

Updates to Operational HYSPLIT Dispersion Predictions

Ariel Stein, Barbara Stunder, NOAA ARL Jeff McQueen, Ho-Chun Huang, NOAA EMC

CCB

October 30, 2015

HYSPLIT

HYSPLIT operational applications at NCEP:

- Meteorology prep (WOC)
- Smoke prediction
- Dust prediction
- "Canned" dispersion prediction (WFO/HAZMAT)
- "On-demand" prediction
 - Volcanic ash
 - Radiological (RSMC)
 - WFO/HAZMAT (backup to WOC)
- CTBTO (also on-demand, but different job)

•Single dispersion executable and common library for all HYSPLIT applications.

Charter Overview

Overview of Changes in Version 7.4

- <u>ALL</u> Update unified HYSPLIT code and libraries to a more current ARL version wet deposition; several post-processing program minor changes
- <u>CTBTO</u> Enhanced graphics for SDM (Google Earth)
- **<u>RSMC</u>** operational RSMC Washington web page (vs. non-operational ARL)
 - updated wet deposition (final update compared to 7.3.2 bugfix)
 - grib2 and time of arrival products sent to RSMC web page
- Volcanic Ash updated wet deposition as RSMC
- <u>Canned/Hazmat</u> new, lake-effect trajectories
- <u>Meteorology</u> GFS half-degree, change specific humidity to RH
 - NAM CONUS nest 4 km extend forecast from 24 to 48 hr.
- Volcano trajectories new, transferred from ARL to NCEP
- Technical changes
 - CTBTO Rename WCOSS directory name of 30-day gdas archive to facilitate automated cleanup
 - RSMC, Volcanic ash, Hazmat script filename changes for clarity

- Option to use 4 km CONUS nest

- Smoke/Dust - Unified CONUS, HI, AK smoke scripts
-grib2 output produced directly, not grib1

Charter Overview

Expected Benefits to End Users

• WMO-IAEA-RSMC

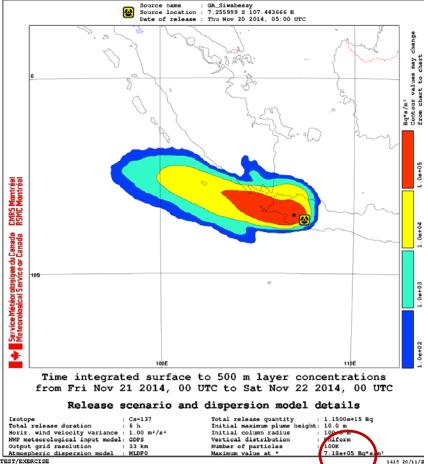
 Products available on <u>operational</u> web site, including new sending of grib2 concentration/deposition file and time-of-arrival product

 Much more accurate wet deposition forecasts; minimal change in input files (CONTROL).

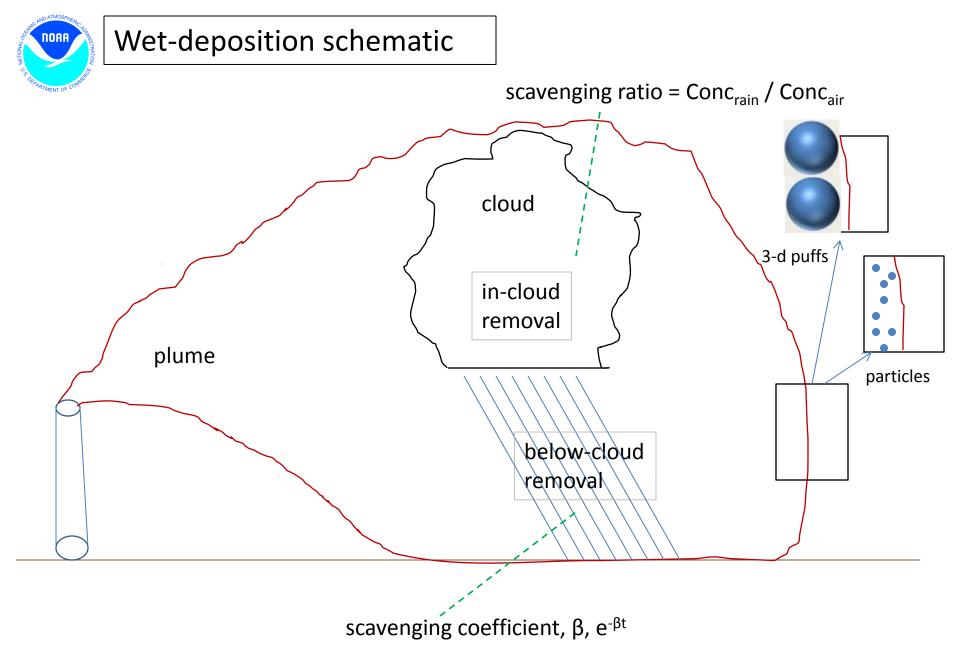
- NWS Alaska and USGS Volcano trajectories operational
- ARL users GFS half-degree some ARL users prefer direct use of RH instead of specific humidity
- USFS CONUS nest 4 km extended from 24 to 48 hr.

