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1. INTRODUCTION

In this paper the performances of global ensemble
forecasts generated by NCEP and ECMWF are eval-
uated. Current products from NCEP consist of 10
ensemble forecasts both at 00 UTC and 12 UTC
each day, while ECMWF produces a 50-member en-
semble. We will study how much the forecast errors
can be explained by the ensemble perturbations. For
this purpose, we compare the structures of forecast
errors and the first 10 individual ensemble pertur-
bations which are the differences between the per-
turbed forecasts and the unperturbed control fore-
cast. For different forecast lead times, the correla-
tions between the forecast errors and the individual
ensemble perturbations are computed. In addition,
the optimally combined perturbations from the first
10 ensemble forecasts are computed and also com-
pared with the forecast errors. The dependence of
correlations on the number of ensembles will also be
evaluated for different lead times by using data from
both centers.

2. DEFINITIONS

NCEP ensemble perturbations (NPs) are defined as
the differences between the perturbed forecasts and
the control forecasts (Toth and Kalnay, 1997; Szun-
yogh et al. , 1997)

NP;(t) = X{PP(t) - Xgiia ), (1)
Note that at 24-hour lead time these are, by defini-
tion, the bred vectors used after rescaling as initial
ensemble perturbations. ECMWF ensemble pertur-
bations (EPs) are similarly defined to NPs,

EP;(t) = X7“MWH (1) - X0 () (2)
i=1,2,...,N, N =10 (20) for NCEP and 50 for
ECMWEF. The ECMWF perturbations are bond in
both initial and evolved singular vectors (Buizza and
Palmer,1995; Molteni et al. , 1996; Barkmeijer et al.
, 1999). i.e.
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In both systems, forecast errors F'(t) are defined as
a difference between a control forecast and verifying
analysis from the same center,

F(t) = Xcontrol (t) - Xanalysis (t) (3)

The optimal combination of n NPs or EPs is ob-
tained by solving a least-square problem

Min|F — Zaivi|L2 (4)

i=1

where V; can be either EP;(¢) or NP;(¢). Having
obtained «; from the above equation, the optimally
combined vector is defined as

n
Voptimal = Z o; V. (5)
=1

The pattern anomaly correlation between any vec-
tors X and Y is defined by

_ {X,Y}
X, X}E{Y, Y}

A(X,Y) (6)

The inner product of two vectors are defined for
different regions. In addition to the global domain,
results are computed for the tropics, Southern and
Northern Hemisphere extra-tropics, North America
and Europe. We will compute the correlations be-
tween the forecast errors F(¢) and individual NPs
and EPs, and present the correlations averaged over
the 10 individual perturbations studied. Besides,
the correlations between V,piimas and F(¢) will also
be computed for different regions and different fore-
cast lead times. To save space in this paper, we
show the results for only the global, North Amer-
ican (140W-50W, 20N-60N) and European (20W-
40E, 77.5N-30N) domains.

3. EXPLAINED ERROR VARIANCE

In Fig. 1, we show the correlations between the fore-
cast errors from NCEP and its perturbations (NP),
and errors from ECMWF and its ensemble pertur-
bations (EPs) for 500hPa geopotential height over
the global domain. The correlation values are the
averages over 30 days starting from 12 UTC April



1, 2001. The thick lines are the correlations between
the forecast errors and the optimally combined vec-
tors from the first 10 EPs or NPs for different fore-
cast lead times. The corresponding thin lines are the
averaged correlations between the ensemble forecast
errors and the first 10 individual NPs or EPs respec-
tively.

The correlation between the NCEP forecast errors
and the optimally combined vector from the first 10
NPs from NCEP is shown in as a thick solid line.
The average correlation between the NCEP forecast
errors and the individual top 10 NPs from NCEP is
displayed as a thin solid line. Clearly the correlation
of the forecast error with the optimally combined
bred vector is much higher than with the individual
NPs. A linearly optimally combined vector from the
first 10 NPs can explain much more forecast error
than individual NPs at any forecast lead time.

Global.z500(ave over 30 days)
1.0\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\

thick->optimal; thin->ave

0.8} B

corelation

o R
. NP(10 combined)
L EP(10 combined)

0.2+ |
—————— NP(10 opt,EC errs)

. _._.—._ EP(10 0pt,NC ?

