NAEFS Upgrade (v6)

Bo Cui, Hong Guan and Yan Luo
Yuejian Zhu and Dingchen Hou
Ensemble team
Environmental Modeling Center
NCEP/NWS/NOAA

Presentation for EMC CCB/ODB
September 7/8 2017
Acknowledgements: Wen Meng, Dick Wobus and Jiayi Peng

Highlights

- High resolution (0.5*0.5 degree) GEFS/NAEFS data exchange
- NAEFS/NUOPC agreement, users request
- Every 3hrs for 0-8 days, then 6hrs out to 16 days.
- NCEP GEFS bias correction at 0.5 d resolution
- Upgrade bias correction from 1.0d (and 2.5d) to 0.5d
- Hybrid of decaying bias and reforecast bias
- Add bias correction for 10 m wind speed - users request
- Downscaled products
- General, no change for methodology, but input data from 0.5 degree bias corrected forecasts (surface variables only)
- Precipitation downscaling
- Upgrade anomaly forecast products
- Anomaly forecast (ANF)
- 0.5d resolution for 19 variables (global) + precipitation (CONUS)
- Extreme forecast index (EFI) - users request (ensemble users workshop)
- New products -4 variables (T2m, 10m wind speed, MSLP and precipitation)
- Implementation - December 2017

NAEFS Milestones

- Implementations
- First NAEFS implementation - bias correction - IOC, May 302006
- NAEFS follow up implementation - CONUS downscaling - December 42007

Version 1
Version 2

- Alaska implementation - Alaska downscaling - December 72010

Version 3

- CONUS/Alaska new variables expansion - April 82014
- CONUS/Alaska NDGD (2.5km/3km) and expansion - March 29th 2016

Version 5

- CMC/GEFS/NAEFS high resolution upgrade - Q1 2018
- Applications:
- NCEP/GEFS and NAEFS - at NWS
- CMC/GEFS and NAEFS - at MSC
- FNMOC/GEFS - at NAVY
- NCEP/SREF - at NWS
- Publications (or references):
- Cui, B., Z. Toth, Y. Zhu, and D. Hou, D. Unger, and S. Beauregard, 2004: "The Trade-off in Bias Correction between Using the Latest Analysis/Modeling System with a Short, versus an Older System with a Long Archive" The First THORPEX International Science Symposium. December 6-10, 2004, Montréal, Canada, World Meteorological Organization, P281-284.
- Zhu, Y., and B. Cui, 2006: "GFS bias correction" [Document is available online]
- Zhu, Y., B. Cui, and Z. Toth, 2007: "December 2007 upgrade of the NCEP Global Ensemble Forecast System (NAEFS)" [Document is available online]
- Cui, B., Z. Toth, Y. Zhu and D. Hou, 2012: "Bias Correction For Global Ensemble Forecast" Weather and Forecasting, Vol. 27 396-410
- Cui, B., Y. Zhu , Z. Toth and D. Hou, 2013: "Development of Statistical Post-processor for NAEFS" . Weather and Forecasting (In process)
- Zhu, Y., and Y. Luo, 2015: "Precipitation Calibration Based on Frequency Matching Method (FMM)" , Wea. and Forecasting, Vol. 30, 1109-1124
- Glahn, B., 2013: "A Comparison of Two Methods of Bias Correcting MOS Temperature and Dewpoint Forecasts" MDL office note, 13-1
- Guan, H., B. Cui, Y. Zhu, 2015: "Improvement of Statistical Postprocessing Using GEFS Reforecast Information". Weather and Forecasting, Vol. 30, 841-854
- Guan, H. and Y. Zhu, 2017: "Development of verification methodology for extreme weather forecasts" , Weather and Forecasting, Vol. 32, 470491

NAEFS Statistical Post-Process (SPP)

- Purpose
- Improve reliability while maintaining resolution in NWP forecasts
- Reduce systematic errors (improve reliability) while
- Not increasing random errors (maintaining resolution)
- Retain all useful information in NWP forecast
- Methodology
- Use bias-free estimators of systematic error
- Need methods with fast convergence using small sample
- Easy implementation for frequency upgraded forecast system
- Approaches - Computational efficiency
- Bias Correction : remove lead-time dependent bias on model grid
- Working on coarser model grid allows use of more complex methods
- Feedback on systematic errors to model development
- Downscaling: downscale bias-corrected forecast to finer grid
- Further refinement/complexity added
- No dependence on lead time

