false alarm rate, while others may be the opposite.

This is a situation that ensemble-based forecasts can

serve well but a single forecast cannot.

To further demonstrate the value of probabilistic fore-

casts over a deterministic forecast, probability itself was

also evaluated in terms of a probabilistic score. Figure 6a

shows the BSS over each month for both the NMM-

ensemble-based and ARW-ensemble-based probabilis-

tic forecasts, where the control run of the corresponding

base model was used as the reference forecast for each

model. Clearly, both ensembles show skill over their own

single control forecast for the entire verification period

from February to August. The mean BSS averaged over

all 7 months is shown in Fig. 6b. In addition to Fig. 6a,

the BSS in Fig. 6b was also calculated using the other

model’s control forecast as the reference. Since the skill

was systematically reduced for all ensembles when switch-

ing the reference from the ARW control forecast to the

NMM control forecast, this indicates that the single NMM

FIG. 5. Averaged scores of (a) HR, (b) FAR, (c) MR, (d) CRR, (e) bias, and (f) ETS of the five subgroups, which

are, from left to right, two single control forecasts from NMM and ARW, three groups of probabilistic forecasts (each

over the 20%, 40%, 60%, 80%, and 100% thresholds) from the 5-member NMM ensemble, 5-member ARW en-

semble, and 10-member multimodel SREF-B08RDP ensemble.
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control forecast might, on average, outperform the

single ARW control in predicting fog. This is in agree-

ment with the previous results revealed by scores such

as the ETS of Figs. 2 and 5 and Table 2. A possible rea-

son of this is that NMM was found to be slightly more

accurate in predicting the RH field than was ARW in

this study.

To demonstrate meteorologically why ensemble-based

fog forecasts work better than a single forecast, the

6–7 April fog episode is examined again with the 10-

member SREF-B08RDP ensemble. Figure 7 shows that

the ensemble spreads or forecast variations among en-

semble members were quite significant over the fog

area: 1.5–2.5 m s21 for surface wind speed (Fig. 7a),

10%–20% for 2-m RH (Fig. 7b), 500–5000 m for cloud

base (Fig. 7c) and cloud top (Fig. 7d), and 0.2–0.4 g kg21

for the LWC (Fig. 7e). From Eq. (1), one can imagine

that this large variation in these basic variables among

the individual member forecasts used to diagnose fog

occurrence would easily translate into an even larger

uncertainty in the resulting fog forecasts from one

member to another. When taking a closer look at Fig. 7e,

one can observe that the spreads for LWC were even

larger than the ensemble mean LWC itself at many lo-

cations, similar to what is often observed in ensemble

precipitation forecasts. Given a large forecast variation

in basic fields from one member to another, it is unlikely

that a single member could capture the whole picture,

but the combined forecast from all members might do

a better job. This is exactly the case here. For example,

the 9-h control forecasts with multivariable diagnosis

failed to predict the whole picture of the fog event (Figs.

4a and 4b). Five out of the seven major fog-reporting

metropolitan cities were missed by each model’s con-

trol forecast. Only Hangzhou and Dalian (Tianjin and

Dalian) were correctly captured by the NMM (ARW)

control forecast. Although the ARW control forecast

had a tiny indication of fog near Shanghai and Hang-

zhou, the predicted fog scales were too small to show any

confidence (Fig. 4b). Both control forecasts, especially

the one from NMM, also failed to predict fog over the

vast oceanic area (the Yellow Sea and East Sea between

Qingdao and Hangzhou). However, if information from

all the individual ensemble members is combined, the

situation can be greatly improved. For example, the

ensemble-mean forecast of LWC only in Fig. 7e has

much better fog coverage than the single control fore-

casts (Figs. 4a and 4b), compared to the observations

(Fig. 3a). The 10-member SREF-B08RDP-based prob-

abilistic forecast in Fig. 7f showed further improvement.

