Pseudo-Precipitation - a Continuous Variable for the Statistical Processing of Precipitation

Huiling Yuan^{1, 2}, Paul Schultz¹, Zoltan Toth¹, Mike Charles³, Yuejian Zhu³, and Bo Cui³

1. NOAA/ESRL/GSD

2. CIRES, University of Colorado, Boulder

3. NOAA/NCEP

Contributors/collaborators:

NCEP/EMC: Dingchen Hou, Malaquias Pena **University of Virginia:** Roman Krzysztofowicz **ESRL/GSD:** Isidora Jankov **ESRL/PSD:** Tom Hamill

NOAA/OHD: DJ Seo, John Schaake

OAR/ESRL/GSD/Forecast Applications Branch http://esrl.noaa.gov/gsd/fab

Motivation

• Great challenge in bias correction of quantitative precipitation forecast (QPF) and probabilistic QPF (PQPF):

Dry bias or there are too few members giving precipitation

- Bayesian methods for generating calibrated QPF and PQPF from ensemble forecasts require conditioning on the precipitation variable
 - Precipitation is bounded at 0
 - Discontinuous in space
- We seek to replace zeros in precipitation grid with a quantity related to dryness (the "opposite" of precipitation)
 - Negative-definite
 - Bounded at 0 on the humid end

Ensemble pseudo-precipitation (PP) correction could provide more improvements for calibrating dry precipitation bias.

Introduction of pseudo-precipitation

Definition: positive side – precipitation (P), negative (dry) side – PP: water vapor deficit

Dry side of PP

Dry side of PP is the area between the red and green traces, multiplied by -1

Two ways to calculate the dry side of PP

Method A: vertical integral

$$PP(i, j) = \frac{1}{g} \int (q_v - q_{vsat}(T)) dp$$
$$PP(i, j) = \frac{1}{g} \int (RH - 1)q_{vsat}(T) dp$$

Method B: use layer-average values

$$PP(i, j) = PW\left(\frac{1}{1 - \overline{RH}}\right)$$

Snapshot of the dry side of PP

Monthly averages of the dry side of PP

4 samples per day, 112, 120 or 124 per month, each pixel is an average of 4480, 4800 or 4960 samples over 40 years

Histograms – the dry side of PP

Seattle, WA

Los Angeles, CA

CDF of the dry side of PP, seasonal average, 4 cities

The dry side of PP and PP mapping

CDF of PP n using reanalysis and Stage IV data at (40 N, 121 W) for a period of 121 days (December 2005-March 2006).

Application of PP

- With a single continuous distribution, bias correction is applied in one step
- Shift entire ensemble distribution to remove bias in PP
- For example, too few members give precipitation
- Bias correction shifts the PP distribution to the right, forcing some of those members to precipitate (removing the dry bias)

Application of PP (cont.)

- Another benefit of PP is that the distribution naturally implies P.O.P.
- If there are many members with larger negative values of PP, this implies a greater probability that the atmosphere is *not* supportive of precipitation (negative portion of PP indicates moisture deficit)
- Figure below: even though these two cases have the same % members > 0, case b has most dry members at a smaller negative value, implying higher P.O.P.

Conclusions and Future Work

- PP is a continuous variable for statistical processing of precipitation (e.g., Bayesian ensemble adjustment) and is suitable to reduce dry bias
- Mapping PP curve for long-term historical forecast data (NAEFS) to correct precipitation bias at each grid point (such as NDFD grid)
- Using the new combined CPC and Stage IV precipitation analysis (NCEP/EMC)
- Bayesian processing (e.g.,Roman Krzysztofowicz)
- Use DTC ensemble testbed data or hindcast datasets (NCEP, PSD) to test the method

Backup slides

OAR/ESRL/GSD/Forecast Applications Branch

Data in N/N Reanalysis I

• Method 1:
$$PP(i, j) = \frac{1}{g} \int (q_v - q_{vsat}(T)) dp + P$$

No precipitation input (P=0)

- RH, TMP: 1000, 925, 850, 700, 600, 500, 400, 300 mb
- RH, TMP: 30-0 mb above ground
- PRES: sfc
- RH, TMP define specific humidity (q, qsat)
- PRESsfc defines the integral layers

• Method 2:
$$PP(i, j) = \frac{1}{g} \int (q_v - q_{vsat}(T)) dp = PWAT(1 - \frac{1}{RH})$$

PWAT, RH: amount for atmospheric column

• Not applicable, due to the problem in the data: RH=0 (but RH at vertical layers not equal 0), and PWAT <=0 in some grid points (?)