Improving NAEFS Statistical Post-Processing System

NAEFS Bias Correction (Decaying average method)

1). Bias Estimation:

$$
b_{i, j}(t)=f_{i, j}(t)-a_{i, j}\left(t_{0}\right)
$$

2). Decaying Average (Kalman Filter method)

$$
B_{i, j}(t)=(1-w) \cdot B_{i, j}(t-1)+w \cdot b_{i, j}(t)
$$

3). Decaying Weight: $w=0.02$ in GEFS bias correction (\sim past 50-60 days information)
4). Bias corrected forecast:

$$
\left.F_{i, j}(t)=f_{i, j}(t)-B_{i, j}(t)\right)<\text { simple Accumulated Bias }
$$

Assumption: Forecast and analysis
Ref: Cui, Toth, Zhu and Hou, 2012 (or observation) is fully correlated

Using reforecast to improve current bias corrected product

Abstract

r could be estimated by linear regression from joint samples, the joint sample mean could be generated from decaying average (Kalman Filter average) for easy forward.

Ref: Guan, Cui and Zhu: 2015
Bias corrected forecast: The new (or bias corrected) forecast (\boldsymbol{F}) will be generated by applying decaying average bias (B) and reforecast bias (b) to current raw forecast (f) for each lead time, at each grid point, and each parameter.

NAEFS Global Grid Exchange Variables for 0.5d

Update: June 152017

Variables	Levels and Categories	Total 86/(2)
GHT	Surface, 10, 50, 100, 200, 250, 300, 500, 700, 850, 925, 1000 hPa	12/(1)
TMP	$2 \mathrm{~m}, 2 \mathrm{mMax}, 2 \mathrm{mMin}, 10,50,100,200,250,500,700,850,925,1000 \mathrm{hPa}$	13/(0)
RH	$2 \mathrm{~m}, 10,50,100,200,250,500,700,850,925,1000 \mathrm{hPa}$	11/(0)
UGRD	$10 \mathrm{~m}, 10,50,100,200,250,300,400,500,700,850,925,1000 \mathrm{hPa}$	13/(0)
VGRD	10m, 10, 50, 100, 200, 250, 300, 400, 500, 700, 850, 925, 1000 hPa	13/(0)
PRES	Surface, PRMSL	2/(0)
PRCP	APCP, CRAIN, CSNOW, CFRZR, CICEP	5/(0)
FLUX (surface)	LHTFL, SHTFL, DSWRF, DLWRF, USWRF, ULWRF	6/(0)
FLUX (top)	ULWRF (OLR)	1/(0)
PWAT	Total precipitable water at atmospheric column	1/(0)
TCDC	Total cloud cover at atmospheric column	1/(0)
CAPE	Convective available potential energy, Convective Inhibition	2/(0)
SOIL/SNOW	SOILW(0-10cm) , TMP($0-10 \mathrm{~cm}$ down), WEASD(water equiv. of accum. Snow depth), SNOD(surface)	4/(0)
Other	850 hPa vertical velocity, Ice thickness (ICETK)	2/(1)
Notes	Current NAEFS grids at $1^{*} 1$ degree New 0.5 degree added from users request	

NAEFS bias corrected variables for 0.5d

Update: June 152017

Variables	pgrba_bc file	Total 53 (1)
GHT	$10,50,100,200,250,500,700,850,925,1000 \mathrm{hPa}$	10
TMP	$2 \mathrm{~m}, 2 \mathrm{mMax}, 2 \mathrm{mMin}, 10,50,100,200,250,500,700,850,925,1000 \mathrm{hPa}$	13
UGRD	$10 \mathrm{~m}, 10,50,100,200,250,500,700,850,925,1000 \mathrm{hPa}$	11
VGRD	$10 \mathrm{~m}, 10,50,100,200,250,500,700,850,925,1000 \mathrm{hPa}$	11
VVEL	Surface, PRMSL	1
PRES	ULWRF (toa - OLR)	2
FLUX (top)	2m (April 8 2014)	1
Td and RH	Total cloud cover (March 29 2016)	2
TCDC	10 meter Wind speed (this upgrade)	1
WIND	CMC do not apply for last 4 variables FNMOC data is in process now	
Notes	$0(1)$	

Part I: NCEP GEFS Bias Correction

Upgrade, new added, downscaling

GEFS 1d and 0.5d Ensemble Comparison (2017 Spring)

NAEFS 1d and 0.5d Ensemble Comparison (2017 Spring)