For example, the overall predicted areal coverage en-

closed within the 10% threshold was in good agreement

with the observations, except for a missing northwest–

southeast-oriented fog band located north of Nanjing

and Shanghai (cf. Figs. 3a and 7f). Note that there was

uncertainty in the fog observations in the area northeast

of Dalian, as mentioned above. All seven major fog-

observed cities were correctly predicted to have fog by

at least one or more of the ensemble members, and

Hangzhou, Qingdao, Tianjin, and Dalian were predicted

by 6–7 members (a 60%–70% probability). Obviously,

even if only a few members correctly predicted fog, that

would be a valuable piece of information to end users,

such as local transportation administrators, to plan

ahead and reduce property damage and protect peo-

ple’s lives. This case clearly demonstrates how and why

FIG. 6. (a) Monthly BSS scores of probabilistic forecasts based on the 5-member NMM

ensemble (using the NMM control as a reference), 5-member ARW ensemble (using the ARW

control as a reference), and 10-member multimodel SREF-B08RDP ensemble (using both the

NMM and ARW control forecasts as references); (b) BSS averaged over the 7 months for the

same three ensembles but with both the NMM and ARW control forecasts used as references.
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an ensemble-based forecast would be superior to and

more beneficial than a single forecast.

c. Single-model-based ensemble versus
multimodel-based ensemble

To examine if model diversity (in both the physics

and dynamics) can add extra value to an IC-uncertainty-

only based ensemble as suggested by Mullen et al.

(1999), the results from a single-model ensemble (either

the five-member NMM or five-member ARW ensemble)

were compared with those from the multimodel-based

SREF-B08RDP ensemble. Two comparison experiments

were carried out: first with a combination of the two

single-model ensembles, that is, the 10-member SREF-

B08RDP system (5 NMM 1 5 ARW), and then with

the 5-member NMM–ARW system (3 NMM 1 2 ARW)

to eliminate any ensemble-size effects. Therefore, it is

important to keep in mind that the results from the first

experiment should reflect a combined impact from both

the multimodel approach and increased ensemble size

(from 5 to 10 members). When comparing the ETS of

the three ensembles shown in Fig. 5f for the first ex-

periment, the improvement in probability-based de-

terministic forecasts (especially at the 20%, 40%, and

60% thresholds) is quite obvious when an additional

model/ensemble is added. For example, for the forecast

enclosed by the 40% probability threshold, the averaged

ETS was 0.225 for the single-model ensembles and 0.334

for the combined two-model ensemble, which is a 48.4%

improvement. It is a big gain with contributions from

both the multimodel approach and the membership in-

crease. In light of the fact that forecast skill with a 0.3

ETS is equivalent to the current accuracy level in pre-

dicting warm season precipitation, this 40% probability

fog forecast is certainly able to provide useful informa-

tion to users. To exclude the ensemble size effect, a five-

member multimodel NMM–ARW ensemble was also

constructed by combining three NMM and two ARW

members (i.e., the second experiment). The ETS of the

40% probability forecast derived from the second ex-

periment is 0.264 (Fig. 10). Therefore, an improvement

of 17.3% in ETS (from 0.225 to 0.264) has been achieved

purely by the multimodel approach. On the other hand,

comparing the two multimodel NMM–ARW combined

ensembles, the improvement in ETS is 26.5%, increas-

ing from 0.264 to 0.334 due to the membership increase

from 5 to 10 members. It is inferred that the contribution

of the increase in the member size from 5 to 10 members

FIG. 7. The 9-h forecasts (verified at 0500 BT 7 Apr 2008) of the ensemble mean (arrows for wind and contours for other variables) and

spread (shaded) of (a) 10-m wind (m s21), (b) 2-m RH (%), (c) cloud base (m), (d) cloud top (m), (e) model lowest-level LWC near the

surface (g kg21), and (f) probabilistic fog forecast based on the multivariable fog diagnostic method, derived from the 10-member

multimodel SREF-B08RDP ensemble initiated at 1200 UTC (2000 BT) 6 Apr 2008.
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is also significant. More discussion about the impacts of

the ensemble size on probabilistic forecasts will be given

in the next several paragraphs although no impact purely

from the membership increase will be seen in this study

since the membership was increased in a ‘‘multimodel’’

environment as mentioned above.

