THORPEX program report

Bo Cui EMC/NCEP/NWS/NOAA

Presentation for THORPEX program review February 25 2009

Statistical Post-Processing of Ensembles

Bo Cui¹, Zoltan Toth², Yuejian Zhu² Stéphane Beauregard³, David Unger⁴, Richard Wobus¹

¹SAIC at Environmental Modeling Center, NCEP/NWS
 ²Environmental Modeling Center, NCEP/NWS
 ³Canadian Meteorological Centre, Meteorological Service of Canada
 ⁴Climate Prediction Center, NCEP/NWS

Acknowledgements

Richard Verret, Poulin Lewis CMC/MSC Dingchen Hou EMC/NCEP/NWS/NOAA David Michaud, Brent Gorden, Luke Lin NCO/NCEP/NWS/NOAA Valery J. Dagostaro MDL/NWS/NOAA

Statistical Post-Processing Issues

• GOAL

- Improve reliability while maintaining resolution in NWP forecasts
 - Reduce systematic errors (improve reliability) while
 - Not increasing random errors (maintaining resolution)
 - Retain all useful information in NWP forecast

METHODOLOGY

- Use bias-free estimators of systematic error
- Need methods with fast convergence using small sample

APPROACH – Computational efficiency

- Bias Correction : remove lead-time dependent bias on model grid
 - Working on coarser model grid allows use of more complex methods
 - Feedback on systematic errors to model development
- Downscaling: downscale bias-corrected forecast to <u>finer grid</u>
 - Further refinement/complexity added
 - No dependence on lead time

Bias Correction Method & Application

- **Bias Correction Techniques** array of methods
 - Estimate/correct bias moment by moment (e.g., D. Unger et al.).
 - Simple approach, implemented partially
 - May be less applicable for extreme cases
 - Bayesian approach (e.g., Roman Krzysztofovicz)
 - Allows simultaneous adjustment of all modes considered, under development
- Moment-based method at NCEP: apply adaptive (Kalman Filter type) algorithm

decaying averaging mean error = $(1-w)^*$ prior t.m.e + w^* (f – a)

For separated cycles, each lead time and individual grid point, t.m.e = time mean error

- Test different decaying weights. 0.25%, 0.5%, 1%, 2%, 5% and 10%, respectively
- Decide to use 2% (~ 50 days) decaying accumulation bias estimation

List of Variables for Bias Correction, Weights and Forecast Anomalies for CMC & NCEP Ensemble

	CMC & NCEP						
Ensemble	CMC (8 SEF, 8 GEM), NCEP (14 GFS)						
GRID	1x1 deg (360x180 lat-lon)						
DOMAIN	Global						
FORMAT	WMO Grib Format						
HOURS	6 hourly out of 384 hours						
	(current 240 hours for CMC Ensemble)						
GZ	200, 250 , 500 , 700 , 850 ,925, 1000						
TT	200, <mark>250, 500</mark> ,700, <mark>850</mark> ,925,1000						
U,V	200, 250, 500,700, 850 ,925,1000						
TT	2m						
U, V	10m						
MSLP	Sea Level Pressure						
Sfc Pres	Surface Pressure						
Tmax	2m						
Tmin	2m						

Note: 35 Variables in total, red variables are for climate anomalies only

Bias Before/After Bias Correction (NCEP NH)

RPSS Before/After Bias Correction (NCEP 500 mb Height)

Scores

Skill

errors

RMS

60

Southern Hemisphere 500 mb Height Ranked Probability Skill Scores (RPSS) Average For 20060814 — 20061007 0.9 → NCEP RAW +--0.8 • → NCEP BC 0.7 0.6 0.5 0.4 0.3 0. 0.1 -0.1 -0.2 Southern Hemisphere -0.3 -0.4 2 10 11 12 13 14 15 Forecast days NH 500 mb Height Average For 00Z14AUG2006 — 00Z070CT2006 120 110 100 RMS reduced for first week 90 80 -30 20 + NCEP RAW - 🛛 NCEP BC - I CLN

10 11 12 13 14 15

9

Forecast days

2-meter temperature 10/90 probability forecast verification Northern Hemisphere, period of Dec. 2007 – Feb. 2008

