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ABSTRACT

The potential economic benefit associated with the use of an ensemble of forecasts

vs. an equivalent or higher resolution control forecast is discussed. Neither forecast

systems are postprocessed, except a simple calibration that is applied to make them

reliable. A simple decision making model is used where all potential users of weather

forecasts are characterized by the ratio between the cost of their action to prevent weather

related damages, and the loss that they incur in case they do not protect their operations. It

is shown that the ensemble forecast system can be used by a much wider range of users.

Furthermore, for many, and beyond 4 days lead time for all users the ensemble provides

greater potential economic benefit than a control forecast, even if the latter is run at a higher

horizontal resolution. It is argued that the added benefits derive from (1) the fact that the

ensemble provides a more detailed forecast probability distribution, allowing the users to

tailor their weather forecast related actions to their particular cost/loss situation, and (2) the

ensemble’s ability to differentiate between high and low predictability cases. While single

forecasts can statistically be supplemented by more detailed probability distributions, it is

not clear whether with more sophisticated postprocessing they can identify more and less

predictable forecast cases as successfully as ensembles do.
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1. Introduction

During the past decade, due to increased computer resources, the development of

more realistic atmospheric models, and the recognition of the importance of atmospheric

predictability in general, ensemble forecasting became a major component of Numerical

Weather Prediction (NWP). NWP centers around the globe (European Center for Medium

Range Weather Forecasts, Molteni et al. 1996; the National Centers for Environmental

Prediction, Toth and Kalnay 1993; the Canadian Meteorological Center, Houtekamer et al.

1996; the Fleet Numerical Oceanographic and Meteorlogical Center, Rennick 1995; the

Japan Meteorological Agency, Kobayashi et al. 1996; and the South African Weather

Bureau, Tennant 1998, personal communication) began producing operational ensemble

forecasts, where the models are integrated a number of times, started from slightly

perturbed initial conditions, in addition to generating the traditional ”control” forecast that

starts from the best available atmospheric analysis. Through the ensemble approach one

can generate probabilistic forecasts for assessing the case dependent forecast uncertainty

related to small errors in the initial conditions and the models used.

When new forecast techniques emerge, some questions naturally arise: Does the

new method provide guidance that is of higher quality or more use than existing methods?

Is the potential benefit from running a new technique cost effective? Is the new method

sufficient with respect to old methods (Ehrendorfer and Murphy, 1988), i. e., is using the old

technique redundant, given the new guidance? These are questions that should be

addressed with respect to using the relatively new ensemble technique, as compared to

relying on the use of a traditional single control forecast.

In earlier studies we presented a detailed analysis of the quality of probabilistic

forecasts generated based on the NCEP ensemble forecasting system (Toth and Kalnay,

1997). The performance of the NCEP ensemble forecasts was also compared to that of the

ECMWF ensemble prediction system (Zhu et al., 1996), and a single higher resolution
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MRF control forecast (Toth et al., 1998). These earlier studies gave valuable insight into the

behavior of the different forecast systems, thus providing feedback to the developers.

Nevertheless, the ultimate measure of the utility of weather forecasts is arguably the

economic and other benefits associated with their actual use in the daily decision making

process of individuals and different organizations.

Simplistically, users of weather forecasts either do, or do not take action (e. g.,

introduce protective action to prevent/reduce weather–related loss), depending on

whether a particular weather event is forecast or not.  Cost–loss analysis of different

complexity can be applied to evaluate the economic impact of the use of weather forecasts

on the users (Murphy, 1985; Katz and Murphy, 1997). Studies of the economic value of

weather forecasts can either be descriptive, assessing the value of forecasts used, often

suboptimally, by existing customers; or prescriptive, identifying the potential value of

forecasts, assuming they are used in an optimum manner (Stewart, 1997).

In this paper we evaluate the potential economic value associated with the use of an

ensemble of forecasts, vs. an equivalent, and a higher resolution control forecast, after

minimal postprocessing. A relatively simple cost–loss model that was discussed previously

by Richardson (2000a) and Mylne (1999) and is similar to that of Wilks (2001) will be used.

We note that cost–loss analysis is only one type of model that can be applied to investigate

the potential value of weather forecasts, as described in Katz and Murphy (1997). The

cost–loss analysis approach followed in this study obviously has its limitations. For

example, not all values can be expressed in terms of dollar amounts; the loss of life is one

such example. Nevertheless the economic analysis used offers a framework that, after

some simplifications, can generally be applied in most cases.

