STATISTICAL POST-PROCESSING –

A FRAMEWORK & A TECHNICAL SOLUTION

Zoltan Toth and Roman Krzysztofowicz¹

Global Systems Division, ESRL/OAR/NOAA

¹ University of Virginia

Acknowledgements: Yuejian Zhu, NCEP Ensemble Team, NAEFS project

March 27, 2014 – NCEP Ensemble User Workshop

OUTLINE / SUMMARY

- User needs
 - Various weather parameters at different times / locations
- Forecast formats
 - Probabilities, joint probabilities limited choices
 - Ensemble scenarios ultimate "carrier" of full information
- Post-processing framework
 - Pre-processing, fusion, output
- Bayesian Processor of Ensembles (BPE)
 - Theoretically sound, practical/flexible, high performance
- Great R2O opportunity
 - NOAA can leverage 10 yrs (\$1M+) of development
 - Must take last steps

WHAT USERS NEED?

• Sensitivity to weather - each user affected by

- Various weather elements
- At different times
- At different locations
- What users need for optimal decision making
 - Probability distributions for single variables?
 - Incomplete lack of information on cross-correlations
 - Covariances needed across
 - Variables, space, and time

DATABASE CHOICES

- Will joint probability distributions work?
 - Provision of all joint distributions possibly needed by users – Intractable

- Proposed solution calibrated ensemble members
 - Forecast based on NWP ensemble
 - Encapsulate all forecast info into calibrated ensemble members
 - Possible weather scenarios

6-D DATA CUBE (6DDC)

• Format

- Space (3D), lead time (1D), variables (1D), ens. members (1D)
 - Global, with embedded finer scale regional guidance at shorter leads

• Quality requirements

- Consolidated
 - Single, authoritative source
- Comprehensive
 - Addresses all needs, answers all questions
 - Aviation, other uses
- Quality
 - Resolution, reliability

Interrogation toolkit to

- Derive any meteorological info
- Answer any questions

MODULAR FRAMEWORK

COMPONENT	PRE-PROSESSING	MERGING	ENSEMBLE OUTPUT	DOWNSCALING
NEED	Reduce / homogenize bias	Combine all forecast & climate information	-	Connect model variables with user variables
NAEFS TOOLS / STEPS	Unconditional 1 st moment bias correction	Equally weighed ensembles, ad hoc merge with high resolution control	-	Unconditional downscaling (GFS vs RTMA analyses)
PROPOSED TECHNOLOGY	-	Bayesian Processor of Ensemble (BPE)	Map ensemble members into posterior cdf	
POTENTIAL ADVANTAGE	_	Objective, performance- based, higher moment bias correction, fuses climatology	Preserves spatial / temporal / cross- variate covariance rank correlations	

CONCEPT OF BAYESIAN PROCESSOR

Estimated for: predictand, grid point, day, lead time Versions for: binary, multi-category, continuous predictands

MODELING CHALLENGES

Statistical properties of meteorological variates

- 1. Asymmetric samples from two sources
- 2. Non-stationary daily time series (seasonality)
- 3. Non-Gaussian marginal distributions (of many forms)
- 4. Non-linear, Heteroscedastic dependence structures
- 5. Non-random ensembles

Why to worry?

*BPE offers theoretical and numerical solutions

METHODOLOGY to Implement BPE

Comprehensive approach to post-processing (formulated jointly with *Zoltan Toth*)

Mathematical models and statistical procedures (tested partially: on temperature, precipitation at representative points)

1. STANDARDIZATION of Time Series

2. NORMAL QUANTILE TRANSFORM (NQT) of Variate

3. SUFFICIENT STATISTICS of Ensemble

4. Basic GAUSSIAN-GAMMA BPE

BAYESIAN THEORY: General

- W_k predictand on day k (k = 1, ..., 365)
- W_{k-l} antecedent observation on day k-l (forecast day)
- \mathbf{Y}_{kl} ensemble forecast (vector of estimators) for day k with lead time l days

 $h_{kl}(w_k \mid w_{k-l})$ — climatic *l*-step transition density function (prior) $f_{kl}(\mathbf{y}_{kl} \mid w_k, w_{k-l})$ — conditional density function (likelihood function)