Expected Benefits within NOAA

- SDM
 - Can better review the CTBTO graphics
 - Can run RSMC/VA/HAZMAT with 4 km CONUS nest
- NCO
 - Save WCOSS disk space for GDAS (only 1 month back vs. all years)
 - Smoke/dust directly output on grib2 (no grib1 to grib2 conversion)
- WFO Lake effect trajectories provide guidance to WFO



Wet deposition problem noticed November 2014, RSMC/IAEA exercise


Release location: Indonesia

NOAA HYSPLIT MODEL Exposure (Bq-s/m3) averaged between 0 m and 500 m Integrated from 0000 21 Nov to 0000 22 Nov 14 (UTC) Č137 Release started at 0500 20 Nov 14 (UTC) ε >1.0E-06 Bq-s/m3 500 >1.0E-08 Bq-s/m3 >1.0E-10 Bg-s/m3 а д 1.0E-12 Ba-s/m3 Maximum: 4.4E-06 Bors/m3 0 4.7E-33 Bo-s/m3 Minimum d,00 Ш 107.444 S 10 .256 ~ V7.3.1 Source 🜣 .15 0000 20 Nov 14 GFSG FORECAST INITIALIZATION

> Maximum values: Washington: 4.4E-6 Montreal: 7.2E+5

IAEA = International Atomic Energy Agency

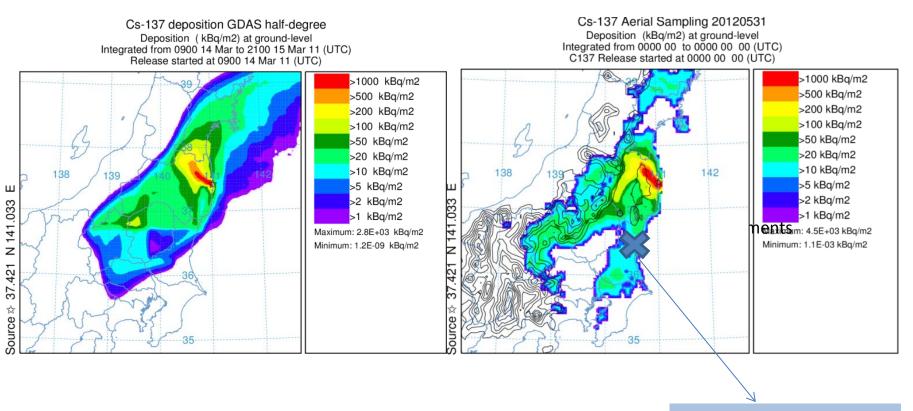
Particles

- In-cloud
 - <u>Scavenging ratio</u> is the ratio of pollutant's concentration in water to that in air (these values for different particles are set in a fix file, note they are >1)
 - Wet removal time constant is the scavenging ratio (S) times the precipitation rate (P) divided by the depth of the pollutant or cloud layer (Δz), $\beta_{in-cloud} = SP/\Delta z$