2. Cost–loss analysis

A decision maker becomes a user of weather forecasts if he/she alters his/her

actions based on forecast information. Whether a user is expected to benefit from the use
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of a forecast system in the long run can be assessed based on 2x2 matrices (Table 1). If the

user does not take action and the event does not occur (correct rejection), there is no cost

to the user (N=0). If the event does occur and the user is not protected (miss), he/she will

suffer a loss L. If a user takes preventive action to guard against this potential loss, the user

will incur a cost (C<L). If the event does not occur (false alarm), C is the total cost on the

user’s side; if the event occurs (hit), in addition to C, the user may also incur some reduced,

unprotectable loss Lu. Note that the sum of C and Lu is usually called mitigated loss (M), and

typically C<M<L. The expenses associated with each combination of action and outcome

are shown in Table 1, where the  total loss is expressed as the sum of the loss which can be

Table 1. Contingency table indicating the costs/losses accrued by the use of weather

forecasts, depending on forecast and observed values.

FORECAST/ACTION

O
B

S
E

R
V

A
T

IO
N

YES

Hit (h)

NO

Miss (m)

Correct Rejection (c)

Y
E

S
N

O False Alarm (f)

Mitigated Loss (C+Lu)

Cost (C) No Cost (N)

Loss (L=Lp+Lu)

protected against (Lp), and the remaining unprotectable loss (Lu).

a. Expected expense

We assume that the user takes action depending on whether the event is forecast or

not. If the relative frequency of the four different outcomes in Table 1 is known and marked

by h, f, c, and m, one can assess, in a statistical sense, the expected expense of a user of a

forecast system:

Eforecast=h(C+Lu)+fC+m(Lp+Lu).   (1)

Since we assume that a correct rejection is associated with no cost (N) on the part of the

user of weather forecasts, this term is omitted from Eq. 1. Furthermore, one can determine
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the expected expense associated with using climatological information only:

Eclimate=Min[o(Lp+Lu), C+oLu] = oLu + Min[oLp, C],   (2)

where o is the climatological frequency of the event. Based on the climatological frequency

of the event, and on the user’s associated costs and losses, the user will either always or

never take protective action. A decision maker will choose to use a forecast system if

his/her expected expense associated with the forecast system will be lower than that

associated with using only climatological information.

The minimum expense for a user, given a perfect forecast system that provides

accurate predictions for the occurence and non–occurence of a particular event, can be

written as:

Eperfect=o(C+Lu).   (3)

In this ideal situation, the user takes protective action if and only if a harmful event actually

occurs.

b. Economic value

Using Eqs. (1–3) the definition of the relative economic value (V) of a forecast

system can be given as

V � Eclimate
� Eforecast

Eclimate
� Eperfect

. (4)

Using a forecast system that is perfect will result in an economic value of 1 (maximum

value), while a forecast system associated with the expected expense equal to (larger

than) that attainable using climatological information only will have zero (negative)

economic value. Economic value is unbounded from the negative side. Negative values

indicate that following a forecast system will actually cost the user more than following the

best climatological option. The best way to avoid such a misuse of forecasts is to use the

concept of “value” as discussed here and elsewhere to optimize decision making.

Noting that h+m=o, we can rewrite Eq. 1 as:
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Eforecast=oLu+(h+f)C+mLp.   (5)

It is now clear that the term oLu is common to each expected expense and that this

unavoidable part of the total loss will not appear in the expression for V. Substituting Eqs. 2,

3, and 5 into Eq. 4 gives:

V � min[oLp, C] � (h
�

f)C � mLp

min[oLp, C] � oC
. (6)

Dividing each term on the right hand side of Eq. 7 by Lp and recognizing that the ratio (r) of

the cost of protection to the amount of potential loss which can be protected is r=C/Lp, we

arrive at:

V � min[o, r] � (h
�

f)r � m
min[o, r] � or

. (7)

Note that the economic value of forecasts (V) depends only on two forecast

performance parameters (h and m in Eq. 7), which can also be expressed by the hit rate

(HR) and false alarm rate (FAR) used in the definition of the relative operating

characteristics (ROC), indicating the close relationship discussed further in section 4

between economic value and ROC characteristics. Beyond the parameters describing the

forecast system, V also depends on o, the climatological frequency of the event, and on

r=C/Lp, the cost–loss ratio characterizing the users of a forecast system. The fact that all

users can be characterized in this framework by a single variable, C/Lp, offers a convenient

way to evaluate the potential economic value of any forecast system for all users on a

two–dimensional, V vs. C/Lp plot.