2-meter temperature 10/90 probability forecast verification Northern Hemisphere, seasonal variation for NAEFS

→ P10 → P10-dec → P10-feb → P90 → P90-dec → P90-feb

Downscaling Implementation

- Bias corrected GFS forecast
 - Use the same algorithm as ensemble bias correction
 - Up to 180 hours
- Combine bias corrected GFS and ensemble forecast
 - Dual resolution ensemble approach for short lead time
 - GFS has higher weights at short lead time
- □ NAEFS new products
 - Combine NCEP/GEFS (20m) and CMC/GEFS (20m)
 - Produce Ensemble mean, spread, mode, 10% 50%(median) and 90% probability forecast at 1*1 degree resolution
 - Climate anomaly (percentile) forecasts also generated for ens.
 mean
- Statistical downscaling
 - Use RTMA as reference NDGD resolution (5km), CONUS only
 - Generate mean, mode, 10%, 50%(median) and 90% probability forecasts

Statistical downscaling for NAEFS forecast

- Proxy for truth
 - RTMA at 5km resolution
 - Variables (surface pressure, 2-m temperature, and 10-meter wind)
- Downscaling vector
 - Interpolate GDAS analysis to 5km resolution
 - Compare difference between interpolated GDAS and RTMA
 - Apply *decaying weight* to accumulate this difference *downscaling vector*
- Downscaled forecast
 - Interpolate bias corrected 1*1 degree NAEFS to 5km resolution
 - Add the downscaling vector to interpolated NAEFS forecast
- Application
 - Ensemble mean, mode, 10%, 50% (median) and 90% forecasts

Downscaling Method with Decaying Averaging Algorithm

- True = high resolution analysis
 - Operational North American Real-Time Mesoscale Analysis (RTMA)
 - 5x5 km National Digital Forecast Database (NDFD) grid (e.g. G. DiMego et al.)
 - 4 variables available: surface pressure, T2m, 10m U and V
 - Other data can also be used

Downscaling method: apply decaying averaging algorithm

Downscaling Vector^{5km} (t_0) = (1-w) * prior DV^{5km} (t_{-1}) + w * (GDAS^{5km}(t_0) - RTMA^{5km}(t_0))

- GDAS^{5km}: GDAS 1x1 analysis interpolated to RTMA^{5km} grids by bilinear interpolation
- \blacktriangleright 4 cycles, individual grid point, $DV^{5km} = Downscaling Vector on 5km grids$
- ➤ choose different weight: 0.5%, 1%, 2%, 5%, 10%
- Downscaling Process

Downscaled Forecast^{5km}(t) = Bias-corrected Forecast^{5km}(t) – DV^{5km}(t₀)

- Bias-corrected Forecast^{5km:} interpolated to RTMA^{5km} grids by bilinear interpolation
- \blacktriangleright subtract DV^{5km} from bias-corrected forecast^{5km} valid at analysis time

NAEFS Downscaled Probability Forecast (6 hour interval) Washington DC (37N 77W) & Montreal (45N 75W)

2m Temperature: RTMA Analysis

00hr GEFS Ensemble Mean & Bias Before/After Downscaling 10%

Summary

- Bias corrected NAEFS products has been implemented in both CMC and NCEP
 - Apply to 34 variables at 1*1 degree resolution (globally)
 - Generate probabilistic forecasts
 - 10%, 50%, 90%, mode, mean and spread
 - Generate anomaly forecasts
 - Improving probabilistic forecast skills
 - Absolute errors are reduced significantly
- Downscaling NAEFS products has been implemented in NCEP only
 - To NDFD grids (~5km resolution)
 - Apply to 4 variables
 - Surface pressure, 2m temperature and 10m u and v
 - CONUS only
 - Generate probabilistic forecasts
 - 10%, 50%, 90%, mode, mean and spread
 - Reduced mean absolute errors (by 4+ days)
 - Improved probabilistic skills (by 8+ days)
- Users feedback from WFO (State College, PA)
 - Ranked #1 for minimum temperature forecast from 7 official guidences
 - Official Guidance: NGM80, NAM40, SREF, NAM12, MOSGd, HPCGd, NAEFS
- This method could apply to SREF, too.
- Enhance products by
 - Improvements to RTMA
 - · Bias correction of forecast first guess using recursive algorithm