‘04 Ll ‘ Ll ‘ L1 \( ‘ 1 \c\)P‘ L1 \e‘r\r\s\) L ‘ L

0 5 10 15 20 25 30
lead time (in 12 hours)

Figure 1: The correlations between the forecast
errors from both NCEP and ECMWF and corre-
sponding ensemble perturbations (EPs and NPs) in
500hPa geopotential height in global domain, aver-
aged over 30 days period started at 12UTC from
April 01, 2001

The thick dotted line shows the correlation be-

tween the ECMWF forecast error and the optimally
combined vector from the top 10 EPs from ECMWF.
The average correlation between the ECMWF fore-
cast error and the first 10 EPs from ECMWF is
shown as a thin dotted line. As for the NCEP re-
sults, an optimally combined vector from the first
10 EPs explains much more forecast error than the
individual EPs at any forecast lead time.

At longer lead time, the average correlations of
the first 10 individual NPs and 10 EPs with their
respective forecast errors are converging. For shorter
lead times, however the first 10 individual NPs can
better explain NCEP forecast errors than the first
10 individual EPs can explain the ECMWF forecast
errors.
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Figure 2: As in Fig.1, but for North American re-
gion.

Let us now compare the optimal linear combina-
tions of the first 10 NPs and 10 EPs from NCEP
and ECMWF. For the 0 up to 6 days lead time
range, the optimally combined vector from the first
10 NPs has a slightly higher correlation with the
NCEP forecast error than that of the optimally com-
bined vector from the first 10 EPs with the ECMWF
forecast error. For lead times of 6 to 10 days, it is



the optimally combined vector from the first 10 EPs
that can better explain the respective forecast er-
rors. It is expected that the initial perturbations
play a more important role at short lead times (0-6
days), while model errors may become relevant at
larger lead times (6 to 10 days).

Next, we use the first 10 NCEP perturbations
to explain the ECMWF forecast errors and use the
first 10 ECMWF perturbations to explain the NCEP
forecast errors. The results are shown in Fig.1 as
dashed and dash-dotted lines. The thick dashed line
shows the correlation between the optimally com-
bined first 10 NPs and the ECMWF forecast er-
ror. The correlation between the optimally com-
bined vector of first 10 EPs and the NCEP forecast
error is shown as a thick dash-dotted line. The re-
sults show that for lead times up to 7 days, the opti-
mally combined NPs can explain the ECMWTF fore-
cast errors a little better than the optimally com-
bined EPs can explain the NCEP forecast errors.
After 7 days lead time, the optimally combined EPs
have a slight advantage.
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Figure 3: As in Fig.1, but for European region.

The corresponding results of average correlations
between one center’s forecast error and another cen-

ter’s first 10 individual dynamical vectors are dis-
played as thin dashed and dash-dotted lines. Again,
in comparison with the corresponding results indi-
cated by the thick lines, the optimally combined first
10 NPs or EPs can explain much more forecast er-
rors than the individual NPs or EPs. In terms of
the performance of individual perturbation vectors,
neither ensemble systems show an ability to explain
the other center’s forecast errors.
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Figure 4: Correlations as a function of number of
ensemble members

Similar computations were carried out for smaller
regions. The results for North America are shown
in Fig. 2. The obvious difference between this fig-
ure and Fig. 1 is that the ensemble perturbations
from both NCEP and ECMWF, either individually
or optimally combined, can explain more forecast
errors in the North American region than over the
global domain. This is due to the fewer degree of
freedom in the error fields over a limited domain.
In comparison with the global results, the NPs and
EPs can explain relatively more forecast errors from
the other center, though still somewhat less than
what they can in their own forecast errors. Fig.2
also shows that the NPs slightly outperforms EPs



in terms of explaining their own forecast errors for
all lead times over North America during the time
period studied (thin solid and dotted lines).

Fig. 3 shows the results for the European region.
The overall results for Europe are very similar to
those over North America displayed in Fig. 2. The
optimally combined dominant NPs and EPs in this
region can explain a larger part of the forecast error
variance over North America. Again, NCEP per-
turbations are slightly more successful in explaining
their own forecast errors than ECMWF perturba-
tions.
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Figure 5: As in Fig.4, but for North American re-
gion.

4. EFFECT OF ENSEMBLE SIZE

Here we study the dependence of the correlations
between the dominant NPs or EPs and the respec-
tive forecast errors on ensemble size. The results
shown in Fig. 4 are the correlations between various
number of optimally combined NPs and EPs and
the respective NCEP and ECMWF forecast errors
over the global domain. The results are displayed
for various lead times (1, 2, 3, 5 and 7 days). The
results from NCEP are indicated in thick lines and

the thin lines show the results from ECMWF.