The superiority seen in the deterministic aspect is also

true for the probabilistic aspects. For example, the BSS

of Fig. 6 from the first experiment shows that the prob-

abilistic forecast based on the 10-member multimodel

B08RDP ensemble was much more skillful than those

based on the single-model NMM or ARW ensembles.

To better understand where the improvement came

from, the BS has been decomposed into three compo-

nents of reliability, resolution, and uncertainty [Eq. (13)].

The result is shown in Table 4. By comparing the mul-

timodel 10-member SREF-B08RDP (second column)

ensemble with either the NMM (third column) or ARW

(fourth column) ensembles, it can be seen that the main

improvement was in the reliability although the resolu-

tion was also noticeably improved. The improvement in

the uncertainty is, however, very small. After excluding

the ensemble size effect, a similar result was also ob-

served from the second experiment; that is, the main

improvement between a single-model ensemble (third or

fourth columns) and a multimodel ensemble (fifth col-

umn) is in the reliability. Since the reliability is mainly

attributed to the ensemble technique while the resolution

is mainly attributed to the quality of the ICs and base

models employed by an ensemble system, this result

clearly indicates that a multimodel approach is effective

in improving an ensemble technique rather than in im-

proving the ‘‘effective quality’’ of the ICs and model. This

is particularly true when the ensemble size is very small,

such as in the five-member second experiment, where

there was no improvement in resolution but merely a re-

flection of the original quality of the base models (the

resolution of the combined ensemble was somewhere

between that of the NMM and ARW ensembles, con-

sidering the fact that the NMM performed slightly better

than the ARW, as seen previously in this study). Re-

garding the impacts of ensemble size, it is useful to keep

in mind that BS or BSS has a theoretical cap or limit for

a given ensemble size (Richardson 2001). The BSS in-

creases rapidly with the increase in ensemble size when

the ensemble size is small (#10 members) and becomes

nearly saturated when the ensemble size is larger ($50

members), which is particularly so for low-probability

events. This same pattern of behavior is also observed

using other measuring metrics (Du et al. 1997). This pat-

tern implies that a probabilistic forecast cannot reach its

full skill if the ensemble size is too small, especially for

low-predictability events like fog. In this sense, increasing

the ensemble size from 5 to 10 members should have

made a significant contribution (equally as important as

the multimodel approach) to the ensemble performance

seen in this study, an argument that can be apparently

confirmed by comparing the second column with the

fifth column in Table 4. However, it is expected that

the ensemble size impacts will be much smaller when

the ensemble size exceeds 10 members (Du et al. 1997;

Richardson 2001). For example, in an experiment com-

bining two 50-member ensembles, one might find that

the impacts from the increased ensemble size (from 50

to 100 members) are much less than those from the

multimodel effect.

Figure 8 shows the ROC diagram for each of these

four ensembles. Obviously, the multimodel ensem-

ble outperformed both single-model ensembles; the

10-member multimodel SREF-B08RDP had the larg-

est ROC areas followed by those of the 5-member

TABLE 4. Decomposition of BS into reliability, resolution, and

uncertainty for the four ensembles. Boldface indicates the lowest

values for reliability, uncertainty, and BS, and the highest value for

resolution.

