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Abstract

The National Centers for Environmental Prediction (NCEP) Ensemble Forecasting 

System (EFS) is used operationally in South Africa for medium-range forecasts up to 14-

days ahead. The use of model-generated probability forecasts has a clear benefit in the 

skill of the 1-7 day forecasts. This is seen in the forecast probability distribution being 

more successful in spanning the observed space than a singe deterministic forecast, and 

thus substantially reducing the instances of missed events in the forecast. In addition the 

probability forecasts generated using the EFS are particularly useful in estimating 

confidence in forecasts. During the second week of the forecast the EFS is used as a 

heads-up for possible synoptic-scale events and also for predicting average weather 

conditions and probability density distributions of some elements such as maximum 

temperature and wind.

This paper assesses the medium-range forecast process and the application of the NCEP 

EFS at the South African Weather Service. It includes a description of the various 

medium-range products, adaptive bias-correction methods applied to the forecasts, 

verification of the forecast products and a discussion on the various challenges that face 

the researchers and forecasters alike.
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1. Introduction

Weather forecasts have potential use at a variety of space and time-scales. As a public 

weather forecast service, the South African Weather Service (SAWS) is tasked to provide 

a comprehensive forecast service from a few hours ahead through all scales up to several 

seasons ahead. The medium-range (three to 14 days) is particularly popular through a 

number of sectors and thus considerable effort has been invested in improving forecasts 

for this time-scale. To this end the National Center for Environmental Prediction (NCEP) 

Ensemble Forecasting System (EFS) (Toth and Kalnay 1997; Toth et al. 2001; Buizza et 

al. 2005) is used operationally in South Africa for medium-range forecasts up to 14-days 

ahead.

Ensemble methods (Leith 1974) are considered to be an effective way to estimate the 

probability density function of future states of the atmosphere by addressing uncertainties 

present in initial conditions and in model approximations. Notwithstanding, biases remain 

in these forecast distributions, especially in user-orientated fields such as rainfall (e.g. 

Hamill and Colucci 1998) and surface temperature (e.g. Hamill et al. 2004). Various bias 

correction methods and verification statistics are described in the literature. However, it is 

important to get a grasp of the practical implementation of a forecast guidance system in 

a regional setting and to establish the strengths and weaknesses of the EFS in these 

regions.
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The objective of this paper is to introduce some novel medium-range forecast products 

that have been generated from the NCEP EFS, including bias-correction, and assess the 

success of these in an operational environment at the South African Weather Service.

2. Ensemble Forecast System and Verification Methodology

a. NCEP Ensemble Forecast System

The SAWS has been downloading subsets of the NCEP EFS on a daily basis since 2000. 

The operational configuration at NCEP used for this study has been in effect since May 

2000 and consists of 23 ensemble members per day out to 16 days ahead. At 00Z the 

suite consists of a high-resolution (T170L42, T254L64 since April 2003) control run up 

to 7-days, truncated to T62L28 for the remaining 9 days, a low-resolution (T62L28) 

control run, plus 5 pairs of perturbed integrations derived from the breeding cycle (Toth 

and Kalnay 1993; 1997). At 12Z the high-resolution control run extends only to 3.5 days, 

and there are another 5 pairs of independently bred perturbations. The full ensemble set 

thus consists of 23 members per day. Since March 2004 the ensembles have been 

available four times daily at a T126L28 resolution (more detail on the NCEP EFS is 

available online at http://wwwt.emc.ncep.noaa.gov/gmb/ens/index.html). Owing to 

bandwidth constraints the SAWS has, up to writing of this paper, only downloaded the 

coarser 2.5o resolution datasets. Although the model output assessed here is at this lower 

resolution, the model performance has been continuously improving through upgraded 

model physics, resolution and data assimilation and these effects are automatically 

manifest in the coarser output sets.



5

b. Verification Methods

Atmospheric variables such as pressure-level geopotential heights and sea-level pressure 

are compared against the ensemble control run analysis. These continuous data are 

verified using root-mean-square error and anomaly correlation coefficient scores. In order 

to calculate the anomalies used for the correlation calculations, monthly climatological 

fields, derived from NCEP/NCAR reanalysis data (Kalnay et al. 1996), are converted to 

daily values by performing a linear interpolation between the two nearest monthly values, 

and are subtracted from the forecast fields.

Surface variables such as rainfall and maximum/minimum temperature are verified 

against station data from the SAWS database. There are 96 temperature stations across 

South Africa and between 1500 and 2000 rainfall stations (Fig. 1). At the 2.5o EFS 

forecast resolution, roughly 30 to 200 rainfall stations fall into each model box, with the 

lower values corresponding to the sparsely populated arid areas in the western interior of 

South Africa. This verification is done using two approaches. The first consists of model 

forecast values of temperature and rainfall probabilities being interpolated to the 96 

forecast station locations and the second (used mainly in rainfall verification) of a value 

constructed for each model box using an average of the stations within the box. The EFS 

is designed for box average probabilistic quantitative precipitation forecasts (PQPF) and 

not point values, and is therefore not expected to perform well at individual points. A 

further caveat to note here is that convective-type rainfall in the summer rainfall areas of 

South Africa has a particularly high spatial variability and station measurements are 
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sometimes not representative of the area – in this case the 2.5o model grid box. This also 

highlights the reverse problem of deriving a point forecast of rainfall from model grid 

boxes and will be addressed in future research. In a study over Australia (which has 

similar conditions to South Africa), Ebert et al. (2003) suggest that the difference 

between forecast and observed rainfall fields are much greater than errors in verification 

data (from representativeness), suggesting that we may proceed to verify PQPF with 

caution. This verification is done using the Equitable Threat Score (ETS) (Ebert 2001) 

that has the advantage of measuring the fraction of observed and/or forecast events that 

were correctly predicted but adjusting the score for hits associated with random chance.