Bayes Theorem: Posterior density function $\phi_{kl}(w_k \mid \mathbf{y}_{kl}, w_{k-l}) = \frac{f_{kl}(\mathbf{y}_{kl} \mid w_k, w_{k-l}) h_{kl}(w_k \mid w_{k-l})}{\kappa_{kl}(\mathbf{y}_{kl} \mid w_{k-l})}$

Total Probability Law: Expected density function

 $\kappa_{kl}(\mathbf{y}_{kl} \mid w_{k-l}) = \int_{-\infty}^{\infty} f_{kl}(\mathbf{y}_{kl} \mid w_k, w_{k-l}) h_{kl}(w_k \mid w_{k-l}) dw_k$

BAYESIAN FORECASTING THEORY

"Why Should a Forecaster and a Decision Maker Use Bayes' Theorem?" R. Krzysztofowicz *Water Resources Research*, 19(2), 327–336, 1983.

"Probabilistic Forecasts from the National Digital Forecast Data Base", R. Krzysztofowicz and W.B. Evans, *Weather and Forecasting*, 23(2), 270–289, 2008.

"The Role of Climatic Autocorrelation in Probabilistic Forecasting", R. Krzysztofowicz and W.B. Evans, *Monthly Weather Review*, 136(12), 4572–4592, 2008.

INFORMATION FUSION

Example

Predictand:2m temp. at 12 UTCLocation:Savannah, Georgia

Data Samples for Estimation

Asymmetric samples Two sources Forecast time: 00 UTC Lead time: 108 h

W — predictand Y — ensemble (vector)

Reduced need for hindcast sample

Jan. 1959 – Dec. 1998 (40 years)

Sample size: M = 600 per day $(40 y \times 15 d)$

→ estimate prior density function

• Joint sample of (\mathbf{Y}, W) — short

• Climatic sample of W — long

NCEP/NCAR re-analysis

NCEP ensemble forecasts and analyses

Mar. 2007 – Feb. 2009 (2 years)

Sample size $N \simeq 360$ per season $(2 y \times 180 d)$

→ estimate likelihood function

FORECAST for Savannah, GA, 1 May 2008, 00 UTC

For: 5 May 2008, 12 UTC

LT: 108 h [day 5]

<u>BPE — Basic Properties</u>

Theoretically-based optimal fusion of ensemble forecast with climatic data

<u>Revises</u> prior (climatic) distribution given ensemble forecast based on comparison of past forecasts with observations

1. CORRECT THEORETIC STRUCTURE

- Always valid
- Modular: Framework for different modeling assumptions

– estimation procedures

2. FLEXIBLE ANALYTIC MODELS

- Handle distributions of <u>any form</u> (not only normal)
- Handle non-linear, heteroscedastic dependence structures
- <u>Parametric</u> (easy to estimate and manipulate)
- Robust when joint sample is small (lesser need for "freeze" or "re-forecast")

3. UNIQUE PERFORMANCE ATTRIBUTES

- <u>Removes bias in distribution</u>
- Guarantees calibration of the adjusted ensemble
 - Stable calibration (against climatic distribution | antecedent, regime)
 - Stationary calibration (equally good for all lead times)
 - User-specific calibration (point-specific, time-specific)
 - When predictability vanishes:
 adjusted ensemble
 climatic
 - adjusted ensemble climatic ensemble
- <u>Preserves</u> spatial / temporal / cross-variate <u>rank correlations</u> in ensemble

BPE – GREAT R20 OPPORTUNITY

- Leverage significant NSF & UV investments
 - 10-year research/development effort by R. Krzysztofowicz & his team
 - \$1M+ effort
- Successful collaboration between
 - Academia &
 - Roman Krzysztofowicz, theory
 - Theoretical soundness

Application – Operations Z.T., forecasting

Practically solutions

- All components developed & thoroughly tested in research environment
 - Solid results
 - 30+ related peer-reviewed papers
 - 3 Research Theses
- Unique technology
 - Bayesian Model Averaging (BMA) does NOT use climatological info
 - "B" refers to Bayesian estimation of statistical parameters
- Next steps
 - Assemble components and test in operational environment