Plan

Bias correction

- Improving current method
 - Testing mini-Bayesian method
- Bias correct all model variables
 - Working on model native variables (with Mozheng Wei)
 - Using hind-cast information for longer lead-time forecast
- Downscaling products
 - Apply statistical downscaling method to other regions, Alaska, Hawaii, Puerto Rico and Guam, when RTMA is available
 - Needed in support of Alaska Desk, etc
 - Following after RTMA implementation
 - Add new variables to NDFD grids, such as wind speed/direction, maximum/minimum temperature, 2-meter dew point temperature etc...
 - Enhance products by Improvements to RTMA
 - Bias correction of forecast first guess using recursive algorithm
 - Testing or combining "Smartinit" (Geoff Manikin)
- Precipitation (separated consideration from others)
 - Bias correction and downscaling
 - Downscaling analysis 5km and every 6-hr (Mike Charles)
 - Pseudo precipitation (Paul Schultz and Huiling Yuan)
 - Full Bayesian method
- Evaluations
 - For current bias correction and downscaling forecast products
 - Objective evaluation for FNMOC ensemble system
- Other NAEFS related issues
 - Data exchange with CMC (adding new variables)
 - Exchange bias correction forecast (in the future plan)
 - New data format (GRIB2)

Background

Overall temperature forecasts: Average over past 30 days: (20080929-20081028)

		MAE	Bias	>10 err	<3 err	off. rank	Best G.		2nd G.		Worst G.	
1	12-hr	2.44	0.7	0.1%	67.3%	1 out of 7	NAM40	65.4%	NAM12	60.1%	NGM80	44.4%
2	24-hr	2.84	1.0	0.3%	59.1%	2 out of 7	NAM40	60.3%	NAM12	56.9%	SREF	47.0%
3	36-hr	2.94	0.8	0.3%	57.8%	1 out of 7	NAM40	55.9%	NAM12	52.6%	NGM80	44.0%
4	48-hr	3.36	1.6	2.1%	52.8%	1 out of 7	MOSGd	48.9%	NAM40	48.3%	NGM80	12.9%
5	60-hr	3.26	1.0	1.7%	54.8%	1 out of 6	MOSGd	50.1%	NAM12	48.8%	NAM40	6.2%
6	72-hr	3.35	1.3	2.1%	53.1%	1 out of 5	MOSGd	49.9%	NAM12	49.5%	SREF	44.0%
7	84-hr	3.80	0.6	4.7%	49.0%	1 out of 5	NAEFS	48.6%	SREF	44.5%	NAM12	2.6%
8	96-hr	3.96	0.7	4.0%	44.4%	2 out of 4	NAEFS	46.2%	HPCGd	42.6%	MOSGd	40.6%
9	108-hr	4.43	0.9	5.5%	38.5%	2 out of 3	NAEFS	41.7%	MOSGd	37.7%	MOSGd	37.7%
10	120-hr	4.57	1.0	5.9%	36.6%	2 out of 4	NAEFS	40.9%	HPCGd	36.5%	MOSGd	36.3%
11	132-hr	4.83	0.7	7.8%	34.7%	1 out of 3	NAEFS	34.5%	MOSGd	34.4%	MOSGd	34.4%
12	144-hr	4.83	0.5	7.4%	34.7%	3 out of 4	HPCGd	36.4%	NAEFS	35.5%	MOSGd	33.3%
13	156-hr	5.43	0.1	11.9%	30.3%	3 out of 3	NAEFS	32.1%	MOSGd	30.8%	MOSGd	30.8%
14	168-hr	5.74	0.3	14.4%	27.7%	2 out of 4	HPCGd	27.7%	MOSGd	26.9%	NAEFS	26.1

Minimum temperature forecast: Average over past 30 days: (20080929-20081028)