The skill of probabilistic forecasts is verified using the Brier Skill Score (BSS) (Brier 

1950; Wilks 1995). This skill score measures the squared probability error relative to 

climatology. Murphy (1973) decomposed the Brier Score into reliability (agreement 

between forecast probability and observed frequency), resolution (ability of the forecast 

probabilities to distinguish between events and non-events) and uncertainty (depends on 

climatology and has a maximum value of 0.25 when the observed frequency is 50%). A 

further measure of the ability of forecasts to distinguish between events and non-events is 

shown using the Relative Operating Characteristic (ROC) (Mason 1982). The BSS looks 

at performance stratified by forecast probabilities and the ROC performance based on the 

observations. The ability of the spread of the EFS to represent the variability of the real 

atmosphere is measured using the Rank Histogram (Talagrand et al. 1997; Hamill 2001). 

This measure is particularly useful in determining whether the EFS has errors in its mean 

and spread. Again, as pointed out by Hamill (2001), errors in observations (mostly 
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through representativeness) may introduce false signals in this histogram. More on this 

will follow in the discussion.

c. Forecast Products

The products from the EFS can be divided into two groups. The first is the set of products 

provided to the forecasters that is used as guidance in compiling their medium-range 

forecast. The second group consists of computer-generated products that are disseminated 

to the public and/or specialized users. These are each described separately below.

1) Forecaster Guidance: Part of the success in introducing the EFS to the forecast 

offices in the SAWS has been the development of a user-friendly forecast display 

system. This is based on HTML WebPages and consists of a homepage in the 

form of a table with the vertical axis representing the forecast days from 1 to 14. 

The horizontal axis contains different forecast parameters. Each panel consists of 

a thumbnail-size spatial map that provides a quick preview of the expected 

weather in the medium-range. The maps include a date with forecast day, PQPF 

for 1mm and 8.5mm over the 24-hour period, probability of 24-hour maximum 

and minimum temperature change (from the previous day) exceeding +2 and –2 

degrees Celsius, contours of pressure-level geopotential heights of the high-

resolution control run overlying a shaded field that indicates expected forecast 

uncertainty (based on ensemble spread) and the probability of the 850-500hPa 

thickness falling below 4200 and 4100gpm. Temperature changes over 24-hours 

are preferred to actual values because surface air temperature varies significantly 
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from one location to another (often within a model grid box) based on altitude, 

terrain and proximity to bodies of water. Each thumbnail image on the webpage 

table can be expanded to full size through a mouse click and navigation around 

the expanded images in the table is done using arrow links. The expanded pages 

also provide links to additional detail such as additional thresholds, bias-corrected 

fields and spaghetti diagrams. The webpage includes a built-in automatic update 

instruction to ensure that forecasters are always viewing the latest forecast.

2) Public Forecast Products: While forecasters have a good understanding of the 

use of numerical weather prediction models, the public can easily misinterpret 

such computer-generated information. Therefore, the products issued to the public 

need to be carefully designed, adequately documented and limited to a few 

understandable parameters (Ryan 2003). The SAWS issues deterministic station-

specific forecasts for the first 7 days, as has been the practice for many years 

before the introduction of the EFS, but this does include a probabilistic forecast of 

precipitation (available online at http://www.weathersa.co.za). For the second 

week computer-generated products of probabilities of maximum and minimum 

temperature categories and wind roses (Fig. 2) are issued for the 96 temperature-

forecast stations shown in figure 1. These graphics include climatological 

distributions of the forecast parameter to indicate the expected departure from the 

mean. The advantage of these products is that they make full use of all of the 

ensemble information. Furthermore, the products span a week, so the impacts of 

errors in the individual ensemble member forecasts, regarding the timing of 

specific events during the second week, are reduced.
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3. Verification of Medium-Range Forecast Products

a. Continuous variables

This section focuses predominantly on the 00Z 500hPa height forecasts for the period 

January 2001 to December 2004 and over a domain covering the South Atlantic Ocean, 

southern Africa and the southwestern Indian Ocean. Results for sea-level pressure concur 

on the whole with the 500hPa heights and are thus not repeated in the results. The 

ensemble average (10 perturbation members) has a lower RMSE than the low-resolution 

(high-resolution) control run after five (six) days (Fig. 3). However, the ensemble 

average RMSE exceeds the RMSE obtained by using climatology (the limit of skill) after 

day eight, only one day after the control runs reach this threshold. This shows that the 

benefit of the ensemble technique over the control run to make skillful forecasts of the 

instantaneous 500hPa fields is realized on average for only one day in this region. 

