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Techniques
Bayesian Processor of Output (BPO)

BPE

NWP Model Ensemble

Climatic Data Distribution Function

Versions for

NEW STATISTICAL TECHNIQUES for 
PROBABILISTIC WEATHER FORECASTING

Bayesian Processor of Ensemble (BPE)

multi-category predictands
continuous predictands

binary predictands

• extracts and fuses information
• quantifies total uncertainty

Adjusted Ensemble

• calibrates (de-biases) ensemble



THEORY  for  CONTINUOUS  PREDICTAND

gw dw

prior (climatic)
conditional (likelihood)

Bayesian Theory

Fusion
• Two sources
• Asymmetric samples:   climatic sample of

gw
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Variates
– predictand
– vector of predictors,

W
X X  X1 , . . . ,XI

w|x

In real time, is given; write w

W – long
joint sample of X,W – short

x



FORECASTING  EQUATIONS
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• Posterior Distribution Function 

• Posterior Density Function

• Posterior Quantile

0  p  1

p  0.1, 0.25, 0.5, 0.75, 0.9
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EXAMPLE:  Three Predictors

K 1
K 2

Quillayute, WA;  cool season
W — 24-H PRECIP.  AMOUNT, 12–36 h after 0000 UTC

— 850 REL. VORTICITY at 24 h 

• Sample Sizes

• Distribution Functions

• Posterior Parameters

• Informativeness Score, 

Prior:  818 Joint:  470

G is Weibull:   0.592,   0.880

is Log-logistic: 6.212, 4.863,

0.641
c0 

– 0.275
T 

2  2  2  – 5.0

— 24H TOTAL PRECIP. ending 36 h

— 700 VERTICAL VELOCITY at 12 h

X1
X2
X3

is Weibull:

is Log-logistic (–): 3  3  3 0.539, 4.313, – 0.4

1  1 9.603, 0.910

c1 
c2 
c3 

0.505 – 0.025
0.241

0.63 0.43 0.48 0.73 0.73 0.77
X1 X2 X3 X1 ,X3X1 ,X2 X1 ,X2 ,X3

IS

K 3
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ρ = 0.613
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Likelihood  Dependence  Structure
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BPE  — Outputs

via the inverse of the posterior distribution function

This probability is identical for all predictands

Output:  (1)  Posterior distribution function (continuous cdf)

Input: Ensemble forecast of a predictand

Each member is mapped into a posterior quantile

(4)  Probability of non-exceedance for each member

• Given (3) and (4), the user can construct

• Given (1), any quantile can be calculated (10, 50, 90 for NDGD)

USAGE

a discrete approximation to the posterior cdf

(3)  Adjusted ensemble
(2)  Posterior density function (continuous pdf)



ENSEMBLE PROCESSING: Challenges  &  Solutions
W
Y

– predictand
– ensemble (vector of estimators) Y  Y0 ,Y1 , . . . ,YJ

1.  Samples are asymmetric
• Climatic sample of W – long

NCEP / NCAR re-analysis ~50 years, 2.5  x  2.5 grid

• Joint sample of Y,W – short
Recent ensemble forecasts and observations ~ 90 days

*  BPE:  prior distribution, likelihood function Bayesian fusion

2.  Time series of Y,Ware non-stationary (seasonality)
*  “Standardize” using climatic statistics for the day

Stationary
Ergodic

*  “Homogenize” across variates using ensemble statistics



ENSEMBLE PROCESSING: Challenges  &  Solutions

3.  Ensemble members are:  

4.  Ensemble members have 

• not independent

• not conditionally independent

Rank CorYi´ ,Yj´  0.820.43 

*  BPE:  models dependence (meta-Gaussian likelihood function)

• very different informativeness

• diminishing marginal informativeness

ISY0  0.586, ISY0 ,Y2  0.605, ISY0 ,Y2 ,Y1  0.614

0.28  ISj  0.59

* BPE: Sufficient Statistic: X  TY´
ensemble
statistic

dimension
dimension

22
2–5

•
•

X
Y´

fx|w
X is as informative as Y´

is replaced with 

fyi´ ,yj´ |w  f iyi´ |wf jyj´ |w

i  j, j  0,1, . . . , 10

j  0,1, . . . , 10

fy´ |w

(NCEP, 2008)



ENSEMBLE PROCESSING: Challenges  &  Solutions 

5.  Distributions of 

6.  Dependence structure between 

*  BPE:  models structure (meta-Gaussian likelihood function)

W Xiand have many forms (non-Gaussian)

*  BPE:  allows any form of the distribution (meta-Gaussian model)

• Parametric distribution of each variate  (2–3 parameters)
• Library of 43 parametric distributions
• Automatic estimation and selection

• non-linear (in mean)
X and W

• heteroscedastic (in variance)

• Normal Quantile Transform  (NQT)
• Each variate transformed into a standard normal
• Multiple linear regression

is



BPE  — Basic  Properties

• Handle distributions of any form (not only normal)
• Handle non-linear, heteroscedastic regime

Theoretically-based optimal fusion of ensemble forecast with climatic data
Updates prior (climatic) distribution with ensemble forecast
based on comparison of past forecasts with observations

1.  CORRECT  THEORETIC  STRUCTURE
• Always valid
• Modular:  Framework for different – modeling assumptions

– estimation procedures
2.  FLEXIBLE  ANALYTIC  MODELS

• Parametric (easy to estimate and manipulate)
• Robust when joint sample is small

3.  UNIQUE  PERFORMANCE  ATTRIBUTES
• Removes bias in all moments simultaneously
• Guarantees calibration of the adjusted ensemble

• Stable calibration (against climatic distribution)

• User-specific calibration (point-specific, time-specific)
• Stationary calibration (equally good for all lead times)

• When predictability vanishes:
adjusted ensemble = climatic ensemble

• Preserves temporal / spatial / cross-variate rank correlations in ensemble