3. Experimental setup

 In the following section we compare the economic value of the MRF T62 and T126

resolution control forecasts to that of a 14–member set of the T62 horizontal resolution

NCEP  ensemble for the April – June 1999 period. Note that the computational cost of

generating either a higher, T126 resolution control forecast, or a 14–member T62
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resolution ensemble is an order of magnitude higher than that of running a T62 resolution

control forecast only. In the example below, weather events are defined as the 500 hPa

geopotential height at gridpoints over the Northern Hemisphere extratropics (as routinely

defined for verification purposes at NCEP, 20N – 77.5N) being in any of 10 climatologically

equally likely bins. The reason for the choice of 500 hPa geopotential height is that

climatological information in the above format was readily available from an earlier study

(Toth et al. 2001). Climatological decisions (see Eqs. 2 and 4) are also based on this

15–year climatology.

The user of an ensemble of n forecasts has n options for use as decision criteria with

respect to his/her weather related action. He/she can choose to take action only if all n

forecasts predict the adverse weather, act if at least n–1, n–2, ..., or even if at least 1

member predicts the adverse weather. Each of these decision criteria corresponds with a

different economic value. Based on their C/Lp ratio, users can choose the decision criterion

that offers the most value to them. In fact, it can be shown that the best decision level p,

corresponding to the predicted probability of the weather event, is equal to C/Lp (assuming

perfectly reliable forecasts, Murphy 1977). The higher the cost of the protective action

relative to the potential loss, the more certainty the user requires about the forecast before

he/she takes action. One of the potential advantages of using an ensemble forecast

system is that it naturally provides a multitude of such decision criteria. Different users can

then tailor their use of the forecast information to their particular application, characterized

by their cost–loss ratio.

Relative frequency values based on counting how many ensemble members

predict a certain event usually provide probabilistic forecasts that are not reliable in a sense

that they do not necessarily match corresponding observed frequency values. This is

because of deficiencies in model and ensemble formulation. For example, when half of the

ensemble members predict a weather event, that event may, over a long verification
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period, verify only 40% of the time. Such biases in ensemble–based probabilities are

generally consistent in time and can be easily eliminated (see, e. g., Zhu et al., 1996). The

calibrated forecast that would be issued based on the past verification statistics in the

above case, where half of the ensemble members predict an event, for example, is 40%.

The April – June 1999 ensemble based probabilistic forecasts evaluated in this paper have

been calibrated using independent data from February 1999 verification statistics.

For each cost–loss ratio shown in Figs. 1–4 the decision criterion for the ensemble is

based on the calibrated probability forecasts. In particular, it is assumed that a user will take

protective action if the calibrated probability forecast value is greater than or equal to the

cost–loss ratio (p>C/Lp). For the extremely high (and low) probablity values where the finite

ensemble cannot provide optimum guidance, the best available guidance was used, i. e.,

the highest (lowest) probability values associated with all (at least one) members predicting

the weather event.

The above decision making algorithm, based on the users’ cost–loss ratio and

probabilistic forecasts calibrated based on independent verification data, represents an

operationally feasible strategy for the use of ensemble guidance. In some earlier studies

(Mylne 1999; 2001; Richardson 2000a) a slightly different approach was used, where the

optimum decision level for a particular user was identified directly by evaluating the

economic value associated with the use of different decision criteria. This process, in some

sense, is equivalent to calibration. Note, however, that in these earlier studies calibration

was performed on the forecast sample that was evaluated (dependent data), assuming

that the forecasts can be perfectly calibrated. In contrast, no such assumption is made in

the present study. By using calibrated probabilities that are adjusted based on prior and

independent verification statistics, the economic value of the ensemble forecast system is

evaluated in a more realistic setting, accounting for the information loss that inevitably

occurs in the calibration process.
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In contrast to the ensemble system that naturally offers multiple decision levels,

deterministic guidance from a single forecast, unless its form is changed via

postprocessing, can only be interpreted by a user in one way. If a particular adverse

weather event is forecast, the user can take protective action, and do nothing otherwise.