10m Wind Speed Before \& After Bias Correction

2017 Spring

gefs rawp5: 0.5d GEFS raw
gefs bcp5: 0.5d GEFS bias corrected
naefs bcp5: 0.5d NAEFS bias corrected
http://www.emc.ncep.noaa.gov/gmb/wx20cb/naefs.v6.0.0/crps 3line gefsdev 2017040700.2017060500 24h/GEFS Spr2017.html

CONUS Downscaled Product (2017 Spring)

NAEFS CONUS 2 Meter Temp. Continuous Ranked Probability Scores Average For 2017042000-2017053100

NAEFS CONUS 2 Meter Temp.
Ensemble Mean Error and Ensemble Abs. Error
Average For 2017042000 - 2017053100

NAEFS CONUS 2 Meter Temp. Ensemble Mean RMSE and Ensemble SPREAD

2017 Spring

gefs bcds: from 1d GEFS bias corrected fcst gefs p5bcds: from 0.5d GEFS bias corrected fcst

Verified CONUS RTMA Analysis

Part I: NCEP GEFS Bias Correction

Upgrade for precipitation , and downscaling

Precipitation Calibrated Products

Upgrade NCEP/GEFS bias-corrected products

- From 2.5*2.5deg, 24hr accumulated QPFs/PQPFs, 00 Z only (Implemented in May 2004)
- To 0.5*0.5 deg, 6 hr accumulated QPFs/PQPFs, 4 times daily
- Bias correction using frequency match and decaying average methods
Ref: Zhu, Y, and Y. Luo, 2015: "Precipitation Calibration Based on Frequency Matching Method (FMM)". Weather and Forecasting, Vol. 30, 1109-1124
- Application: To generate anomaly forecast (ANF) and Extreme Forecast Index (EFI)

Add downscaled NCEP/GEFS forecasts (input from 0.5d)

- 6hr and 24 hr QPFs/PQPFs, 4 times daily
- Downscaled from 0.5 degree bias-corrected forecast
- Statistical downscaling to 2.5 km for CONUS
- Use CCPA climatology to derive downscaling ratio

Precipitation Calibration Based on Frequency Matching Method (FMM)

 (Ref: Zhu and Luo, 2015: Weather and Forecasting)Calculate for Obs and Fcst respectively

$$
\overline{\operatorname{CDF}}_{\mathrm{j}}=(1-\mathrm{W}) * \overline{\mathrm{CDF}}_{\mathrm{j}-1}+\mathrm{W} * \mathrm{CDF}_{\mathrm{j}}
$$

W is weight to accumulate CDF

Precipitation Distribution

0.5deg Raw and Bias-corrected PQPF Verified against CCPA

Ensemble Precipitation Verification for CONUS Brier Skill Score for threshold $>5.00 \mathrm{~mm} / 24$ hours For 20161120 - 20170430

Reliability Diagram
fhr 108-132 For 20161120 - 20170430

GEFS/CTL Quantitative Precipitation Forecast (QPF) IT:2017061200 VP:2017061212-2017061312 FHR 12-36

6-hr 0.5deg Raw and Bias-corrected QPFs Verified against CCPA

NCEP/GFS Quantitative Precipitation Forecast (QPF)
 IT:2017040500 VP:2017040512-2017040518 FHR 12-18

Downscaling Methodology

$\begin{array}{lllllllllllllll}0.1 & 1 & 2 & 3 & 4 & 3 & 0 & 7 & 3 & 8 & 10 & 11 & 12 & 13 & 14\end{array}$

$\begin{array}{lllllllllllllll}0.1 & 1 & 2 & 3 & 4 & 3 & 7 & 5 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

$$
r=O P E_{\text {Downscalino Rotio }} \underbrace{}_{L}
$$

0.5	0.3	0.7	0.4	1	1.1	1.3	13	1.4	2	3	6

QPF ${ }_{L}$
GEFS member QPF $12-36 \mathrm{hr}$ foat valid:2015122112

r

$\begin{array}{lllllllllllll}0.3 & 0.3 & 0.7 & 0.4 & 1 & 1.1 & 13 & 1.5 & 1.4 & 2 & 3 & 6\end{array}$

QPF $_{H}$
Downscaled member QPF 12-36hr fost valid:2015122112

To avoid CONUS border issue (purple in r map), there is no downscaling outside of CONUS. To avoid extreme outliers, r is bounded: $0.3<r<5$ (cold seasons); $0.9<r<5$ (warm seasons). 0

24-hr PQPFs Verified against CCPA

Ensemble Based Probabilistic Quantitative Precipitation Forecast (PQPF) IT:2017040400 VP:2017040712-2017040812 FHR 84-108 Amount>1.00mm

GEFS_raw .vs GEFS_bc .vs GEFS_bc+ds 24hr accum results from:

NCEP/GEFS 0.5 degree Calibrated (Bias Corrected) QPF/PQPF

This page displays the forecast comparison of QPF and Calibrated QPF from GEFS against CCPA, and ensemble based PQPF and Calibrated PQPF for every 6 hours up to 240 hours on IBM-SP computer.