Notwithstanding, when taking the best ensemble member at each forecast case (identified 

a posteriori), the RMSE is smaller than that of climatology up to day twelve. Bourke et 

al. (2004) also note the advantage of using the Bureau of Meteorology EFS, with a 33% 

relative gain of the best ensemble member to the high-resolution control over Australia at 

day 5. A tally of the ensemble members shows that the high-resolution control run is the 

most accurate more often than any of the other ensemble members for the first three days 

of the forecast. The low-resolution control is usually most accurate about half of the 

amount of time that the high-resolution control is most accurate, illustrating the level of 

improvement in skill that can be realized by increasing model resolution. From forecast 
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day four, one of the perturbed ensemble members is usually the most accurate. By the 

end of the forecast period (day 16) any ensemble member has an equal chance of being 

the best. In essence the ensemble technique is successful in producing at least one 

forecast member that can be used to make a skillful forecast for this region up to twelve 

days ahead. This suggests that the breeding method is able to capture the uncertainty in 

the initial conditions such that the probability distribution of the ensemble forecast 

envelope does cover the observed events out to this lead-time.

As already mentioned, upgrades to the GFS model at NCEP have led to improvements in 

the model performance. This is evident in the ensemble average, best member and control 

runs of the EFS. Generally, skill of the best member has improved by almost 2 days to 14 

days and the bias has been reduced by 60% when comparing the scores for 2001 against 

those of 2004 (not shown). It is also worth noting that the ensemble mean is slightly 

worse than the control run of the same resolution, for the first few days (also noted in 

Szunyogh and Toth 2002). This is because the ensemble suite is generated using the 

breeding method (Toth and Kalnay 1993; 1997) that adds perturbations to the control 

analysis, in the form of stochastic noise, with the aim of reducing model systematic error 

in the ensuing forecasts. The uncertainty estimate mask that determines the size of these 

perturbations has only recently been upgraded at NCEP and was known to produce 

inflated perturbations for the southern hemisphere. This would partially explain the 

problem with the ensemble mean. Additionally, the perturbed ensemble member forecasts 

would be initially disadvantaged relative to the control forecasts if verified against the 

control analysis. However, the ensemble generating technique is designed to capture the 
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uncertainty in the initial conditions and hopefully provide a more useful forecast 

probability distribution. The benefit of this becomes clearer later in this paper, 

particularly with the 850-500hPa thickness probability forecasts.

The anomaly correlation coefficient (ACC) scores are similar to the RMSE scores (Fig 

4). One notable difference is that over the smaller domain (37.5-17.5oS and 10-40oE) the 

ensemble average ACC scores remain poorer than the high-resolution control throughout 

the forecast period, whereas the ensemble average beats the high-resolution control from 

day 6 in the large domain. Furthermore, the score of the best ensemble member at each 

case is higher over the small domain, than the large domain. These indicate that locally 

the correct type of weather system is being simulated by the model by (at least) some 

members and the poorer score for the ensemble average could be caused by the 

smoothing effect of combining forecasts of the same weather system, but located at 

different positions.

A useful forecast system must be able to capture as much of the range of natural 

variability as possible. One way to measure this is to plot the standard deviation of the 

ensemble member fields from their own time-averaged value for the full verification 

period at each forecast lead-time (Fig. 5). During the first week of the forecast the 

variance decreases, but then begins to increase during the second week. The control runs 

have a lower variance than that observed, with the low-resolution control considerably 

lower than the high-resolution control. This is consistent with the constrained 

atmospheric variability, in this region in particular, caused by the finite resolution of 
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models (Stratton 1999; Tennant 2003). The perturbation breeding method introduces 

additional variability and results in the first three days of the perturbed ensemble 

members having a higher variance than observed. The ensemble average obviously 

underestimates the variance significantly, making this field unsuitable for event 

forecasting in this region despite its apparent advantage over individual ensemble 

members in terms of RMSE and ACC between forecast days five and eight.

b. Bias Correction

The most basic way to correct model systematic biases is by subtracting the long-term 

mean error of the forecasts (Richardson 2001). This is usually done independently for 

each grid point and forecast lead-time. However, this omits two other rather important 

dependencies, namely those related to the season and to the circulation regime. To 

address this issue Atger (2003) proposed a spatially and temporally dependent bias 

correction. In order to introduce this sort of bias correction in an operational environment 

Eckel and Mass (2005) adopted a 14-day running mean bias calculation. Cui et al. (2005) 

also discuss these methods. This study follows such a bias-correction technique with the 

following additions. The running mean was tested for 30, 14 and 7 days, and the 14-day 

running mean was found to be optimal. Bias correction was done independently for each 

control ensemble member but as a group for the perturbed ensemble members. This was 

necessitated by the different resolution (and hence bias) of the control runs (Szunyogh 

and Toth 2002) and possible differences introduced by the initial perturbations on the 

perturbed members. There is no reason to expect the bias of any particular perturbed 
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ensemble member to be different from the others, so the same average bias of all the 

perturbed members was subtracted from each member.

The bias correction procedure was performed as follows. Starting at 1 January 2001, a 

bias for each forecast lead-time for forecasts valid for the 14-day window period (ending 

31 December 2000) was calculated. This was done by calculating the mean difference 

between the forecasts and the observed fields multiplied by a factor alpha (estimated 

empirically at 0.33, i.e. 33% of the forecast error could be attributed to the forecast bias). 