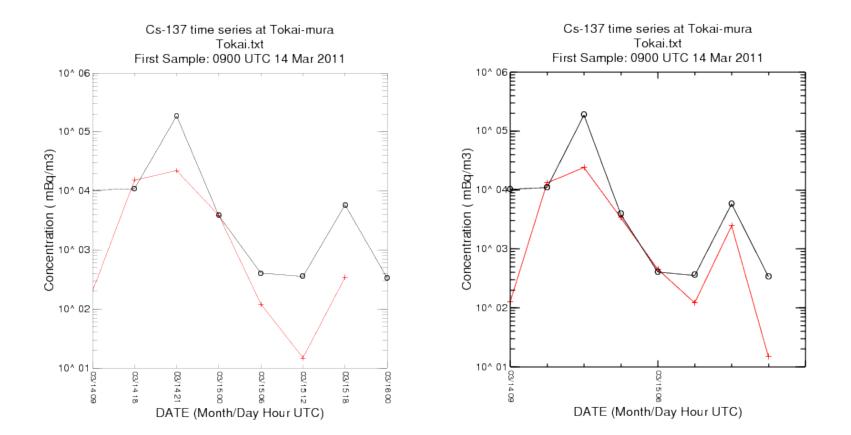
vs.

- <u>Scavenging coefficient</u> can be directly defined as a time constant, $\beta_{in-cloud} = KP^{0.79}$, K=constant (value <1, set in fix file), P=precipitation rate (mm/h)
- Below-cloud
 - A <u>scavenging coefficient</u> is expressed as a time constant (in the fix file), hence
 - Wet removal time constant below cloud is independent of the precipitation rate, $\beta_{below} = 1 \times 10^{-6}$

V7.3.2 (ops) (Through a bug fix)


V7.4 (new)

no change


On-demand runs – Radiological

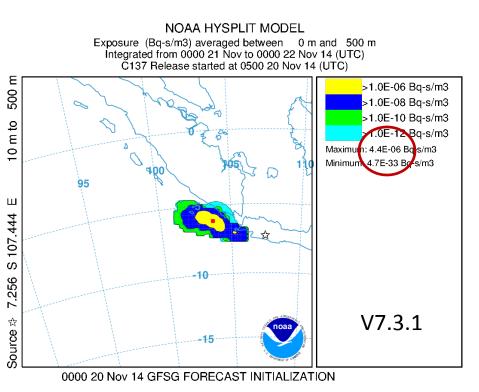
Deposition from Fukushima nuclear power plant, 2011

Tokaimura station

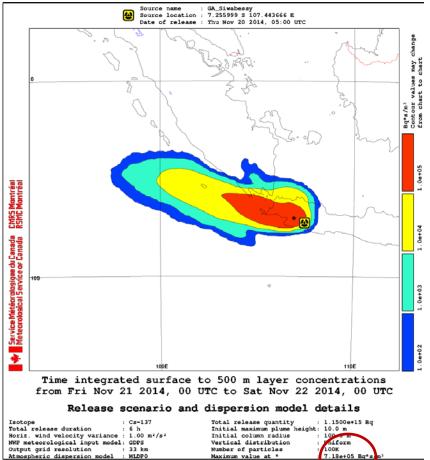
Air concentrations 7.3.1 vs 7.4.0

On-demand radiological evaluation

	V7.3.2	V7.4.0
Correlation Coefficient	0.91	0.94
Fractional Bias	-1.36	-1.33
Figure of Merit in Space	87.5	100.0
KSP*	50.0	38.0
Rank	2.53	2.85

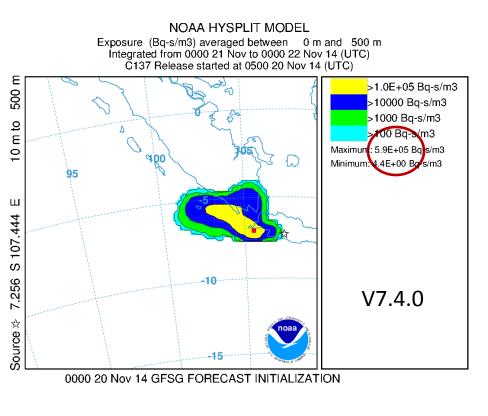

The "rank" score is based on the correlation coefficient, fractional bias, Figure of Merit in Space, and a measure of the cumulative concentration distribution. Rank varies from 0.0 to 4.0 (best). Differences of 0.1 or less are not significant. Tracer experiment information available at http://www.arl.noaa.gov/DATEM.php