EMC real-time parallel experiments

Started from April 1st
Running four times per day (Demonstrated only by 00 Z cycle) 6 hr products

http://www.emc.ncep.noaa.gov/gmb/yluo/GEFS VRF Y/CPQPF 6h.html 24 hr products
http://www.emc.ncep.noaa.gov/gmb/yluo/GEFS VRF Y/CPQPF 24h.html
GEFS/CTL Quantitative Precipitation Forecast (QPF) IT:2017061600 VP:2017061612-2017061618 FHR 12-18

Part II: Anomaly Forecast Products

Extreme Weather Forecast Products

- Current status
- Anomaly Forecast (ANF)
- NCEP operation since 2006 (19 variables)
- 1.0 degree resolution
- No precipitation
- NWS/WR experiment: http://ssd.wrh.noaa.gov/satable/
- No Extreme Forecast Index (EFI) product
- ECMWF and CMC have applied in their operation
- But, user request through "Ensemble Users Workshop"
- NAEFSv6 upgrade
- For all bias corrected forecast
- ANF for 0.5 d , include precipitation
- EFI for 0.5d, T2m, 10mw, Prcip, MSLP
- Reference:
- Guan, H. and Y. Zhu, 2017: "Development of verification methodology for extreme weather forecasts" Weather and Forecasting, Vol. 32, 470-491

Anomaly Forecast (ANF)

Schematics diagram for anomaly forecast (PDF)

Definitions for Anomaly Forecast

Percentage of ensemble forecast (shaded area) which exceeds climate threshold (for example: 2σ) (NCEP/ NAFES product)

Extreme Forecast Index (EFI)

(Lalaurette, 2003)

The EFI is a measure of the difference between the model climatological forecast distribution and the current ensemble forecast distribution.
CDF: cumulative distribution function
Modified Equation
(Zsooter 2006)

$$
E F I=\frac{2}{\pi} \int_{0}^{1} \frac{p-F_{f}(p)}{\sqrt{p(1-p)}} d p
$$

Example of extreme cold weather event (Valid: 2015030500)

Anomaly Forecast (ANF)

Extreme Forecast Index (EFI)

Example of bias corrected T2m against observed climatology

Statistics for extreme cold weather event (11 cases) for 13-14 winter (V10 and V11 bias-corrected forecast)

(2) Most Visited (7) Internet \square Lookup \square New\&Cool

GEFS EFI and Ensemble-Mean ANF products (update once per day)

This web-site displays ensemble based EFI and ANF products, at $0.5 * 0.5$ degree resolution, once per day (00 UTC), every 24 -hour, out to 16 days. For
precipitation:each map includes three different products which are 1). EnsembleMedium Anomaly Forecast (ANF) 2). Extreme Forecast Index (EFI) 3). Analysis (ccpa) Anomaly (ANA). For T2m, w10m, and SLP, there are only ANF and EFI. ANA is not included.

Date	QPF	T2M	W10M	SLP
20170615	T00Z	T00Z	$\underline{\mathrm{T} 00 \mathrm{Z}}$	T00Z
20170614	T00Z	T00Z	$\underline{\mathrm{T} 00 \mathrm{Z}}$	T00Z
20170613	T00Z	T00Z	T00Z	T00Z
20170612	T00Z	T00Z	T00Z	T00Z
20170611	T00Z	T00Z	T00Z	T00Z
20170610	T00Z	T00Z	$\underline{\mathrm{T} 00 \mathrm{Z}}$	T00Z
20170609	T00Z	T00Z	T00Z	T00Z
20170608	T00Z	T00Z	T00Z	T00Z
20170607	$\underline{\mathrm{T} 00 \mathrm{Z}}$	T00Z	T00Z	T00Z
20170606	T00Z	400Z	T00Z	T00Z
20170605	T00Z	T00Z	T00Z	T00Z
20170604	T00Z	T00Z	T00Z	T00Z
20170603	T00Z	T00Z	T00Z	T00Z
20170602	T00Z	T00Z	T00Z	T00Z
20170<01	T007	T0nt	T007	T007

http://www.emc.ncep.noaa.gov/gmb/wd20hg/html/EFIANF.html Running once per day

> 4 variables:
> Surface pressure Precipitation Surface temperature Surface wind speed