OUTLINE / SUMMARY

• User needs

- Various weather parameters at different times / locations

- Forecast formats
 - Probabilities, joint probabilities limited choices
 - Ensemble scenarios ultimate "carrier" of full information
- Post-processing framework
 Pre-processing, fusion, output
- Bayesian Processor of Ensembles (BPE)
 Theoretically sound, practical/flexible, high performance
- Great R2O opportunity
 - NOAA can leverage Leverage Bias correction, merging, downscaling, derivation of variables
 - Bayesian methods

BACKGROUND

REAL-TIME GENERATION OF HIND-CAST DATASET

POST-PROCERSSING DESIGN PRINCIPLES

- Quality utility
 - Highest quality info required by users
- Computational efficiency
 - Affordable processing of large amounts of data
- Scientific soundness
 - Evaluate/test alternatives as statistical model is built
- Parsimony
 - Use simplest method that can solve problem

Modular design

- Stand-alone components for distinct functionalities
 - Aid collaborative development

BPE — Outputs

Input: Model ensemble (for predictand, grid point, lead time)

- Output: (1) Posterior density function
 - (2) Posterior distribution function
 - (3) Posterior quantile function
 - (4) Posterior ensemble (calibrated ensemble)

Each member is mapped into a posterior quantile via the inverse of the posterior distribution function

<u>Usage</u>

- (1) Solve a decision problem analytically
- (2) Find *probability* of non-exceedance of given *threshold*
- (3) Find *quantile* corresponding to given non-exceedance *probability*
- (4) *Simulate* operation of a dynamic system

HOW TO GENERATE HINDCASTS?

- Generate all hindcasts prior to implementation
 - Cons
 - Great one-time human effort
 - Frozen forecast system
 - Less frequent upgrades?
 - Possibly less cpu used if system upgraded less than once a year
- Real time generation
 - 30 days ahead of season
 - Pros
 - Flexibility
 - Upgrades at any time, subject to 2-3 mos parallel testing Statistics from parallel moved to operations at impl.
 - Run as part of operations
 - Can feed back to continuous developments/upgrades

WHAT USERS NEED?

• Sensitivity to weather - each user affected by

- Various weather elements
- At different times
- At different locations
- What users need for optimal decision making
 - Probability distributions for single variables?
 - Incomplete lack of information on cross-correlations
 - Covariances needed across
 - Variables, space, and time

• What forecast format may work?

- Joint probability distributions?
 - Provision of all joint distributions possibly needed by users -Intractable
- Encapsulate best forecast info into calibrated ensemble members
 - Possible *weather scenarios*

BAYESIAN PRE-PROCESSOR (BPP)

- Problem
 - Forecasts potentially generated with different models
 - Lead-time dependent bias different in each member
- Functionality
 - Unify systematic behavior of all members
- Method
 - Estimate and remove unconditional systematic error
 - Bayesian Pre-Processor on model grid
- Current status
 - Recursively estimated time mean removed
 - North American Ensemble Forecast System operations

DOWNSCALING

• Problems

- NWP forecasts do not produce all required variables
 - Missing variables (fog, wind shear, etc)
 - Spatial / temporal resolution too coarse
- Functionality
 - Derive user variables statistically etc consistent with calibrated NWP ensemble members
- Methods
 - Statistically downscale ensemble members
 - Ensure long-term mean of downscaled forecasts matches climatology
 - Ensure spatial / temporal variability on fine scales match observed variability
 - Derive additional variables using statistical & other relationships
 - CIN, CAPE, etc
- Current status
 - Recursively estimate time mean difference between
 - NWP analysis interpolated onto fine grid & obs-based mesoscale analysis
 - Add estimate of downscaling vector to each ensemble member
 - North American Ensemble Forecast System operations

00hr GEFS Ensemble Mean & Bias Before/After Downscaling 10%

Accumulated Bias Before/After RTMA Downscaling

Black- operational ensemble mean, 2% Pink- bias corrected ens. mean after downscaling, 5% Red- NAEFS bias corrected ensemble mean, 2% Blue-bias corrected ens. mean after downscaling, 2% Yellow-bias corrected ens. mean after downscaling, 109

CONTINUOUS RANKED PROBABILITY SCORE RAW / BIAS CORR. & DOWNSCALED & HIRES MERGED / NAEFS

NAEFS NDGD Probabilistic 2m Temperature Forecast Verification For 2007090100 — 2007093000

BACKGROUND