The yes–no forecast of a deterministic system, based on past verification statistics, can be

converted to dichotomous probabilistic forecasts just as the ensemble–based probabilistic

forecasts can be calibrated, see, e. g., Murphy (1986), and Toth et al. (1998). Since there is

only one decision level envolved, we assume probabilistic forecasts based on a control

forecast can be perfectly calibrated, and for calibration we use verification statistics based

on the sample period. Given that the ensemble forecasts are not assumed to be perfectly

calibrated and that their actual calibration is done with a simple algorithm the economic

value results shown in the next section represent a conservative estimate with respect to

the benefits of using an ensemble as compared to a single control forecast.

4. Results

a. Economic value

In Fig. 1 we show the economic value of the two control forecasts vs. an ensemble of

forecasts at 24–hour lead time, as a function of the C/Lp ratio, as discussed above. The

economic value comparison results indicate that most potential users, except those with

cost–loss ratios in a relatively narrow band between 0.2 and 0.5, can realize more

economic value when using the ensemble forecasts. At and beyond (72–)120 hours lead

time (Figs. 2–4) (virtually) all users are better off using the ensemble system than the

control forecasts. Furthermore, the range of cost–loss ratios for which the forecasts exhibit

value, compared to using climatological information only, is substantially widened,

indicating that a much larger group of users can benefit from the ensemble forecasts as

compared to the control forecasts.
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Fig. 1. Economic value of 24–hour MRF T126 (dashed) and T62 (dotted) control

forecasts, and 14–member T62 ensemble  forecasts (solid) in predicting events defined

in terms of 10 climatologically equally likely bins for 500 hPa height over the NH

extratropics, for April–June 1999, for users characterized by different cost/loss ratios

(horizontal axis). For the ensemble, the optimum decision strategy evaluated here is

based on the probabilistic forecasts, calibrated using February 1999 verification

statistics, being greater or equal to C/Lp ( p>C/Lp). Values below –1 are not plotted.
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Fig. 2. Same as Fig. 1, except for 72–hour forecast lead time.
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Fig. 3. Same as Fig. 1, except for 120–hour forecast lead time.
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Fig. 4. Same as Fig. 1, except for 168–hour forecast lead time.

Note that on each of the figures the largest economic benefit is, as expected

theoretically (see, e. g., Richardson, 2000a), attained by users whose C/Lp ratio is

approximately equal to o, the climatological frequency of the weather event, which in our

case is 0.1. Note also that with increasing lead time the economic value, as compared to

using perfect forecasts, just as the forecast information content (see Fig. 8 of Toth et al.,

1998), is reduced. Finally, the low negative values for the ensemble at very low cost/loss

ratios arise due to the small size of the ensemble. As described in section 3, the lowest

calibrated probability level available from the ensemble (pl) corresponds to the outcome of

at least one ensemble member predicting the event in question. For lack of a better choice

this criterion is used for all cost/loss ratios below pl, leading to poor performance in that

range.

b. Summary measures

Beyond ecnomic value defined in Eq. 7 and evaluated in Figs. 1–4 there exist a

number of measures that attempt to summarize the general value of different forecast

systems. Some of these summary measures are based on an assumption about the

distribution of properties protected by all (or a group of) users with various C/L ratios. These

summary measures, therefore, can be considered as overall economic value estimates

given their assumption about the distribution of protected values along different C/L ratios.

Unfortunately little if any information is available on most users’ cost–loss ratio. As an
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alternative, Wilks (2001) considers several artificial distributions of C/L among users in his

cost–loss analysis.

Relative Operating Characteristics–area (ROC–area, see, e. g., Mason, 1982) is

one common summary measure of ensemble forecast performance based on signal

detection theory. Using the notation of Table 1, an ROC diagram plots the hit rate

HR=h/(h+m) of a forecast system against its false alarm rate FAR=f/(f+c). The overall

performance of a forecast system is measured by the ROC–area defined by the points

(0,0), (1,1), and the point(s) representing the forecast system (see, eg., Stanski et al.,

1989). The closer a curve is to the upper left hand corner, the more ability the studied

forecast system has in delineating between conditions under which a certain event (in this

study, one of 10 climatologically equally likely bins) does or does not occur. A perfect

forecast system would have a ROC–area of 1 while a system with no ability to distinguish in

advance between different weather events would have a score of 0.5 (i. e., points lying on

the diagonal defined by 0,0 and 1,1). As shown by Mylne (1999) and Richardson (2000b,

2001) the ROC–area is closely related to the economic value of a forecast system. Note

that ROC disregards forecast reliability (or lack of it) altogether, effectively assuming that

before their use the forecasts can be perfectly calibrated.