园 ${ }_{6}$

96 hr forecost ini. 2017060900

Issues, downstream and evaluation

- SCN (TIN) is ready to NCO dataflow team.
- Impact of downstream:
- Wave ensemble? (no impact - confirmed)
- NBM - contact to Jeff Craven (MDL)
- CPC - contact to Jon Gottschalck, Matt Rosencrans
- Evaluations:
- WPC - contact to Mike Bodner's team
- CPC - Jon Gottschalck sends us comments for upgrade.
- NWS/ER - contact Richard Grumm (SOO)
- EKDMOS - contact to John Wagner (MDL)
$-1^{\text {st }}$ energy

User feedback

- WPC day 8-10 experiment (Mike Bodner et al)
- Meeting/discussion-every other Thursday
- August 24 (example)
- Temperature blending: GEFS_bc(45\%); EC_ens(45\%); GEFSv10(10\%)
- Precipitation blending: GEFS_bc(45\%); EC_ens(40); GFS(15)
- Implementation - Yes
- CPC (Jon Gottschalck et al.)
- CPC supports the upgrade as the only change is with respect to the resolution and format of the data which we have confirmed we can properly adjust to when and where required and will re-affirm during the NCO data flow review period with this upgrade.
- Since we do not have any science related feedback to provide (data length was not sufficient to adequately draw any reliable conclusions)
- NWS/ER (Richard Grumm)
- Quote for "ANL" and "EFI": "General concise and useful conclusions. We need more operationally available data and products of this type in real-time."
- MDL EKDMOD (John Wagner)
- Testing 0.5d GEFS and 0.5d NAEFS
- No significant difference from current operational 1.0 data
- Implementation - Yes

Response from public (private sector) users

Yuejian,
Thanks for the updated slides. I apologize for not getting this back to you sooner. I did go through this upon your original email, but was sidetracked before I had a chance to respond.

FirstEnergy looks forward to seeing the changes in the upgrade. The bias correction of precipitation looks very promising, and we have seen value in the frequency matching method elsewhere. The downscaling of the precipitation will also looks promising.

We look forward to seeing the bias correction of 10 m winds as well. We have historically not used this parameter from the NAEFS, but will make a point to look at it once it is available.

The EFI will be very valuable and we look forward to use it.

Thank you for including FirstEnergy in the evaluation! Please let us know if you have any questions.

Regards,

Brian Kolts (and Thomas Workoff) Staff Scientist (July 6 2017)
FirstEnergy 3304361404

Project Information \& Highlights

Leads: Yuejian Zhu/ Bo Cui (EMC), Steven Earle (NCO)
Scope: Introduce higher resolution raw (CMC) and bias corrected (NCEP and CMC) global ensemble forecast. Improve methodology (hybrid of decaying and reforecast) for bias correction. Introduce extreme forecast products.
Expected benefits: Higher quality NAEFS products
Dependencies: Data exchange with CMC (and FNMOC)

Issues/Risks

Issues: Users evaluation for combined (NCEP + CMC) products; Mitigation: delay implementation

Milestones \& Deliverables	Date	Status
Freeze system code; deliver to NCO if applicable	$4 / 10 / 17$	Completed
Complete full retrospective/real time runs and evaluation	$9 / 06 / 17$	On track
Conduct CCB and deliver final system code to NCO	$9 / 07 / 17$	On track
Issue Technical Information Notice	$9 / 15 / 17$	On track
Complete $30-$ day evaluation and IT testing	$11 / 30 / 17$	On track
Operational Implementation	$12 / 05 / 17$	On track

EMC	NCO	Red text indicates change from previous quarter

G Resources

Staff: 0.5 Fed FTEs (Yuejian Zhu 0.3; Dingchen Hou 0.2) + 2.0 contractor FTEs (Bo Cui 0.8; Richard Wobus 0.5; Yan Luo 0.2; Hong Guan 0.2; Jiayi Peng 0.2; Wei Li 0.1) including dev of NAEFS and NUOPC.