For 1 and 2 days lead times, any available num-
ber of the optimally combined NPs can explain more
forecast error than the same number of optimally
combined EPs can explain the ECMWF forecast er-
ror (thick and thin dotted lines respectively). While
the ECMWF ensemble has 50 members initiated at
12 UTC, NCEP has only 10. To study the effect
of a larger ensemble for the NCEP system, here we
combine the 10 ensemble at 12 UTC and the subse-
quent 00 UTC NCEP ensembles. We consequently
choose from the subsequent set of ensemble since as
seen from Fig. 1, the use of longer lead time ensem-
ble initiated 12 hour earlier would have led to larger
correlations.
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Figure 6: As in Fig.4, but for European region.

Also shown are the correlations between the 1-day
forecast errors and an ensemble of forecast differ-
ences defined by the “NMC method” (Parrish and
Derber, 1992). The NMC vectors are defined as
the difference field between 24 and 48 hour fore-
casts valid at the same time. These NMC vector
correlation values shown are also averages over 30
consecutive days in April. We generated 30 forecast
difference fields using data from preceding period,



from March 5, 2001 at 12 UTC to April 3, 2001. We
call these difference fields NMC vectors.

It is useful to compare correlations from both
NCEP and ECMWF at 1-day lead time with those of
NMC vectors which have been widely used to build
the background forecast error covariances in 3-D Var
data assimilation systems at various meteorological
centers including NCEP and CMC. It is clear that
the correlations between the NCEP NMC vectors
and NCEP forecast errors are generally higher than
those between ECMWF NMC vectors and ECMWF
forecast errors, which are indicated by thick and thin
solid lines respectively. But both NPs and EPs can
better explain their respective 1-day forecast errors
than the NMC perturbations. For lead times of 2-5
days, the optimally combined NPs have slight ad-
vantages over the optimally combined EPs which
perform better at 7-day lead time.

Results from a similar analysis made for the North
American region are shown in Fig. 5. For lead times
of 1 and 2 days, NPs perform better than EPs in
terms of explaining their own center’s forecast er-
rors. For example, the NCEP ensemble can explain
a similar amount of variance in the 1-day error field
as the ECMWF ensemble can in 2-day errors. The
correlations of EPs with ECMWF forecast errors are
very close to and sometimes higher than those be-
tween NPs and NCEP errors for lead times of 3 or
more days. Like in the case of the global domain,
the correlations between the NCEP NMC vectors
and NCEP forecast errors are clearly higher than
the those between ECMWF NMC vectors and its
forecast errors. The results for the European region
are displayed in Fig. 6. The conclusions are very
similar to those for North America.

5. CONCLUSIONS

We have calculated the correlations between indi-
vidual NCEP and ECMWF perturbations and their
respective forecast errors. The correlations between
the forecast errors and the optimally combined per-
turbations have also bee computed. Attempts have
been made to use one center’s ensemble perturba-
tions to explain the other center’s forecast errors.
We have compared the NMC perturbations with the
1-day forecast errors for both NCEP and ECMWF.

It is found that the NCEP and ECMWF ensem-
ble perturbations perform similarly in most cases
in terms of their ability to explain forecast errors.
The NCEP ensemble shows a slight advantage dur-
ing the first 2-3 days in most cases. But after about
2 days, the ECMWF ensemble perturbations have
higher correlations in some cases. For longer lead
times, the correlations from the two systems become

similar, indicating that both forecast errors and en-
semble perturbations may converge to patterns re-
lated to the dominant Lyapunov vector (Reynolds
and Errico, 1999).

An interesting finding from our results is that one
center’s perturbations are not particularly successful
in explaining the other center’s forecast errors, espe-
cially over the large global domain. In the tropics,
NCEP ensembles perform better than ECMWEF’s in
most cases (not shown). In most cases, we find
that the ensemble perturbations from either center
can explain more of their forecast errors than their
respective NMC vectors. This indicates that us-
ing flow dependent ensemble perturbations instead
of NMC perturbations to construct the background
forecast error covariances in 3-D Var systems may
improve the performance of data assimilation sys-
tem. All experiments in this paper have been re-
peated using 1000hPa geopotential height data and
led to similar conclusions.
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