Comparing and Clustering Ensemble Forecast Members to Support Strategic Planning in Air Traffic Flow Management

Alex Tien
Christine Taylor
Craig Wanke
What is Flow Contingency Management?

The FCM decision support tool (DST) aims to provide a scientific methodology for strategic TFM decision-making.

Weather uncertainty creates a range of TFM impacts.

Mitigation planning requires a small number of scenarios.
Research Framework

21 Weather Impact Scenarios

Scenario Clustering Methodology

Formulation of Impact Metrics
- Simulation Delays

Evaluation of Scenarios
- Spatiotemporal Aggregation Method

Development of Clustering Algorithm
- A Modified Spectral Clustering Algorithm

Selection of Representative Scenarios
- Development of Representativity Index

Traffic Management Initiatives

Plan 1
AFP on A05, GDPs on NY Airports

Plan 2
GDPs on NY Airports

Plan 3
GDP on ORD

Plan 4
Do Nothing

Representative Scenarios

Rep. Scenario 1
High impact over ZOB and ZAU

Rep. Scenario 2
High impact on NY terminal airspace

Rep. Scenario 3
Medium impact on ORD arrivals

Rep. Scenario 4
Low impact

Intended use; not included in this study.
Data Source – June 18, 2013

Historical Weather (CIWS)

SREF 9Z Forecast (Calibrated Thunderstorm)
Estimating Capacity Loss

- **ATC Sector (Airspace) Capacity Reduction**
 - SREF Hourly Precipitation \rightarrow VIL3+ Coverage \rightarrow Capacity Reduction Rate

- **Airport Capacity Reduction**
 - SREF Hourly Precipitation \rightarrow Reflectivity (dBZ) \rightarrow Capacity Reduction Rate

<table>
<thead>
<tr>
<th>dBZ</th>
<th>Description</th>
<th>Reduction Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 30</td>
<td>Light</td>
<td>0 %</td>
</tr>
<tr>
<td>30 ~ 40</td>
<td>Moderate</td>
<td>20 %</td>
</tr>
<tr>
<td>40 ~ 50</td>
<td>Heavy</td>
<td>40 %</td>
</tr>
<tr>
<td>Above 50</td>
<td>Extreme</td>
<td>60 %</td>
</tr>
</tbody>
</table>

Assumed for this study.

More sophisticated model under development

Forthcoming in ATIO 2014 Conference.

To facilitate scenario comparison, we have proposed metrics for aggregating spatiotemporal delays:

- Spatial Delay Metric:
 - Summation of delays weighted by sectors’ geographical adjacency
- Temporal Delay Metric:
 - Summation of delays weighted by temporal adjacency
FCM Simulation Delays of Four Key Airports

Blue for delay at departure node; Red for delay at arrival node.

- Significant delay variation can be seen in four airports.
- Five temporal delay metrics are calculated:
 - LGA’s arrival delay, EWR’s departure delay, EWR’s arrival delay, ATL’s departure delay, and ORD’s arrival delay.
Impact Scenario Evaluation

- Each weather-impact scenario is evaluated with 2 sector delay metrics and 5 airport delay metrics.
- Metric values are normalized for display and clustering purposes.
Clustering Algorithm & Representative Selection

- A recursive version of Spectral Clustering algorithm is adapted:
 - Bipartition scenarios iteratively until convergence criteria are reached.
 - No need for pre-specifying/justifying the number of resulting clusters.
 - Parameters of convergence criteria are scale-free.

- Representativity index (RI) is introduced:

\[
RI_i = \frac{\text{Average similarity metrics from the scenarios of all other clusters}}{\text{Average similarity metrics from the scenarios in its own cluster}}
\]

 - A representative scenario of a cluster is defined as the one with the smallest RI.

Without Clustering

- Before running the clustering algorithm, there are 21 scenarios...
Clustering Results

Legend: Number for Scenario ID; color for cluster; boldfaced font for representative.

S/A = 1

10 representative scenarios.
Clustering Results (2/2)

Legend: Number for Scenario ID; color for cluster; boldfaced font for representative.

S/A = 8

Weighting more on sector delays results in fewer clusters as differences in airport delays become less significant.
Sensitivity of Sector-Airport Delay Tradeoff

Legend: Number for Scenario ID; color for cluster; boldfaced font for representative.

S/A = 1

Representative changed from 8 to 7.

S/A = 2

Representative changed from 15 to 13 after Scenario 18 joined the cluster.
Summary & Future Work

- The ensemble members from the Short Range Ensemble Forecast product can be used to represent as a wide range of deterministic weather scenarios for FCM.
- The aggregation method for spatiotemporal data facilitates numerical comparison among scenarios.
- A representativity index (RI) is proposed for subjectively selecting representative scenarios after clustering.
- Sector and airport delays are incorporated into the proposed clustering approach, but the tradeoff between the two delay categories may influence the clustering results.

Future work:
- Improve impact modeling for airport capacity.
- Examine the performance of the clustering results with the traffic management initiatives designed for the representative scenarios.
- Define and analyze more sample days for fine-tuning model parameters.
NOTICE

This work was produced for the U.S. Government under Contract DTFAWA-10-C-00080 and is subject to Federal Aviation Administration Acquisition Management System Clause 3.5-13, Rights In Data-General, Alt. III and Alt. IV (Oct. 1996).

The contents of this document reflect the views of the author and The MITRE Corporation and do not necessarily reflect the views of the FAA or the DOT. Neither the Federal Aviation Administration nor the Department of Transportation makes any warranty or guarantee, expressed or implied, concerning the content or accuracy of these views.

© 2014 The MITRE Corporation. All Rights Reserved.
Strategic Planning in Today’s Operation

Hours in advance, we know that there will be serious convective weather …

What is the range of possible weather scenarios, and how likely are these scenarios to occur?

What does the range of TFM impacts look like?

What options will we have available to alleviate congestion, and when do we have to act?

This is currently done by multi-stakeholder teleconference, with limited analytical information and few useful strategy assessment tools.
What is Flow Contingency Management?

The FCM decision support tool aims to provide a *scientific* methodology for strategic TFM decision-making. It develops a common understanding of the problem for stakeholders, provides a quantitative analysis of potential plans *prior* to implementation, and enables fact-based discussions for strategic planning development.
How does FCM work?

Weather forecast shows potential for convective activity

Translate into prediction of capacity impact

Simulation computes impact on demand across network

Interface provides details of impact and enables what-if planning of Traffic Management Initiatives (TMI)