Deposition 7.3.1 vs. 7.4.0

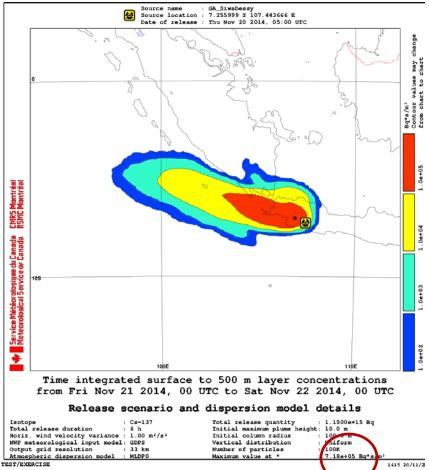


Version 7.3.1

Maximum values: Washington: 4.4E-6 Montreal: 7.2E+5 GFS1 to GFS0P5 Meteorology layer



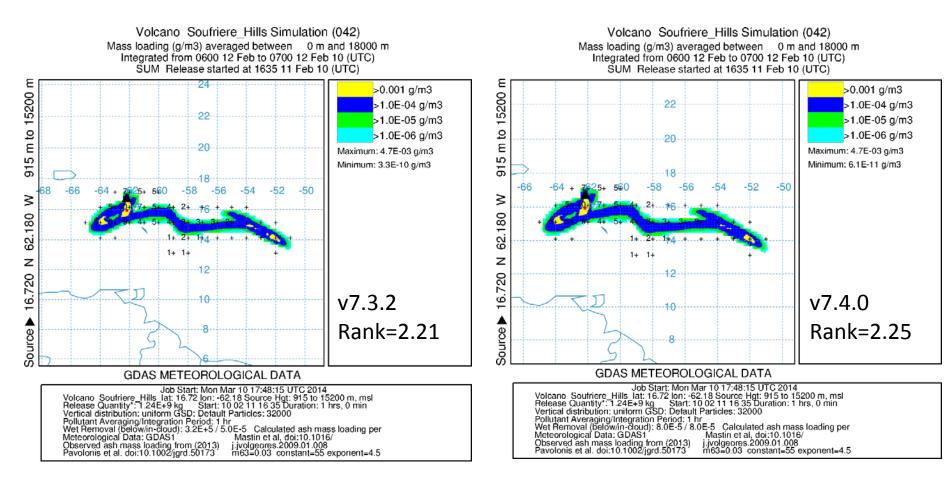
TEST/EXERCISE


1415 20/11/2

Version 7.4.0

Maximum values: Washington: 5.9E+5 Montreal: 7.2E+5 Cloud layer Scavenging coefficient

RSMC exercises' maximum values for the 2nd 24-h period


Date		V7.3.1 (old)	Canadian	V7.4.0 (new)	Precipitation
20141009	exposure	1.2E+08	8.1E+07	Same as v7.3.1	No
	deposition	2.4E+06	7.7E+05	Same as v7.3.1	
20141120	exposure	4.4E-06	7.2E+05	5.9E+05 🗸	Yes
	deposition	4.9E-10	3.6E+05	1.8E+05 🗸	
20141125	exposure	2.2E-09	1.8E-09	Same as v7.3.1	No
	deposition	3.7E-11	1.1E-11	Same as v7.3.1	
20141211	exposure	3.3E-10	2.7E-10	6.6E-10 🗸	Yes
	deposition	1.1E-10	8.2E-12	6.5E-12	
20150108	**exposure	*0.0	1.2E-10	1.1E-09	Yes
	**deposition	*1.4E-10	1.6E-11	4.2E-11	