All the forecasts valid over the window period were corrected by subtracting the bias 

factor. The process was then repeated for 2 January 2001 (with the 14-day window 

extending from 17 December 2000 to 1 January 2001) and each day in turn until 1 

January 2005. During this process each particular forecast case was bias-corrected 14 

times as the window moved across the time. This iterative process provided more 

stability to the bias correction process. The latest forecast (simulating an operational 

environment) was bias-corrected using the mean difference between the standard 

forecasts and the latest set of iteratively bias-corrected forecasts over the 14-day window. 

In this way the most up-to-date bias information was used to correct the current forecast. 

These forecasts (with only one bias-correction step) were saved separately and used in 

the verification process. The main advantage of this bias-correction method is that the 

bias can be calculated from a relatively short period and thus be implemented easily in an 

operational environment.
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Over the southern Africa domain the GFS model exhibits an increasing area-average 

negative bias with forecast lead-time (Fig. 6). The magnitude of the bias is dependent on 

model resolution, with a larger bias associated with the lower resolution. As expected 

from results of other studies (Atger 2003; Cui et al. 2005) the bias correction method is 

successful in reducing the magnitude of the bias considerably throughout the forecast 

period. Talagrand diagrams also confirm this bias reduction with a more even distribution 

(not shown). The forecast bias cannot be totally removed using these sort of correction 

methods in a real-time forecasting sense, as it is not possible to fully anticipate the 

systematic-error component of future forecast errors based on past errors. Furthermore, 

efficient bias-correction does not always necessarily lead to an improvement in forecast 

skill, but the method discussed here does also improve skill somewhat (Fig. 4). This 

improvement is also evident in the increase in variability after bias-correction (Fig. 5). 

This probably occurs when the adaptive bias-correction shifts the model forecast away 

from the model climate (with constrained variability) towards reality with more 

variability.

It is interesting that the ensemble perturbation members have a smaller bias than the low-

resolution control run at forecast days two and three (shown by the ensemble average 

curve in figure 6). The only differences between these runs are the perturbations added to 

the initial conditions, suggesting that this bias is influenced by the initial conditions. 

Buizza et al. (2005) state that a successful EFS should capture the effect of both initial 

condition and model uncertainties on forecast errors. To investigate this, the spatial 

variation of the difference between the perturbed ensemble members and the control run 
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is shown in figure 7. Here we see that the ensemble breeding method has an overall 

spatial pattern where the perturbed ensemble members (on average at time zero) tend to 

have higher values over the land areas and South Atlantic anticyclone, and negative in the 

mid-latitude westerlies for both the 500hPa height and sea level pressure fields relative to 

the control analysis. These are clearly very small values but certainly spatially coherent. 

Although the cause of this is not clear, some further investigation revealed that these 

patterns seem to be related to the interpolation of the high-resolution analysis (from 

NCEP's global data assimilation system) to create the analysis for the lower model 

resolution of the ensemble set. This lower-resolution analysis is used for the breeding of 

the ensemble perturbations. After 24 hours these same patterns amplify to amounts that 

neatly offset the traditional model bias in the region of a negative bias in the subtropics 

and a positive bias in the mid-latitudes of the region. Such a pattern where the southern 

hemisphere jet stream is displaced toward the equator by many GCMs is familiar in the 

region (Tennant 2003). Furthermore, the bias correction method, although successful in 

reducing the bias spatially, does leave some of the spatial pattern of the bias behind (Fig. 

8). These highlight the need for regime-dependent bias correction, since model 

performance can be linked to correctly simulating circulation regimes (Chessa and 

Lalaurette 2001).

c. PoP and Temperature Change Forecasts

A clear bias in the EFS is evident over southern Africa in terms of inflated quantitative 

precipitation probabilities. The root of this problem appears to be that the NCEP GFS 

model overestimates rainfall amounts, climatologically speaking, by up to 300% over the 
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summer rainfall areas of South Africa, especially along the eastern escarpment at 30oE 

(Fig. 9). Surprisingly, there is little improvement in the high-resolution forecast over the 

low-resolution forecast, as usually such biases tend to be related to model resolution. Of 

further note, is that this bias becomes greater for the higher rainfall amounts greater than 

5mm, especially for the longer forecast lead-times (Fig. 10). The bias score used here, 

calculated as the number of forecast cases divided by the number of observed cases, is 

thus very large (up to 50), especially given the small number of observed cases of 

>20mm over the 2.5ox2.5o model grid-box. This would partially explain why the high-

resolution model has such a strong bias because large rainfall amounts tend to be more 

easily generated by higher-resolution models (Mullen and Buizza 2002). Furthermore, 

forecast lead-time appears to have little bearing on the magnitude of the bias (except 

high-resolution control at 5 days), suggesting a problem with model physics (possibly the 

precipitation parameterization schemes) over this region. In contrast to the summer 

rainfall areas, rainfall is underestimated in the winter rainfall region of the southwestern 

Cape (Fig. 9 and 11). In this region we have large-scale rain-bearing frontal systems that 

are enhanced by local topography, a feature probably not adequately captured by the 

current resolution of the NCEP global model. 

Talagrand diagrams (Hamill 2001) confirm the findings above (Fig. 12). The summer 

rainfall region has a clear bias of forecasting too much rain too often (left-skewed 

diagram), where the observation is less than the driest ensemble member a third of the 

time. The winter rainfall region on the other hand has a U-shaped diagram indicating a 
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lack of variability in this region, although the diagram does exhibit a slight left-sided 

bias. Again these patterns do not change significantly with forecast lead-time.