Funding Source: STI
Compute: parallels: 50 nodes for 2 months (Delta: 40 nodes); EMC Dev: 50 nodes for 1-year (Delta: 40 nodes); Ops: 60 nodes (Delta: 30 nodes - higher water mark)

Archive: 10TB (no changes); Ops: 12 GB per cycle (no major changes)

Resource of changes

- Current:
- Length of process - last 2+ hours
- How many nodes? - 30 nodes (peak)
- Start time / end time -+6:00-+8:00
- Disk storage per cycle (28GB per cycle)
- 17GB (pgrb2ap5)
- 6.4GB (pgrb2a)
- 10GB (pgrb2a_bc for GEFS and CMC)
- 4GB (pgrb2a_an for GEFS and CMC)
- Future:
- Length of process - last 2+ hours
- How many nodes? - 60 nodes (peak)
- Start time / end time - +6:00-+8:00 (? Need more tests on CRAY)
- Disk storage per cycle (99 GB more per cycle)
- 6.4GB (pgrb2a), 10GB (pgrb2a_bc), 4GB (pgrb2a_an)
- 28GB (pgrb2ap5, redistributed variables)
- 44GB (pgrb2ap5_bc, new for GEFS and CMC)
- 24GB (pgrb2ap5_an, new for GEFS and CMC)
- 2GB (pecp_gb2, ndgd_prcp_gb2, new for precipitation)

Output Size Comparison NAEFS prod vs. NAEFS v6

- NAEFS Prod
- NCEP/GEFS
- 1.0d bias corrected forecasts (6 hourly, pgrb2a_bc, 4.8GB)
- 1.0d anomaly forecast (pgrb2a_an, 2GB)
- CMC
- 1.0d raw GEFS forecast (pgrb2a, 4.2GB)
- 1.0d bias corrected forecast (/dcom, 3GB)
- NAEFS
- 1.0d probabilistic forecasts (pgrb2a_bc, 944MB)
- 1.0d anomaly forecast (pgrb2a_an, 69M)
- NAEFS v6
- NCEP/GEFS
- 0.5 d bias corrected forecasts (3 hourly for day 8, new pgrb2ap5_bc, 22GB)
- 0.5d anomaly forecast (new pgrb2ap5_an, 10GB)
- $0.5 d$ bias corrected prcp (prcp_gb2, 1GB)
- 2.5 km bias corrected and downscaled prcp for CONUS (new ndgd_prcp_gb2, 1GB)
- CMC
- 0.5d raw GEFS forecast (new pgrb2ap5, 28GB)
- 0.5 d bias corrected forecast (/dcom, 21GB)
- NAEFS
- 0.5d probabilistic forecasts (new pgrb2ap5_bc, 4GB)
- 0.5d anomaly forecast (new pgrb2ap5_an, 1GB)

Extra slides!!!

Demonstration of Animation (valid for 2017060500)

Input/Output Changes

- Current:
- Input \& Output: 1x1 degree global fields
- Future:
- Input-0.5d global ensemble data
- NCEP (re-organized pgrb2ap5) and CMC
- Raw and bias corrected forecast
- Output - 0.5d global ensemble data
- NCEP
- reorganized pgrb2ap5 (raw) and pgrb2bp5 (raw) for public (TIN)
- new pgrb2ap5_bc for public replace pgrb2a_bc (TIN)
- prcp_gb2 for $0.5 d$ bias corrected prcp (TIN)
- new ndgd_prcp_gb2 for 0.5d bias corrected and downscaled prcp
- ensstat (???)
- CMC
- 0.5d raw GEFS forecast for public replace pgrb2a (TIN)
- 0.5 d bias corrected forecast for public (new)
- NAEFS
- new pgrb2ap5_bc \& pgrb2ap5_an to replace pgrb2a_bc \& pgrb2a_an (TIN)

Ensemble Output Size Estimation for NAEFS v6

- NCEP/GEFS
- 0.5d bias corrected forecasts (3 hourly for day 8, new pgrb2ap5_bc, 22GB)
- 0.5d anomaly forecast (new pgrb2ap5_an, 10GB)
- 0.5d bias corrected prcp (prcp_gb2, 1GB)
- 2.5 km bias corrected and downscaled prcp for CONUS (new ndgd_prcp_gb2, 1GB)
- CMC
- 0.5d raw GEFS forecast (/dcom, 28GB)
- 0.5 d bias corrected forecast (/dcom, 21GB)
- NAEFS
- 0.5d probabilistic forecasts (new pgrb2ap5_bc, 4GB)
- 0.5d anomaly forecast (new pgrb2ap5_an, 1GB)

