A Practical Model Blending Technique Based on Bayesian Model Averaging

Bruce Veenhuis bruce.veenhuis@noaa.gov NWS/MDL March 26, 2014

Acknowledgments: John L. Wagner, Michelle Cohen, Mark Oberfield

Motivation

- Many operational meteorological centers run numerical weather prediction (NWP) models
 - Deterministic & Ensembles Forecasts
 - NCEP, Environment Canada, ECMWF
- We wish to create a single multi-model consensus
 - Optimally weight individual models
 - Create calibrated probability distributions
- Mainly concerned with sensible weather elements such as 2-m temperature, 10-m wind speed, etc.

Bayesian Model Averaging (BMA)

- A statistical postprocessing technique for ensembles (Raftery et al. 2005)
- BMA dresses each ensemble member with a probabilistic kernel
- Combine kernels to create a weighted mean forecast and a reliable probability distribution

Updatable BMA (UBMA)

- MDL's implementation of BMA
 - First apply decaying average bias correction to each model
 - Continuously updates the weights and standard deviations with a decaying average algorithm
 - Training is based on recent performance
 - Simple to implement and computationally cheap

Latest Observation

Previous Model Forecasts

Estimate Weights & Stddevs

Example Application 1: Consensus MOS with UBMA

- MDL creates a variety of MOS guidance
 - GFS
 - NAM
 - ECMWF
 - EKDMOS Mean (GEFS and CMCE)
- 1 November 2011 31 March 2012
- 2-m Temperature, 335 Stations
- Accuracy and Reliability

Cumulative Reliability Diagrams

Example Application 2: UBMA Applied to SREF

- Calibrated 850 hPa temperature forecasts from the Short Range Ensemble Forecast (SREF)
- To support precipitation type forecasting
- NDAS analysis: proxy for truth
- SREF and NDAS interpolated to stations
- Experimental Products Available:

http://www.mdl.nws.noaa.gov/~BMA-SREF/BMAindex.php

Probability Integral Transform (PIT) Histograms

Conclusions

- UBMA MDL's implementation of BMA
 - Estimate weights and standard deviations with a decaying average algorithm

Pros:

- Computationally cheap
- Simple to implement
- Improves accuracy and reliability

Cons:

- Can only increase ensemble spread
- May be problematic with an overdispersed ensemble
- UBMA only tested for Gaussian elements