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Families of atmospheric models…



Moist convection in the general circulation model 

The cloud-scale interactions are parameterized using cumulus parameterization

The problem of formulating the statistical effects of moist convection to 
obtain a closed system for predicting weather and climate.



Convection aggregation in rotating radiative convective equilibrium experiments 

Moist convection in the cloud-resolving model

hr



Cloud resolving models are useful in understanding the
transitions in convective systems:

• Stratocumulus breakup (Xiao, Wu et al. 2010, 2012, Tsai and Wu 2016)

• Aggregated convection (Tsai and Wu 2016)

• Diurnal cycle evolution (Wu et al. 2009, Wu et al 2015, Kuo and Wu 2016)

• Immersed boundary method in Vector vorticity equation model. (Wu 
and Arakawa 2011,  Chien and Wu 2016)

• Unified parameterization (Arakawa, Jung and Wu 2011, Arakawa and 
Wu 2013, Wu and Arakawa 2014, Arakawa and Wu 2015, Xiao, Wu et al 
2015).
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Parameterizations for low-
resolution models are designed 
to describe the collective effects 
of  ensembles of clouds.

Parameterizations for high-
resolution models are designed to 
describe what happens inside 
individual clouds.

Increasing
resolution

GCM CRM

Heating and drying 
on coarse and fine meshes

Expected values --> Individual realizations
Slide	from	David	Randall



Inferred profiles

Jung and Arakawa (2005)



Environment
OPENING A ROUTE FOR UNIFIED PARAMETERIZATION

A key to open this route is eliminating the assumption of  σ << 1.



Wu and Arakawa 2011
Chien and Wu 2016















 
Continue to use this assumption to start.

Most conventional parameterizations assume that

clouds and the environment are horizontally homogeneous.

FIRST STEP TOWARD UNIFIED PARAMETERIZATION

��� “top-hat profile” −−

σ 
0.6 0.8 1.00 0.2 0.4

m
/s

 K

d = 8 km
z = 3 km

transporteddy 

to
ta

l t
ra

nsp
ort

<
w

 h

<

w’ h’
< <

first target

 

Most conventional parameterizations assume that

clouds and the environment are horizontally homogeneous.

FIRST STEP TOWARD UNIFIED PARAMETERIZATION

−−� “top-hat profile” −−

 
Continue to use this assumption to start.

Most conventional parameterizations assume that

clouds and the environment are horizontally homogeneous.

FIRST STEP TOWARD UNIFIED PARAMETERIZATION

−−� “top-hat profile” −−

 
Continue to use this assumption to start.

Most conventional parameterizations assume that

clouds and the environment are horizontally homogeneous.

FIRST STEP TOWARD UNIFIED PARAMETERIZATION

−−� “top-hat profile” −−

σ 
0.6 0.8 1.00 0.2 0.4

m
/s

 K

d = 8 km
z = 3 km

transporteddy 

to
ta

l t
ra

nsp
ort

<
w

 h

<

w’ h’
< <

Top-hat
eddy transport* Transport due to

the internal structure
of clouds 

*   Diagnosed from a dataset
     modified to fit a top-hat profile



EXPRESSIONS FOR VERTICAL EDDY TRANSPORT
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 CLOUD PROPERTIES RELATIVE TO THE ENVIRONMENT

d = 8 km
z = 3 km

SHEAR CASE
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∆w∆ψ should be virtually independent of σ,

which is a measure of cloud population in the grid cell.
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( Earlier, this dependency was introduced as a choice to satisfy the convergence.)

 PARAMETERIZATION OF THE -DEPENDENCE

 

 

σ : Fractional area covered by updrafts
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BETWEEN DIFFERENT RESOLUTIONS
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SIMILARITY BETWEEN DIFFERENT RESOLUTIONS

The σ-dependence of the eddy transport
is similar between different resolutions.       

wThe value of               is also similar. 
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Arakawa and Wu, 2014, submitted to JAS

UNIFIED REPRESENTATION OF DEEP MOIST CONVECTION

IN NUMERICAL MODELING OF THE ATMOSPHERE: PART II 

Analyses of the smulated data in ciew of 

the vertical transport of horizontal momentum

and the X�depencence of physical sources



Closure assumption

Derivation of the Unified Parameterization

Notes by David Randall, based on a presentation by Akio Arakawa

For the case of a top-hat PDF, we can derive

′w ′ψ ≡ wψ −wψ =σ 1−σ( )ΔwΔψ ,

(1)

where 

 
Δ( ) ≡ ( )c − ( ) ,

(2)

the subscript c  denotes a cloud value, and a tilde denotes an environmental value. We expect  

Δw  and Δψ  to be independent of σ . In that case, (1) implies that ′w ′ψ  is a parabolic function 

of σ . 

Define ′w ′ψ( )
E

 as the flux required to maintain quasi-equilibrium. The closure assumption 

used to determine σ  is 

σ =
′w ′ψ( )

E

ΔwΔψ + ′w ′ψ( )
E

.

(3)

The quantities on the right-hand side of (3) are expected to be independent of σ . Eq. (3) is 
guaranteed to give 

0 ≤σ ≤1 .
(4)

By combining (3) and (1), we obtain

′w ′ψ = 1−σ( )2 ′w ′ψ( )
E

.

(5)

This shows that the actual flux is typically less than the value required to maintain quasi-
equilibrium. In fact, the actual flux goes to zero as σ →1. 