BS

components

5 NMM 1

5 ARW 5 NMM 5 ARW

3 NMM 1

2 ARW

Reliability 0.0016 0.0114 0.0099 0.0069

Resolution 0.0338 0.0235 0.0185 0.0217

Uncertainty 0.1078 0.1120 0.1138 0.1134

BS 0.0756 0.0998 0.1052 0.0986

FIG. 8. ROC diagrams of probabilistic forecasts based on the 5-

member NMM ensemble, 5-member ARW ensemble, 5-member

multimodel NMM–ARW ensemble, and 10-member multimodel

SREF-B08RDP ensemble. Note that HR is also known as POD

and POFD.
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multimodel NMM–ARW ensemble, the single-model

NMM-based ensemble, and then the single-model ARW-

based ensemble. The slightly better performance of the

NMM forecasts over that of ARW was seen again as

previously in Figs. 2, 5, and 6 and Table 2. Again, given

that the improvement in the ROC area of the 5-member

NMM–ARW ensemble over the NMM or ARW ensem-

bles is small, the contribution of the ensemble size in-

crease from 5 to 10 members is obviously important to

the quality of the ensemble-based probabilistic forecast

in this experiment with a small ensemble size, for the

same reasons discussed in the last paragraph. The small

impacts of a multimodel approach on ROC are due to

the nature of the score, which mainly reflects the reso-

lution but not the reliability aspect of a probabilistic

forecast. This is consistent with the result revealed in

Table 4.

To evaluate the joint distribution of forecasts and

observations over various probabilities, the reliability

diagrams of the four ensembles are compared in Fig. 9,

where the sharpness diagrams, climatology (or resolu-

tion limit), and no-skill line are also plotted. The no-skill

line is generated in such a way that it is evenly divided

between the perfect forecast (diagonal line) and the cli-

matology (Wilks 2006). A probabilistic forecast is con-

sidered to be skillful if its reliability curve is above the

no-skill line and to have resolution if the curve is above

the climatology line. Therefore, Fig. 9 suggests that all

four ensembles are skillful as well as having resolution in

predicting fog. However, both of the single-model-based

ensembles showed a slight lack of confidence at lower

probabilities (,20%) and significant overconfidence at

higher probabilities (.50%). This problem has been no-

ticeably corrected by the five-member multimodel NMM–

ARW ensemble, which once again shows the positive

contribution of the multimodel approach to probabilistic

distributions. Further combined with the increase in en-

semble size from 5 to 10 members, the 10-member

SREF-B08RDP ensemble shows an almost perfect re-

liability with only slight overconfidence near the high

end (.80%). The combined benefits of a multimodel

approach and an increase in ensemble size are obvious

from this study. Apparently, the results shown by Fig. 9

are very consistent with those of Table 4.

6. Summary and future work

A new multivariable-based diagnostic fog-forecasting

method has been proposed. Its fog diagnosis is based on

the following five basic model variables: model lowest-

level liquid water content (LWC), cloud top, cloud base,

10-m wind speed, and 2-m relative humidity. Since all of

these base variables are available from a model post-

processor, this fog diagnostic algorithm can also be in-

cluded as part of a model postprocessor and, therefore,

fog forecasts can now be provided conveniently and

centrally as direct NWP model guidance to forecasters

and end users. The selection of these five variables, their

thresholds, and influence on fog forecasting (focusing

on 2-m RH and surface wind) were discussed to provide

FIG. 9. (left) Reliability diagrams of probabilistic forecasts based on the 5-member NMM

ensemble, 5-member ARW ensemble, 5-member multimodel NMM–ARW ensemble, and

10-member multimodel SREF-B08RDP ensemble. (right) Shown is the sharpness diagram for

the four ensembles.
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some insights into similar works in the future. This

method can easily be adapted to other NWP models.

The practical application of this method is obvious, es-

pecially to the transportation community of air, sea, and

land as well as navy or marine-related operations. By

comparing this new multivariable method to a commonly

used method—the LWC-only based approach—it is

found that the newly proposed multivariable fog diag-

nostic method has a much higher detection capability in

current operational NWP models. The LWC-only method

has a very low detection rate and tends to miss almost 90%

of fog events, while the new method can greatly improve

the fog detection rate and demonstrates reasonably good

forecast accuracy. Reasons why the multivariable ap-

proach works better than the LWC-only method were

also illustrated in a case study.