*re-run with no wet deposition: 2.2E-12, 2.9E-11 ** 3rd 24-h period

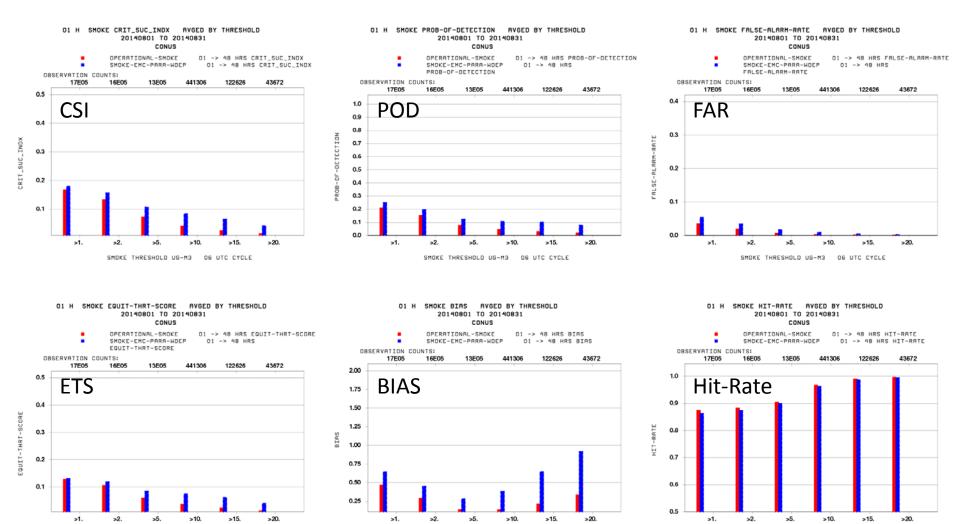
On-demand runs – Volcanic Ash

Volcanic ash – 2010 Soufriere Hills, Montserrat

Very similar results for updated and operational HYSPLIT

Volcanic ash Evaluation

Soufriere Hills, 2010, Montserrat, West Indies


Statistical comparison against satellite-based mass loadings show no significant differences.

	V7.3.2	V7.4.0
Correlation Coefficient	0.33	0.36
Fractional Bias	0.25	0.24
Figure of Merit in Space	48.15	48.15
KSP*	26.00	24.00
Rank	2.21	2.25

Verification period : 08/01-08/31 2014 Better or no impact on HYSPLIT smoke forecasting

D ATMOSPA

SMOKE THRESHOLD UG-M3 D6 UTC CYCLE

SMOKE THRESHOLD UG-M3 OG UTC CYCLE

SMOKE THRESHOLD UG-M3 OG UTC CYCLE 17

Verification period : 06/01-07/15 2015 **Nearly no impact on HYSPLIT smoke forecasting**

ATMOS NOAA

>1.

>2.

>5.

>10

SMOKE THRESHOLD UG-M3 D6 UTC CYCLE

>15

>20.

SMOKE THRESHOLD UG-M3 D6 UTC CYCLE

>2.

>5.

>10.

>15.

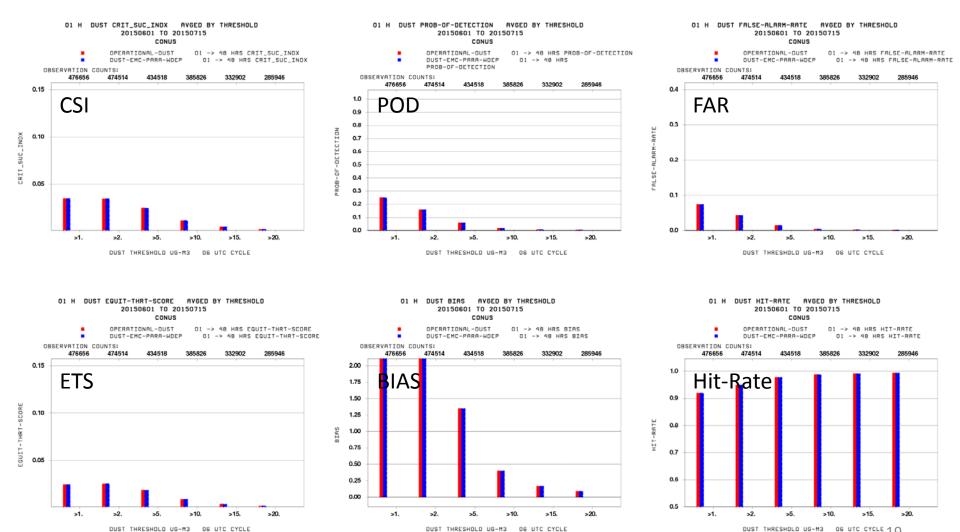
>20

>1.

>2.

>5.

>1.


>10. SMOKE THRESHOLD UG-M3 DE UTC CYCLE18

>15.

>20.