Another summary score is the Brier Skill Score (BSS), which is a measure related to

ROC–area for systems that produce reliable forecasts (i. e., forecast probabilities that

exactly match observed frequencies, Talagrand et al. 1998). BSS measures the overall

economic value associated with a particular forecast system, assuming that when all users

are considered, the same amount of property is at stake at each cost–loss ratio value

(Murphy 1966). For the comparison of a single control forecast with ensemble based

probabilistic forecasts BSS gives an even larger benefit to the ensemble than ROC–area,

reflecting the wider range of users who gain positive value from the ensemble. Another

alternative would be to use the economic value associated with the C/Lp yielding the
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maximum value (Richardson 2000a). Compared with the ROC–area, this would give

somewhat smaller differences (but still up to 50%  in Figs. 1–4). The maximum value

recognizes the fact that the ensemble forecast system is better for users with C/L=o, but

does not reflect the additional benefits for the majority of other users that exist due to the

provision of multiple decision levels in the form of multiple level probabilistic forecasts

(Richardson 2000a).

As an example of a summary measure fig. 5 shows an ROC–area based skill score

Fig. 5. ROC (Relative Operating Characteristics) area skill score for the T126 (dashed)

and T62 (dotted) control forecasts, and the 14–member T62 ensemble forecasts (solid)

for the 500 hPa height, NH extratropics, for April–June 1999. Scale on vertical axis is

logarithmic.

LEAD TIME (hours)

0.01

0.10

1.00

0 48 96 144 192 240 288 336

R
O

C
S

T62 ENSEMBLE
T126 CONTROL 
T62 CONTROL

(ROCS), defined by Richardson (2000a) as:

ROCS=2(ROCA – 0.5),   (8)

that is an indicator for  the overall utility of a forecast system, as a function of lead time. As

can be seen from Figs. 1–4, the relative benefit of the ensemble (compared to the controls)

will tend to be greater than this for users with C/L<o, but will be less for some users with

C/L>o.

The ensemble forecast system is found to outperform the control forecasts at all

lead times. For example, at day 2 (6) lead time the use of the ensemble forecast system
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provides close to 70% (130%) improvement over the control  forecasts; to put it in another

way, a 4–day (10–day) ensemble forecast has a score as high as a 2–day (6–day) single

control forecast.  These results are in good agreement with Figs. 1–4, and at later lead time

with those of Mylne (1999) and Richardson (2000a).

It is interesting to note how much more the users can benefit from the

ensemble–based multiple decision level forecast system than from a simple increase in the

horizontal resolution of the control forecast from T62 to T126 – each of which requires

approximately an order of magnitude more resources than running a low resolution T62

control only.  The high ensemble scores make the difference between the two different

resolution model versions look rather small. However, in terms of NWP advancements, the

T126 resolution model represents a rather significant improvement over the T62 version of

the NCEP MRF model.

The economic value results in Figs. 1–4 and the related ROC–area results in Fig. 5

refer to the value of direct output from the NWP systems investigated, after minimal

postprocessing that makes both the control and ensemble systems reliable. When

evaluating these results, however, we must note that a single control forecast, without

statistical postprocessing, offers only one threshold for decision makers while an ensemble

of n members offer n, depending on how many members indicate the occurence of a critical

weather event. The large difference between the ensemble and the control curves in Figs.

1–5 highlights the importance of using detailed probabilistic forecast information in

economic decision making processes.

The fact that direct output from a control forecast offers only a single decision level is

clearly reflected on ROC curves like that shown in Fig. 6 for 5–day lead time forecasts

where both control forecasts are represented by one point only. For a single forecast that,

without postprocessing, offers only one decision criterion, ROC–area is defined by the

triangle given by (FAR,HR) for the single point and the (0,0) and (1,1) points (see example
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Fig. 6. ROC (Relative Operating Characteristics) curve for a 5–day lead time

14–member T62 ensemble of forecasts and for the T126 and T62 control forecasts

predicting events defined in terms of 10 climatologically equally likely bins for the

500 hPa height, NH extratropics, April–June 1999.

in Fig. 6). Note in the example of Fig. 6 that the control point is only slightly below the

ensemble curve. The main difference in ROC–area between the control and ensemble

forecast systems comes from the larger number of thresholds used to define the ensemble

ROC curve. This greater number of thresholds is directly related to the wider range of users

for which the ensemble has positive value compared to the control forecast (cf. Figs 1–4).