Quantitative precipitation forecast (QPF) fields were calibrated by adjusting the event 

threshold (i.e. the precipitation forecast amount defining a “yes” or “no” forecast event), 

so that the forecast frequency matched the observed frequency for the verification period 

(July 2000 to June 2005). For this study, a cross-validation technique was used where 

each year was withheld from the calculations while the other four years were used to 

calculate the forecast frequencies. Roebber et al. (2004) suggest that an increase in model 

resolution, post-processing of model data and combining high resolution with ensemble 

techniques are practical ways to improve rainfall prediction. These approaches concur 

with the findings in this study in the following way. 

Over the summer rainfall area, Equitable Threat Scores (ETS) of the calibrated high-

resolution control forecasts are improved for light rainfall amounts (Fig. 10). Over the 

winter rainfall area the calibration of the high-resolution control was not as successful, 

except for five-day forecasts of larger rainfall amounts over the southwestern Cape (Fig. 

11). This is probably because the model does not capture the orographic augmentation of 

rainfall in this region adequately, resulting in a largely systematic bias that can easily be 

corrected. It is noteworthy that the equitable threat score for highly simplified ensemble 

probability forecasts (assuming a deterministic “yes” forecast when the ensemble 

probability exceeds 50%) generally beats the control run scores for rainfall amounts less 

than 20mm, more so at the longer lead times (Fig. 10). This demonstrates the utility of 
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the EFS to do QPFs for light rainfall events. Unfortunately, as found by Legg and Mylne 

(2004), the calibration of the ensemble QPF, particularly in the summer rainfall region, 

causes a significant deterioration of the ETS score for heavier rainfall events by reducing 

the probabilities too far as seen from the negative bias in figure 10. Perhaps this requires 

a different interpretation of the probabilities for the more extreme events, as these would 

hardly ever exceed 50% in practice. The negative bias here is dependent on a 

deterministic decision of what probability should be considered to be a “yes” forecast.

Equivalent results were obtained from frequency adjustment of the ensemble PQPF 

values. An increase in the BSS and a marginal increase in the ROC were evident for the 

first few days of light rain (< 2mm) forecasts over the summer rainfall area, but for 

heavier events (>10mm) the ROC score deteriorated. Over the winter rainfall region, 

fairly good improvements were made to the BSS and ROC score during the first week. 

This is attributed to the successful correction of the systematic bias in model-simulated 

rainfall in this region as mentioned above.

Probability forecasts of temperature changes of 2oC and 5oC are skillful for week 1 over 

most of South Africa and for week 2 over parts of the interior (not shown). Coastal 

temperatures are probably not resolved sufficiently by the model resolution and are less 

skillful than those over the interior. Maximum temperatures are more skillful than 

minimum temperatures, pointing again to lack of resolution of sub-grid scale processes at 

night.
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d. Forecaster Guidance – probability of events

A useful EFS product for event forecasting is the probability of the 850-500hPa-thickness 

field falling below 4200 and 4100gpm. These synoptic situations are good indicators of 

extreme cold weather and possible snowfall in South Africa, both of which are 

considered high-impact events in the region. Over the northern parts of the country the 

thickness fields almost never fall below 4100gpm, but do fall below 4200 around ten 

times per winter season. Given the high altitude of the escarpment (2000-3000m) and 

interior plateau (1500m), surface temperatures are usually below freezing over night over 

large areas. In the southern parts of the country thickness fields below 4200gpm occur 

almost half the time (corresponding to a maximum uncertainty value in the Brier Score 

decomposition), but occurrences of values less than 4100gpm match that of 4200gpm 

over the northern parts. The results discussed below for the 4100gpm events in the 

southwestern Cape correspond roughly to the 4200gpm events in the northern regions.

The EFS is able to capture these events in South Africa adequately for the first seven 

days of the forecast, as shown by positive Brier Skill Scores (BSS) and ROC scores in 

excess of 0.5 (Fig. 13 and 14). Although reliability and resolution deteriorate during the 

second week, the forecasts still retain reasonable resolution throughout the forecast 

period. This suggests that calibration may be able to improve the skill of these forecasts.

The first calibration method tested here is the bias correction described above, where the 

850-500hPa thickness fields were adjusted at each grid point and new thickness 

probability fields calculated. This method was successful in improving the BSS, 
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resolution and reliability considerably during the second week (Fig. 13). Rare events 

show a significant improvement in the BSS, but this is not reflected in the ROC scores, 

which are related to forecast resolution (Fig. 14).

The second calibration method, where the event threshold is adjusted to match the 

forecast probability with the observed frequency, is more successful in improving both 

the BSS and ROC score for the 4200gpm events (Fig 13). The reliability is much 

improved (as the calibration is intended to do) and there is also a small increase in 

resolution during the second week. For the more rare 4100gpm event, the BSS is again 

improved and the ROC score is worse than the raw output (Fig. 14). Overall the first 

calibration method is more successful as it addresses the bias in the physical patterns 

more directly. However, neither calibration method does much for the resolution of the 

more extreme (rarer) events and is consistent with findings in Legg and Mylne (2004) 

where the skill in predicting extreme events often deteriorates after bias-correction.