To assess fog-forecast skill and account for forecast

uncertainty, this fog-forecasting algorithm is then ap-

plied to a multimodel-based Mesoscale Ensemble Pre-

diction System. To verify the accuracy of a deterministic

forecast, the following six scoring rules were used: hit

rate (HR), false alarm ratio (FAR), missing rate (MR),

correct rejection rate (CRR), bias score (bias), and eq-

uitable threat score (ETS). To verify the performance of

a probabilistic forecast, the following four scores were

employed: Brier score (BS) and its decomposition, Brier

skill score (BSS), relative operating characteristic (ROC),

and reliability diagrams (reliability). Verification was fo-

cused on the 12- and 36-h forecasts. By comparing the

performance between single-value forecasts and ensemble-

based forecasts, the benefits of an ensemble approach

over a single deterministic approach were clearly shown.

The ensemble-based forecasts were, in general, statis-

tically superior to a single-value forecast in fog fore-

casting. With the aid of an ensemble approach, such as

using a forecast close to the ensemble median (50%

probability), the current operational NWP models are

capable of predicting fog 12–36 h in advance with an

accuracy, on average, similar to the level of warm season

precipitation forecasts (with an ETS around 0.334). A

case was also presented to demonstrate meteorologi-

cally why ensemble-based forecasts work better and are

socially more beneficial than single-value forecasts.

By further comparing forecasts between those from

the single-model ensemble and the two-model ensem-

bles, it was shown that the performance of ensemble-

based forecasts could be further improved by using

a multimodel approach. The multimodel approach is an

effective way in which to enhance the ensemble tech-

nique to improve the reliability (but not the resolution

and uncertainty aspects) of probabilistic forecasts. For

a small-sized ensemble such as the one in this study, the

increase in its membership is also important in improv-

ing the quality of the probabilistic forecasts, although

this importance is expected to decrease when the en-

semble size increases. To summarize and give a quick

comparison, Fig. 10 shows all the ETSs from the various

approaches used in this study, including the new fog

detection method, ensemble technique, multimodel ap-

proach, and the increase in ensemble size. We can see

that steady improvement was made through each of

those steps, with two big jumps, one associated with

the use of the new multivariable fog detection method

and the other associated with the combining of the two

single-model ensembles (a mixed contribution of the

multimodel approach and the ensemble size increase).

The overall improvement was impressive and dramatic:

from basically no skill at all (ETS 5 0.063) to a skill level

equivalent to that of warm season precipitation forecasts

of the current NWP models (0.334).

A problem with this fog diagnostic method is that it

can predict only fog occurrence but not fog intensity. In

the real world, predicting fog intensity is as important as

predicting its occurrence in traffic planning and control

of land, air, and sea. This problem might be solved by

applying a newer diagnostic method suggested by Zhou

and Ferrier (2008), since this newer method can resolve

fog liquid water content on the grid scale. Although this

newer method was developed for radiation fog, it could

FIG. 10. ETSs (average of the ARW and NMM over the 7-month

period at 12- and 36-h forecast lengths) from the various forecast

systems: 1) the single control runs based on the LWC-only ap-

proach (ETS 5 0.063), 2) the single control runs but based on

the multivariable fog diagnosis (0.192; a 205% improvement over

the previous step), 3) the 40% probability forecasts based on the

5-member single model ensembles (0.225; 17.2%), 4) the 40%

probability forecast based on the 5-member multimodel NMM–

ARW ensemble (0.264; 17.3%), and 5) the 40% probability forecast

based on the 10-member multimodel SREF-B08RDP ensemble

(0.334; 26.5%).
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be easily expanded to cover other types of fog by adding

advection terms. An extra variable needed for this method

is turbulence intensity, which is usually available from

a model postprocessor. This method is planned for use in

experiments with the next upgrade of the NCEP SREF

system (Du et al. 2009). Thus, both fog occurrence and

intensity could then be systematically verified over

North America within the framework of ensemble pre-

diction. At the same time, it will be also interesting and

useful to then compare the ensemble-based fog forecasts

to the statistical approaches such as the MOS and neural

network–based methods.
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