Verification period : 06/01-07/15 2015 **Nearly no impact on HYSPLIT dust forecasting**

DUST THRESHOLD UG-M3 DG UTC CYCLE 1 9

Verification using historical tracer experiments

Compare statistics (Rank score) of HYSPLIT new vs. operational for many boundary-layer tracerrelease field experiments.

Experiment	Number of tracer releases	Sampler distance from release	Meteorology	
ACURATE (March, 1982- Sept. 1983)	near- continuous	300 - 1100 km	NARR	
ANATEX_GGW (1987)	33 (every 2.5 days)	500 - 3000 km	NARR	
ANATEX_STC (1987)	33 (every 2.5 days)	500 – 2000 km	NARR	
CAPTEX (1983)	6	300 – 1100 km	WRF and NARR	
ETEX	1	200 – 1500 km	Reanalysis	
INEL74 (Jan- May, 1974)	near- continuous	~1200-1800 km	Reanalysis	
METREX_8h_MDVA (Nov 83 – Dec 84)	~ 275	< 50 km	MM5	
METREX_8h_MtVernon (Nov 83 – Dec 84)	~ 275	< 50 km	MM5	
OKC80 (1980)	2	100 km, 600 km	NARR	
SRP76 (March 1975 – Sept. 1977)	near- continuous	< 150 km	Reanalysis	

Tracer Experiments test

ANATEX_GGW ANATEX_STC	v7.4 (new) 3.05 2.60	v7.3.2 (operations) 3.05 2.60	
САРТЕХ	3.35	3.35	Time interpolation fo
ETEX	2.66	2.66	✓ high resolution
INEL74	2.37	2.37	grids
METREX_30d_MDVA	2.75	2.93	
METREX_30d_MtVernon	2.18	2.33	
ОКС80	2.52	2.57	
SRP76_weekly	2.17	2.17	

Overall impact

- smoke/dust : June-July 2015, no impact
- volcanic ash : 2010 Soufriere Hills: small positive impact
- Radiological/RSMC/HLS: significant positive impact
- Tracer experiments: No impact except negative impact in high resolution urban experiment.

PROPOSED EVALUATION TEAM

Organization	Recommended	Individual	HYSPLIT Applications
NCEP Centers	EMC NCO	Ho-Chun Huang Steven Earle	ALL : smoke, dust, volcanic ash, Radiological & RSMC, Hazmat, CTBTO
NCEP Service Centers	SDM AWC	Patrick O'Reilly <i>E; Leitman</i>	Ash, RSMC, CTBTO, Hazmat RSMC, Ash?
NWS Region / WFO	ER CR SR WR AR Pac WFO BGM	Jeff Waldstriker Jeff Craven Andy Edman Neil Petreskew Roger Edson Mike Evans	Hazmat, Smoke, Dust Hazmat, Smoke, Dust Hazmat, Smoke, Dust Hazmat, Smoke, Dust, Ash? Ash, Smoke Ash? Lake-effect trajectories
Other NWS or NOAA components	ARL OST NESDIS/SAB (Washington VAAC) NWS/AAWU (Anchorage VAAC)	Glenn Rolph? Ivanka Stajner Jamie Kibler Don Moore	Hazmat, Ash, RSMC, CTBTO, Traj. Smoke, Dust, Ash Ash, Volcano trajectories
External Customers / Collaborators	CTBTO USFS WMO? Canadian Met Center USGS	Monica Krysta Susan O'Neill Rene Servranckx? Dov Bensimon Hans Schwaiger	CTBTO Smoke RSMC RSMC Volcano trajectories

Names in Italics from last upgrade, NCEP please confirm

Extras...

HYSPLIT originated as a puff model

- puffs grow with time and split based on puff size with respect to the meteorological grid size
- wet deposition based on horizontal and vertical dimension of puff
- HYSPLIT default transitioned to particle model
 - <u>HYSPLIT.v7.3.0</u> used depth of meteorological layer(s) for in-cloud wet deposition calculation, however then the deposition was dependent on the depth of meteo layers, meaning different meteo datasets could give different deposition *(noticed this for RSMC, one-degree pressure level to half-degree native hybrid level GFS)*
 - <u>HYSPLIT.v7.3.2</u> uses meteorological cloud-layer depth (defined by RH) (current operational)
 - <u>HYSPLIT.v7.4</u> will extend the use of the below-cloud scavenging coefficient method for in-cloud wet deposition