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NEW STATISTICAL TECHNIQUES for
PROBABILISTIC WEATHER FORECASTING

Techniques

Bayesian Processor of Output (BPO)
Bayesian Processor of Ensemble (BPE)

NWP Model Ensemble

|

Climatic Data BPE Distribution Function
Adjusted Ensemble

» extracts and fuses information
 quantifies total uncertainty

Versions for » calibrates (de-biases) ensemble
binary predictands

multi-category predictands
continuous predictands




THEORY for CONTINUOUS PREDICTAND

Variates

W — predictand
X — vector of predictors, X = (X,..., X))

Bavesian Theory

g(w) prior (climatic)
f(xjw) conditional (likelihood)

o) = [ £xw) gl dw p0outo) = L2 g )
In real time, x is given; write d(w)
Fusion

« Two sources
« Asymmetric samples: climatic sample of 7 —long

joint sample of (X, W) — short



FORECASTING EQUATIONS

* Posterior Distribution Function

O(w) = Q(lT|:Q1 (Gw)) — ZCiQ_l (K (x1)) = co :|>
i=1

» Posterior Density Function

1 o930 @m)]*)
g(w
T exp(-L107 (Gw)T)

¢(w) =

e Posterior Quantile

I
w, = G (Q(Z ¢;O7' (Ki (x)) +co+TQ™ (P)))
i-1

0<p<l

p=20.1, 0.25, 0.5, 0.75, 0.9



EXAMPLE: Three Predictors

Quillayute, WA, cool season
W — 24-H PRECIP. AMOUNT, 12—36 h after 0000 UTC

X, — 24H TOTAL PRECIP. endin%36 h
X, — 850 REL. VORTICITY at 24
X; — 700 VERTICAL VELOCITY at 12 h
e Sample Sizes
Prior: 818 Joint; 470
Distribution Functions
G is Weibull: o = 0.592, -
K, is Weibull: a; = 9.603, ] =
K, is Log-logistic: a, = 6212, f, =
K; is Log-logistic (-): a3 = 0539, 5 =
Posterior Parameters
Ci1 = 0505 Co —
Informativeness Score, IS
X1 Xz X3 (Xl,Xz) (X19X3)
0.63 0.43 0.48 0.73 0.73

0.880

0.910

4863, 1, -

4313, ;=

—0.025

0.641
(X1,X2,X3)

0.77

- 5.0
- 04



P(W <w | W >0)
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Likelihood Dependence Structure
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KUIL 12-36h Cond. Precip. Amount Cool
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KUIL 12-36h Cond. Precip. Amount Cool

P(W<w | W >0)
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KUIL 12-36h Cond. Precip. Amount

Conditional Probability
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KUIL 12-36h Cond. Precip. Amount Cool

Conditional Density
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BPE — Outputs

Input: Ensemble forecast of a predictand

Output: (1) Posterior distribution function (continuous cdf)
(2) Posterior density function (continuous pdf)
(3) Adjusted ensemble

Each member is mapped into a posterior quantile
via the inverse of the posterior distribution function

(4) Probability of non-exceedance for each member
This probability is identical for all predictands

USAGE

« Given (3) and (4), the user can construct
a discrete approximation to the posterior cdf

« Given (1), any quantile can be calculated (10, 50, 90 for NDGD)



ENSEMBLE PROCESSING: Challenges & Solutions

W — predictand
Y - ensemble (vector of estimators) Y = (Yy,Y:,...,Y))

1. Samples are asymmetric

« Climatic sample of 7 —long
NCEP / NCAR re-analysis ~50 years, 2.5 x 2.5 grid

 Joint sample of (Y, W) — short
Recent ensemble forecasts and observations ~ 90 days

* BPE: prior distribution, likelihood function — Bayesian fusion

2. Time series of (Y, ) are non-stationary (seasonality)

* &

Standardize” using climatic statistics for the day
—> Stationary
—> Ergodic

* "Homogenize” across variates using ensemble statistics



ENSEMBLE PROCESSING: Challenges & Solutions

3. Ensemble members are:
* not independent

0.43 < RankCor(Ylf,YJ'.) <0.82 i+], j=0,1,...,10
* not conditionally independent
SO, W) # iy w)f; ;)

* BPE: models dependence (meta-Gaussian likelihood function)

4. Ensemble members have
« very different informativeness

0.28 < IS; < 0.59 j=20,1,...,10
 diminishing marginal informativeness
IS(Y()) = 0586, ]S(Yo,Yz) = 0605, ]S(Yo,Yz,Yl) =0.614

* BPE: Sufficient Statistic: X = 7(Y)
ensemble Y dimension 22  (NCEP, 2008)
statistic X dimension 2-5
e X is as informative as Y’

o fly [w) is replaced with f(x|w)



ENSEMBLE PROCESSING: Challenges & Solutions

5. Distributions of 7 and X; have many forms (non-Gaussian)

* BPE: allows any form of the distribution (meta-Gaussian model)

« Parametric distribution of each variate (2—-3 parameters)
 Library of 43 parametric distributions
« Automatic estimation and selection

6. Dependence structure between X and W is

* non-linear (in mean)
» heteroscedastic (in variance)

* BPE: models structure (meta-Gaussian likelihood function)

* Normal Quantile Transform (NQT)
e Each variate transformed into a standard normal
« Multiple linear regression



BPE — Basic Properties

Theoretically-based optimal fusion of ensemble forecast with climatic data

Updates prior (climatic) distribution with ensemble forecast
based on comparison of past forecasts with observations

1. CORRECT THEORETIC STRUCTURE
» Always valid
* Modular: Framework for different — modeling assumptions
— estimation procedures

2. FLEXIBLE ANALYTIC MODELS
» Handle distributions of any form (not only normal)
* Handle non-linear, heteroscedastic regime
« Parametric (easy to estimate and manipulate)
* Robust when joint sample is small

3. UNIQUE PERFORMANCE ATTRIBUTES

« Removes bias in all moments simultaneously
» Guarantees calibration of the adjusted ensemble

« Stable calibration (against climatic distribution)
» Stationary calibration (equally good for all lead times)
» User-specific calibration (point-specific, time-specific)
* When predictability vanishes:

adjusted ensemble = climatic ensemble

» Preserves temporal / spatial / cross-variate rank correlations in ensemble