Forecast uncertainty is another useful forecaster guidance tool. This is indicated by 

shading ensemble spread (categorized into a strong, medium, or weak signal and no 

predictability) under the control prognostic 500Z and sea-level pressure fields. It is 

determined using a basic definition of calculating the ensemble standard deviation around 

the ensemble mean and dividing by the observed field standard deviation for that time of 

year at each grid point (Scherrer et al. 2004). Values from 0-33%, 33-66%, 66-100% and 

> 100% correspond to strong, medium, weak and no signal respectively. Periods of 

strong atmospheric instability may also lead to a large ensemble spread but not 
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necessarily increased forecast uncertainty. Toth et al. (2001) proposed a relative measure 

of predictability based on the position of the forecast value in terms of climatological 

distribution to provide a quantitative probability of forecast uncertainty. The intention at 

the SAWS for now however, is that forecasters use these uncertainty fields as a 

qualitative rather than a quantitative measure of forecast confidence. Notwithstanding, 

further development and refinement of this process is underway at the SAWS.

4. Discussion

The EFS was introduced to the SAWS National Forecast Centre (NFC) in the beginning 

of 2004. Although this forecast guidance system was received apprehensively at first, 

consistent benefits in using this system have been experienced during this time and now 

the EFS is used widely in the NFC and regional forecast offices. This section now relates 

the application of the scientific aspects covered in section 3 to local forecaster 

experiences.

The EFS 1-14 day thumbnail webpage display system is particularly useful to a 

forecaster, as one quickly gains an overview of each of the different parameters, 

extending from 1 through to 14 days. With a glance, one can rapidly assess the broad 

trend in one or more parameters, e.g. is rain generally increasing (decreasing) over time 

and is the rain indicated to be “mostly in the west” at the beginning of the sequence –

possibly migrating eastwards as one advances through the forecast period? Speed of 

assessment (of a weather pattern, whether the pattern at hand pertains to one playing out 

in the next few hours or in the next few days) within the forecast office environment, is a 
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theme we cannot escape from. Effective time-management is critical in an operational 

forecast setting – so any visualization scheme (such as the EFS html pages) that can cut 

time and allow a forecaster to reach an informed decision, is a very welcome operational 

tool. The product is easily accessible and the auto-update function ensures one always 

views the latest data.

NWP models have always been relatively good at anticipating sudden temperature falls 

(rises) from one day to the next – especially frontally-induced cooling of 10 deg C or 

more (per 24hrs). The ensemble approach sustains this ability but at lead times generally 

surpassing that of deterministic NWP products. Notwithstanding poor predictability at 

extreme lead times, a forecaster is at least able to give the public a “heads-up” 

(heightened state of alertness), with a fair degree of confidence, in respect of possible 

extreme or inclement weather, at lead times commonly 3 to 10 days hence (and even 11 

to 14 days at a push). Such outlooks or weather-related guidance do not pertain only to 

general curiosity from the general public but from a commercial and public-safety aspect, 

such guidance can be crucial. Two local examples are Fire Protection Agencies (FPA), 

who need to make tactical decisions to hire helicopters / fixed-wing aircraft / pilots on 

short-term contracts (days or weeks), ahead of expected breakouts of hot dry Berg winds 

(air cascading from the interior of South Africa down the escarpment toward the coast). 

A second example is that of small stock farmers, who need to know, at least 2 to 4 days 

in advance, of impending cold, wet and windy conditions, which may or may not include 

snow concurrently. The ensemble approach greatly assists the forecaster in assessing the 

likelihood of such events, which have the potential to affect life and/or property; at 
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timescales often exceeding those of regular NWP methods (as alluded to earlier). In 

addition, shaded uncertainty fields give the forecaster a quick eyeball overview as to 

relative uncertainty as to control run predisposition towards a particular feature (cut off 

low etc) or event (such as ridging surface high) – both in space and time. The spaghetti 

diagram link can then assist the forecaster by providing more information on the 

individual ensemble members handling of the weather system in question.

Probabilities of the 850-500hPa thickness fields dropping below 4200 and 4100gpm is an 

additional useful tool in assessing relative threat from impending snow events. Situational 

awareness has improved markedly within the NFC environment – nurturing active 

discussion and debate well ahead of such events – overcoming negative aspects such as 

“forecaster inertia” where (perhaps due to excessive non-weather related workload, or 

other factors) a forecaster may be unaware of an unfolding severe weather pattern and 

only build up an awareness too late.  It is essential (especially for high impact weather) to 

raise awareness (amongst forecasters and farmers alike) with a sufficiently long lead-time 

as to allow appropriate mitigative measures to be taken (such as bringing young, 

vulnerable animals down, out of the hills, a day or two ahead of the onset of such an 

extreme change). Naturally one needs a suitable balance between early warnings versus 

an inflated alarm rate. Generally, the ensemble products are utilized to identify possible/ 

probable extreme events at lead times approaching (or often exceeding) a week hence. 