The substantial difference in ROC–area between ensemble and control forecasts

emphasizes the importance of the flexibility this range of decision thresholds offer to the

users.
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We note that if we parametrized the ROC curves for both the ensemble and the

control forecasts (Mason, 1982; Richardson 2000a) the difference in ROC–area would be

substantially reduced. However this would indicate potential (and not actual) differences in

value, achievable only if a sufficiently wide range of useful forecast thresholds for the single

control forecast system could somehow be made (Harvey et al. 1992). One possible way to

achieve this would be to predict 50 mm precipitation, for example, not only when the control

forecast exceeds that amount, but with less probability, also when the forecast reaches 20

or even only 10 mm (see, e. g.,  Atger 2001).

It is conceivable that the performance of such a multiple decision level system

based on a control forecast can reach or possibly even exceed the performance level of an

ensemble–based system in case the unpostprocessed control forecast point lies above the

ensemble curve on a ROC chart. This is the case for the low (T62) and high resolution

(T126) controls for lead times up to 12 and 96 hours respectively (Fig. 7). This indicates that

for some users the control forecasts are more valuable at short lead times. Beyond 4 days

lead time both control forecast points, however, lie below the ensemble curve (Figs. 5 and

7), inidicating that the ensemble is a better forecast system for all users. At these lead times
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Fig. 7. Same as Fig. 5 except for ROC–distance,  defined (on linear vertical axis) as the

distance between a control point and the closest point on the ensemble polygon. Positive

(negative) values indicate the control point is above (below) the ensemble curve.

there is no reason to assume that if more sophisticated statistical postprocessing is applied
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to both the high resolution control and the low resolution ensemble forecast systems the

one based on the control forecast only would perform better. These results indicate that

using the same computational resources, potentially more economic benefit can be gained

from generating an ensemble of forecasts than from increasing the horizontal resolution of

the control forecast, at least for lead times beyond 4 days.

5. Discussion

a. Why the ensemble approach is successful

As discussed earlier, an ensemble of forecasts naturally offers a multitude of

decision levels compared to a single yes–no decision based on a control forecast,

providing detailed probability distributions instead of only two levels of probabilities. Toth et

al. (1998) showed that the use of detailed ensemble based probability distributions (as

compared to the use of only two probability levels) substantially improves forecast

performance in terms of ROC, Ranked Probability Skill Score, and information content. As

discussed earlier, multiple–value probability forecasts can of course be constructed based

on a single deterministic forecast, using past verification statistics. Such a system can

produce statistically postprocessed, bias–free probabilistic forecasts. Atger (1999) found

that at least beyond 3 days lead time 500 hPa height forecasts the ECMWF ensemble

prediction system outperformed such a system based on postprocessed control forecasts.

In their compex economic value analysis addressing hypothetical applications in the

electricity sector Smith et al. (2001) came to similar conclusions. Talagrand and Candille

(1999, personal communication) reported similar results. The ensemble’s better

performance in these comparisons, since the control forecast was supplemented by a

detailed probability distribution, must be due to some genuine information contained in the

ensemble but not in the control based distributions.

The ensemble based distributions can surpass their control based couterparts in

two ways. First, due to nonlinear effects (Toth and Kalnay 1997) the ensemble distribution
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may be centered closer to truth than the distribution based on a single forecast only. While

at short lead times a higher resolution control may have an advantage due to its increased

accuracy (see, e. g., Fig. 3 of Toth et al., 1998), at longer lead times the ensemble has an

advantage, due to its nonlinear error filtering capability. While these differences may have a

substantial contribution, comparing Figs. 3 and 7 of Toth et al. (1998) suggests that they

play only a secondary role. A more important contribution of the ensemble may be its ability

to capture day–to–day variations in the expected uncertainty of the forecasts (Toth et al.

2001; Ziehmann 2001). The ensemble can distinguish between forecasts with higher and

lower than average uncertainty at the time the forecasts are issued. As Toth et al. (1998)

showed, the ensemble provides important extra information to the users through its case

dependent uncertainty estimates. While statistical postprocessing of some sophistication

applied on a control forecast system may be able to capture part of the day to day variations

in predictability, it is not likely that all information that affects predictability (i. e., case

dependent initial errors and their evolution in the forecast) could be captured through

statistical approaches.