1	12-hr	3.17	-1.2	1.0%	53.4%	3 out of 7	NAEFS	59.7%	SREF	57.1%	NGM80	21.8%
2	24-hr	3.03	-0.9	0.6%	55.5%	2 out of 7	SREF	57.2%	NAEFS	54.2%	NGM80	24.9%
3	36-hr	3.25	-0.8	0.9%	51.6%	3 out of 7	NAEFS	54.2%	SREF	53.9%	NGM80	23.2%
4	48-hr	3.94	-1.1	2.9%	43.2%	3 out of 7	NAEFS	51.9%	SREF	45.8%	NGM80	6.2%
5	60-hr	4.30	-0.4	4.4%	39.1%	4 out of 6	NAEFS	49.2%	SREF	43.0%	NAM40	8.9%
6	72-hr	4.76	0.1	6.4%	33.7%	5 out of 5	NAEFS	42.9%	SREF	40.1%	NAM12	35.2%
7	84-hr	4.85	0.3	7.5%	34.7%	2 out of 6	NAEFS	40.0%	MOSGd	33.4%	NAM12	8.9%
8	96-hr	5.24	0.4	13.0%	33.1%	1 out of 3	NAEFS	32.7%	MOSGd	29.9%	MOSGd	29.9%
9	108-hr	5.11	0.8	12.8%	35.4%	1 out of 4	HPCGd	34.5%	NAEFS	32.1%	MOSGd	30.5%
10	120-hr	5.31	0.7	12.0%	31.9%	1 out of 3	MOSGd	31.6%	NAEFS	24.8%	NAEFS	24.8%
11	132-hr	4.97	0.7	9.9%	35.1%	2 out of 4	HPCGd	38.0%	MOSGd	30.9%	NAEFS	27.2%
12	144-hr	5.42	0.6	15.0%	35.0%	1 out of 3	MOSGd	31.3%	NAEFS	29.0%	NAEFS	29.0%
13	156-hr	5.40	0.5	14.9%	35.7%	1 out of 4	HPCGd	32.9%	MOSGd	32.7%	NAEFS	23.4%
14	168-hr	5.46	1.1	17.7%	38.1%	1 out of 3	MOSGd	35.6%	NAEFS	28.4%	NAEFS	28.4%

Official Guidance: NGM80, NAM40, SREF, NAM12, MOSGd, HPCGd, NAEFS

Contributed by Richard Grumm (WFO)

Surface Temperature MAE CONUS, Sept. 2007 00Z GMOS vs. 00Z NAEFS **RTMA Analysis**

NDFD Projection, Hours from 12Z Reference Time

Surface Temperature **Pointwise Bias** CONUS, Sept. 2007 00Z GMOS vs. 00Z NAEFS **RTMA Analysis**

NDFD Projection, Hours from 12Z Reference Time

Statistical Downscaling Verification -Contribute by MDL

- 2-meter temperature only
- Period: July 20 August 28 2007 (40 days)
- All verifications against RTMA
- NDFD: Official forecasts from previous day 12UTC
- GMOS: Gridded MOS forecasts from 00UTC
- GEFS: Bias corrected & downscaled 00UTC GEFS forecasts
 - Bias corrected NCEP GEFS ensemble mean only
 - Significant improvements not assess yet from
 - Dual resolution GEFS
 - NAEFS combination (GEFS + CMC)
 - Tuned downscaling method (0.3 coefficient instead of 0.1)

GEFS Ensemble Probability Forecast (6 hour interval) Washington DC (37N 77W) & Montreal (45N 75W)

Real-Time Mesoscale Analysis (RTMA) - from Manuel Pondeca

- Fast-track, proof-of-concept of the AOR (analysis of record) program. Intended to:
 - Enhance existing analysis capabilities at the NWS and generate near real-time hourly analyses of surface observations on domains matching the NDFD grids.
 - Provide estimates of analysis uncertainty
 - Establish a benchmark for future AOR efforts
- Developed at NCEP, ESRL, and NESDIS
 - Implemented in August 2006 for the CONUS NDFD grid
 - Analyzed parameters: 2-m T, 2-m q, 2-m Td, psfc, 10-m winds, precipitation, and effective cloud amount

Example for using regional mask

Grads: COLA/IGES

2008-04-17-16:35

BO CUI, GCWMB/EMC/NCEP/NOAA