Deterministic high-resolution (regional model) NWP guidance is then utilized, closer to 

the time, to closely monitor (in space and time) the unfolding weather event and refine 

the official forecast scenario ahead of the perceived extreme weather event.
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Usually forecasters would only be interested in a single best forecast tool (e.g. the high-

resolution control run). However, outlier values and more specifically groups or clusters 

of outliers are also of interest and value to a forecaster, particularly during the 

developmental phase of assembling a prognosis. These may well be indicative of an 

alternative outcome/scenario, from a weather perspective. Experience has shown that 

most popular scenario is not necessarily the outcome that is finally realized. A secondary 

(or even tertiary) clustering of members away from the control run might well be 

indicative of an alternate, and possibly significant outcome. Such alternative scenarios 

could be incorporated in a forecast prognosis or sometimes it might be more appropriate 

to adhere to the prognosis implied by the control run but to take cognizance of the herald 

of a possible deviation from the expected pattern – this would thus imply that the 

forecaster should closely monitor real-time observations / developments in the area of 

interest to be aware of a possible deviation or shift towards an alternative scenario and 

amend/update forecast products accordingly.

A good example of such a case in South Africa that illustrates this point is the 7-day 

forecast for 12Z 6 November 2005. High-resolution control runs from ECMWF and 

NCEP differed drastically as to the position and intensity of a cut-off low event over the 

southwestern Cape (Fig. 15). Synoptically these two scenarios are very different and 

would have a huge impact on QPF and warnings/advisories. The spaghetti diagrams 

interestingly showed a similar dichotomy in the prognosis, one cluster similar to 

ECMWF and one similar to NCEP control. Although the previous NCEP control run 
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(00Z – bold dashed line in figure 15) resembled the ECMWF control at 12Z, the 

perturbed ensemble members around the 00Z and 12Z analyses were spread fairly 

uniformly across both scenarios showing that this situation was particularly sensitive to 

perturbations in the initial conditions at the start of this 7-day forecast. Furthermore 

uncertainty fields warned of especially low levels of forecast confidence in this particular 

event. Consequently the forecasts were done adopting a more cautious approach until 

greater certainty was evident. It turns out the scenario with the system weaker and 

displaced to the northeast was closer from a forecaster point of view. However, the 

system was indeed intense with late spring snow (up 17cm) over the mountains of the 

Eastern Cape and heavy rainfall along the coast (201mm in East London over the 

weekend). Several severe storms with medium-sized hail and damaging winds were 

reported from many parts of the northeast interior of South Africa as well. The suggestion 

of an intense system, such as forecast by the 12Z ECMWF run on 30 October and 

confirmed by a significant number of ensemble members, was sufficient to place

forecasters on alert to monitor changes very closely up until the event played out. 

Without the ensemble support the ECMWF forecast scenario might well have been 

ignored, as the following update was vastly different, or premature warnings could have 

been issued for the wrong areas.

The EFS approach to forecasting in the medium-term thus frees the forecaster to a certain 

degree, from being excessively constrained by a single official NWP prognosis. The 

forecaster is thus empowered to explore (to a limited degree) a spectrum of possible 

outcomes and juxtapositions of systems in a spatial-temporal context, allowing more 
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creativity and flexibility on the part of the forecaster / analyst – but at the same time, 

retaining the strength and support of solid NWP guidance principles and products. Until 

the advent of the NCEP EFS at SAWS, the forecaster had to really go out on a limb to 

attempt to visualize possible weather scenarios at lead times of beyond a few days – this 

in itself was difficult enough. Furthermore, even to attempt variations on those scenarios 

was near impossible. The medium term Ensemble NWP goes a long way to fulfilling this 

need.

Bias correction methods discussed in this paper have proved quite successful in 

improving the EFS forecast skill statistics. There still remain some additional avenues to 

explore for South Africa, including regime-dependent correction and perhaps ensemble 

model output statistics (EMOS) (Gneiting et al. 2005). However, forecasters when armed 

with EFS guidance, even if not calibrated, can make useful forecasts by using their 

analytical powers to sort through the model forecasts (Bosart 2003). Still one area of 

concern is the tendency for calibration to adversely affect forecasts of extreme events 

(Legg and Mylne 2004; Kharin and Zwiers 2003). Thus it is advisable to provide 

forecasters with both the calibrated and non-calibrated EFS guidance. Accurately 

forecasting high-impact weather is one of the primary responsibilities of the forecasters, 

and so they need to be able to fully utilize the EFS guidance to fulfill this need. The 

success of this lies clearly in training and experience. 

5. Summary and Conclusions
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The NCEP EFS has been successfully implemented as an integral part of the SAWS 

forecasting service. Consistent benefits of using the EFS have been noted in the forecast 

offices and this has strengthened the position of this forecasting tool into the operational 

environment. Foremost among these benefits is an improved hit rate of forecast high-

impact weather events up to and beyond a week ahead. False alarms in these forecasts 

have also been kept in check by the ability of the EFS to provide useful information 

regarding the uncertainty in the forecast scenarios.

The EFS is particularly useful to generate objective forecaster guidance products and 

public forecast products. Probability distribution functions can be calculated objectively 

using EFS data. These can be used directly as automated end-user products or as tailored 

forecaster guidance to suit local conditions.

Bias correction of atmospheric fields (e.g. 500hPa geopotential heights) and probability 

forecasts (e.g. quantitative precipitation forecasts) has proved quite successful at 

improving forecast reliability. However, the bias correction methods tested in this paper 

do not lead to much improvement in the anomaly correlation coefficient scores of 500hPa 

heights (spatial pattern skill). Similarly for the probability forecasts, bias correction really 

only corrects part of the problem omitting the extreme events. Therefore, in order to 

capture extreme events more sophisticated post-processing methods are needed.