b. Limitations and open questions

All the results presented in this study pertain to forecasts of the 500 hPa height over

the Northern Hemisphere extratropics, made at T62 and T126 model resolution. Similar

results were obtained by Richardson (2000a) and Mylne (1999) using sensible weather

elements. Further studies, however, are necessary to analyze the economic value related

to the use of ensembles vs. higher resolution control forecasts with respect to other

weather elements in higher resolution forecast models at various lead time ranges, with the

use of more complex decision making tools. Can some general guidelines, such as the

presence of large forecast uncertainty, and/or large and predictable variations in it, be

established under which it is more advantageous to spend resources on running an

ensemble, instead of increasing the spatial resolution of the model used in NWP
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forecasting? Under what general conditions may an ensemble forecast system be

sufficient (Ehrendorfer and Murphy 1988) for the high resolution control forecast, making

the control forecast redundant (and its generation unnecessary)?

Ensemble forecasts for sensible weather elements should preferably be statistically

postprocessed to eliminate possible systematic errors or model biases before they are

used in weather forecasting. Calibration is an important issue for practical applications

since, as Wilks (2001) showed, uncalibrated forecasts can suffer a great reduction in their

expected economic value. Probabilistic forecasts based on the NCEP ensemble (500 hPa

height, 10 climatologically equally likely events) were successfully calibrated by a simple

method, used also in the present study, by Zhu et al. (1996) and Toth et al. (1998). The

success of such a calibration depends on the relative stationarity of the NWP analysis and

forecast system on one hand, and the natural climate system on the other. The calibration

of forecasts for intermittant or less frequent events is a more problematic task that calls for

further investigation.

Statistical postprocessing has also been a critical element in the interpretation of

traditional single control forecasts (e. g., Carter et al., 1989). Note that the purpose of

statistical postprocessing of the ensemble forecasts is different from that of a single control

forecast. MOS, for example, not only attempts to eliminate the bias from the forecasts on

which it is applied but also hedges the forecasts (Murphy, 1978) toward climatology (the

larger the expected forecast error, the more so). A single control forecast is normally used

to provide a best estimate of the future state of the atmopshere, and hedging serves well

this purpose. Ensemble forecasting, however, has a different goal, providing a detailed

forecast probability distribution. In this case hedging, that brings all forecasts, originally

intended to represent the inherent forecast uncertainty, closer to climatology is
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counterproductive1. Additional open questions that remain to be investigated include

whether and to what extent the application of more sophisticated statistical postprocessing

algorithms applied on both the control and ensemble forecast systems can bring the

performance of the control system closer to that of the ensemble.

c. Implications for weather forecasting

The role of forecasters is to provide all relevant information on future weather to the

users. As the results and discussion above indicate, it is critical that the users have access

to multiple–value probabilistic information that captures day–to–day variations in the

expected uncertainty of the forecasts. A weather forecast is in fact not complete unless it is

expressed in the form of probability distributions. And in the case of appreciable

uncertainty, the goal of weather forecasting, including statistical postprocessing, such as

MOS and other methods, should be the provision of a detailed case dependent probability

distribution (Murphy 1977), and not only a best estimate of the state of the atmosphere.

Such information facilitates the use, and increases the potential economic value of weather

forecasts. It is not surprising that companies selling weather derivatives2 are among the

core users of ensemble forecasts.

 The users in turn can take this information, along with other factors, into

consideration when making their decisions related to operations that are sensitive to the

weather (Pielke, 1999). Many of the users who could potentially benefit from ensemble

forecasts may be unaware of this, because of their possible negative experience with

weather guidance based on a single control forecast. This is well demonstrated by the

relatively narrow C/Lp range in which users gain value from using the control forecasts

1. Note that if the mean of the ensemble is used as a best estimate of the future state of the at-
mosphere it can be further improved in an rms error sense by some additional smoothing (see
Leith, 1974; Houtekamer and Derome, 1995).���	��
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compared to using the ensemble (see Figs. 1–4), and also by the results of Smith et al.

(2001). These potential users may not realize, until they are introduced to probabilistic

forecasting, that the relatively low average hit rate of certain weather forecasts is not an

obstacle to their usage, especially if reliable forecast probabilities show variations from

case to case.

Initially, some users may feel uncomfortable with the notion of ”probababilities”,

thinking they need to make decisions and for that they need a ”yes or no” forecast. The idea

behind the cost–loss analysis discussed above is that if reliable probabilistic forecasts are

available, each user can choose, depending on their estimated or known cost–loss ratio, a

different criterion (probability level) for making their own ”yes–no” decision. After all,

weather forecasters are for making weather forecasts, and decision makers are for making

decisions (Murphy, 1978). If the forecaster conveys all available information, the weather

forecast, for example, will be no longer ”yes, it will rain”, but rather, ”there is an 80% chance

of rain”. Well trained users with cost–loss ratios 0.8 and below will interpret this forecast as

”yes”, while those with ratios above 0.8 as ”no”. We know that each weather forecast has an

associated case dependent uncertainty, and that this uncertainty can generally be

quantified by an ensemble of forecasts (Toth et al. 2001); it is in the users’ best interest to

seek and utilize this information.

d. An example

As an example, let us consider the use of minimum temperature forecasts by two

farmers in the same geographical area who grow different crops that are all sensitive to

freezing temperature that climatologically occurs 20% of the time (o=0.2). Let us assume

that the cost of protecting their crops is the same but their potential loss differs dramatically

due to differences in the vulnerability and value of their crops. The farmer with less to lose

(C/Lp=0.9, high cost–loss ratio) will only spend on protection if the frost is almost a certainty

(p=0.9, or higher forecast probabilities), whereas the farmer who can suffer large losses
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(C/Lp=0.05) will want to take protective action even if the forecast probability values are low

(p=0.05, or higher). Note that in this example the farmers translate the probabilistic weather

forecast into their ”protect – do not protect”, yes–no decision, using very different decision

criteria (high vs. low probability values).

If a forecaster provides only his/her best estimate on whether the minimum

temperature will be above or below freezing, this forecast will likely be useless for either

farmer (cf. Fig. 2). Such a forecast, with an intermediate average hit rate of say 80% and

missing rate (m/(m+c)) of 10%, will be useful only for users with intermediate cost–loss

ratios. Neither the low, nor the high cost–loss ratio customer can benefit from such a

product. Instead, they will tend to use climatological information and the former farmer will

always, while the latter never protect his/her crop. To be of any use for them, the forecasts

would need to be issued in the form of multiple probability values including their  C/Lp

values of 0.05 and 0.9. To achieve that, one needs information on case dependent

uncertainty (instead of average uncertainty associated with all unclassified “yes”

forecasts). As discussed earlier, such guidance can be readily derived from an ensemble of

forecasts, which in turn can lead to substantial savings for the farmer with low (high)

cost–loss ratio by identifying those cases when he/she can forgo (implement) protection.

6. Conclusions

An economic value analysis based on a simple cost–loss model was carried out on

minimally postprocessed 500 hPa geopotential height model output from low resolution

ensemble and low and high resolution control forecasts. The analysis revealed that a wider

range of potential users can benefit from the ensemble than from the control forecasts,

compared to relying simply on climatological information. Moreover, for most users the

ensemble offers more economic value than the control forecasts. Similar results were

obtained by  Richardson (2000a) and Mylne (1999), who studied the economic benefit of
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precipitation and temperature forecasts at ECMWF, and surface wind speed forecasts at

the Met Office (Bracknell, UK) respectively.

The economic value and ROC results presented in Figs. 1–5 clearly demonstrate

the benefit of detailed probabilistic forecasts generated by an ensemble over categorical

forecasts based on a single control integration, even if that single forecast is made at a

resolution higher than that of the ensemble.  For economic decision making it is imperative

to use forecasts that provide multiple decision levels. Ensemble forecast systems naturally

offer such guidance. The present paper has focused on the evaluation of direct output from

the ensemble and from the control forecasts, without attempting to assess the potential

benefits of advanced statistical postprocessing of either the ensemble–based probabilities

or of the control forecast. Obviously, through statistical postprocessing control forecasts

can be supplemented by detailed probability information.  Atger (1999), Smith et al. (2001),

and Talagrand and Candille (1999, personal communication) studied such forecast

systems and found that ensemble forecasts, at least from 4 day lead time on, outperform

them. These results suggest that the ensemble can provide some genuine and useful

information, likely by the identification of day–to–day variations in forecast uncertainty, that

will be difficult to reproduce by simply post–processing a control forecast.

A detailed analysis of ROC results (Figs. 5–7) indicate that  beyond 4 days lead time

the lower horizontal resolution T62 ensemble, generated at a similar computational cost,

outperforms the high resolution T126 control forecast in every respect, suggesting that at

least in this lead time range the ensemble forecast system is more cost effective. We

conclude that the use of ensemble–based probabilistic forecasts has the potential to

substantially increase the overall economic benefit weather predictions can deliver to

society.
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