Another issue currently not properly handled by the EFS systems is QPF at station scale 

in the summer rainfall areas of South Africa. Although the EFS does verify better at grid-
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scale than at station scale, the skill of these forecasts is still relatively poor and are 

generally only useful for the first few days of the forecast. Part of the problem with 

summer convective rainfall is the poor correlation between station rainfall and the 

synoptic situation. The suggested approach to this problem is through a combination of 

high-resolution modeling and MOS-type post-processing.

Experience of the introduction of an EFS into the operational forecasting environment in 

South Africa is that forecasters are willing to use EFS provided that the benefit of using 

lower resolution EFS instead of a single high-resolution control is properly demonstrated 

and that there is adequate training to assist in understanding and using this forecast tool. 

Finally, it is imperative that dynamic interaction between forecasters and researchers 

takes place in order to facilitate the timely implementation of desired products.
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Figure Captions

Figure 1: Location of temperature (large dot) and rainfall (small dot) stations in South 

Africa, in relation to the NCEP EFS model grid boxes.

Figure 2: Examples of week-2 temperature and wind probabilistic forecasts generated 

directly from the NCEP EFS data. Forecasts of warmer than average maximum 

temperatures and normal minimum temperatures for Johannesburg, and a higher 

incidence of easterly winds with overall lower wind speeds relative to climate for East 

London, are indicated in these products.

Figure 3: Root Mean Square Error (RMSE) of 500hPa geopotential height forecasts 

against forecast lead-time averaged over the period January 2001 to December 2004 for 

the domain 30oW-60oE and 0-60oS. Graphs for high-resolution control, low-resolution 

control, best ensemble member for each forecast case, ensemble mean, climatology and 

the ensemble spread defined in legend.

Figure 4: Anomaly Correlation Coefficients (ACC) of 500hPa geopotential height 

forecasts against forecast lead-time averaged over the period January 2001 to December 

2004 for the domain 60oS30oW-10oS60oE (left panel) and 37.5oS10oE-17.5oS40oE (right 

panel). Graphs for high-resolution control, ensemble average and best ensemble member 

for each forecast case defined in legend. Bias-corrected scores are indicated by BC.
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Figure 5: Standard deviation of 500hPa geopotential height forecast fields with the time-

mean removed for the period January 2001 to December 2004, showing high-resolution 

control, low-resolution control, ensemble average and mean of perturbed ensemble 

members indicated in legend. Bias-corrected scores are indicated by BC.

Figure 6: Average bias of 500hPa geopotential height forecast fields for the period 

January 2001 to December 2004, showing high-resolution control, low-resolution control 

and ensemble average before and after bias correction (indicated by BC in the legend).

Figure 7: Spatial difference of the average of the perturbed ensemble members minus the 

low-resolution control analysis (left) and 24-hour forecast (right) for 500hPa geopotential 

height (top) and sea level pressure (bottom). Negative contours are stippled.

Figure 8: Spatial bias of 500hPa height forecasts before (left) and after (right) bias 

correction for week 1 (forecast days 1 to 7) (top) and week 2 (forecast days 8-14) 

(bottom) lead-time. Negative contours are stippled. Bias (un)corrected maps have a 

contour interval of (2) 0.5 gpm.

Figure 9: Annual average rainfall for the period July 2000 to June 2005 for observed 

gridded rainfall (top left), ensemble average 5-day forecast rainfall as a percentage of 

observed (top right), high-resolution 5-day control forecast (bottom left) and low 

resolution 5-day control forecast (bottom right).
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Figure 10: Summer rainfall area (27.5oS 30oE) bias score (top row) and equitable threat 

score (bottom row) as a function of rain threshold for forecast lead-times of 5 days (left 

column), 10 days (middle column) and 15 (right column) days for high and low-

resolution control, ensemble probability (>50% taken as a categorical yes forecast) and 

frequency adjusted high-resolution control and ensemble probability.

Figure 11: As for figure 10 but for the winter rainfall area (35oS 17.5oE).

Figure 12: Talagrand diagram for NCEP 5-day forecasts (all ensemble members) for the 

summer rainfall area (left) and winter rainfall area (right) area of South Africa for the 

period July 2000 to June2005. The gray line shows a perfect distribution.

Figure 13: Brier Skill Score decomposition and Relative Operating Characteristic (ROC) 

of forecasts of the probability of the 850-500hPa thickness field dropping below 

4200gpm at the grid point 35oS17.5oE for the May-September months of 2004/5. Solid 

lines represent standard output, dashed line calibrated 850 and 500hPa height fields and 

dotted line frequency adjusted probabilities.

Figure 14: As for figure 13 but for 4100gpm thickness.

Figure 15: 7-Day 500hPa geopotential height forecast for 12Z06November 2005 issued 

by ECMWF high-resolution control (top left), NCEP GFS high-resolution control (top 

right), spaghetti diagram of 5700gpm contour of NCEP 23-member ensemble suite 
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initialized on 2005103100 and 2005103112 (bottom left) and NCEP GFS analysis for 

2005110612 (bottom right). Solid (dashed) bold line denotes the 00Z (12Z) high-

resolution control forecast on 31Oct2005.
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