A model predicts grid cell means, rather than environmental values, so direct use of (3) is 
not possible. Define 
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Water Vapor

Cloud Water/Ice

Snow/GraupelRain

CLOUD-MICROPHYSICAL CONVERSIONS INCLUDED IN THE MODEL

Solid lines:  Conversions taking place pimarily within updrafts

Dashed lines:  Conversions taking place pimarily outside of updrafts

Water Vapor

Cloud Water/Ice

Snow/GraupelRain

CLOUD-MICROPHYSICAL CONVERSIONS INCLUDED IN THE MODEL

Solid lines:  Conversions taking place primarily within updrafts

Dashed lines:  Conversions taking place primarily outside of updrafts



Condensation

the ensemble average of the net conversion from water
vapor to cloud water–ice as a function of height z and
subdomain size d. As defined earlier, the ensemble av-
erage is the average over all subdomains of the same size
with s. 0. (It should be remembered again that, unlike
the plain average over all subdomains, the ensemble
average defined above is a quantity that depends on the
resolution.) In the figure, we see that this conversion
rapidly increases from the medium to high resolution.
It is very likely that this increase is primarily through
the increase of s with resolution shown in Fig. 1 for
the ensemble average. Thus, as we have done for the
transports, we examine the s dependence of this con-
version with a fixed subdomain size. An example of the
s dependence is shown in Fig. 11 for d 5 8 km.
As we can see in Fig. 11a, the ensemble average of this

conversion increases with s more or less linearly at all
levels. This is reasonable because s is a measure of the
fractional population of updrafts if the area covered by
individual updrafts is fixed. It is also a measure of the
updraft mass flux if the vertical velocity of individual
updrafts is fixed. This approximate linear dependence
on s exists at least implicitly in all of the existing models
cited above. The unified parameterization explicitly uses
this dependence in terms of s determined by themethod
discussed in Part I. For more details of the practical
procedure, see section 4f.
To see the approximately linear dependence on s

more clearly, Fig. 11b shows the density-weighted ver-
tical mean of the ensemble-averaged conversion as
a function of s. The error bars show the vertical average
of the standard deviation associated with the ensemble
average. The dashed straight line connects zero at s 5
0 and the diagnosed value at s 5 1. The slight deviation
of the red line from the dashed straight line is probably
due to the evaporation (sublimation) of cloud water
(ice) into the entrained air, which vanishes at s 5 0 and

s 5 1. (The small magnitude of this deviation does not
mean that the other effects of entrainment, such as those
on cloud properties that affect the efficiency of eddy
transport defined in section 4d of Part I, are also small.)

b. Conversion from cloud water–ice to rain and
snow–graupel

The left and right panels of Fig. 12 show the conver-
sions from cloud water–ice to rain and snow–graupel
identified by labels b and c in Fig. 9, respectively. As in

FIG. 9. A simplified view of the cloud microphysical conversions
included in the CRM simulation used in this paper. See text for
explanation of the solid and dashed arrows. The labels a through f
identify conversions.

FIG. 10. Ensemble-averaged net conversion from water vapor to
cloud water–ice as a function of z and d (1027 kg kg21 s21).

FIG. 11. (a) Ensemble-averaged net conversion from water vapor
to cloud water–ice for d5 8km as a function of z and s. (b) Density-
weighted vertical mean of the values shown in (a) with the standard
deviation associated with the ensemble average. The dashed
straight line connects 0 at s 5 0 and the diagnosed value at s 5 1
(1026 kgkg21 s21).
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Evaporation and sublimation

from rain to snow–graupel through freezing and from
snow–graupel to rain through melting, respectively. In-
terestingly, the former tends to increase as s increases,
but the latter tends to decrease. This contrast of the s
dependence can be more clearly seen in Fig. 13b, where
the left panel shows the density-weighted vertical mean
of positive values only while the right panel shows that of
negative values only. These results indicate that the
precipitation area within the same grid cell tends to be
smaller as the updraft area is larger. The right panel
shows that melting does not vanish even when s5 1, that
is, even when the grid cell is filled by the updrafts.

d. Evaporation of rain and net sublimation
of snow/graupel

The left and right panels of Fig. 14 show the evapo-
ration from rain and net sublimation from snow–graupel
identified by e and f in Fig. 9, respectively. The deposition
of water vapor on snow–graupel negatively contributes
to the value of the net sublimation. Figures 14a and 14c
show the ensemble averages of these conversions as
functions of z and s while Figures 14b and 14d show the
density-weighted vertical means of the ensemble averages
as functions ofs. As we see for themelting effect shown in
Fig. 13, these conversions tend to decrease withs, roughly
proportional to 1 2 s this time. These results again in-
dicate that the precipitation area tends to be smaller as the
updraft area within the same grid cell is larger.

e. Remark on parameterization of uncertainty

It was pointed out in section 5 of Part I that the unified
parameterization can be used as a framework for sto-
chastic parameterization and that different phases of
cloud development may account for the fluctuations of
cloud properties around their ensemble averages. The
results presented in this section suggest that at least
equally important uncertainty exists in the determi-
nation of physical sources, and it is likely that the fluc-
tuations represented by the standard deviations in Figs.
11b, 12b, 12d, and 13b1 are mainly due to different
phases of cloud development. It is possible that these
standard deviations are also due to the use of bins for
a single s, while in reality, multiple cloud types with
different values of s may coexist, possibly with some
mesoscale organizations. If we wish to parameterize
these fluctuations stochastically, a statistical package is
needed to represent the overall uncertainty of the
system. The simplest possibility would be to use an
assumed probability density function combined with
the predicted ensemble average and a prescribed
magnitude of the standard deviation relative to the
ensemble average.
The situation can be different for the large standard

deviations shown in Figs. 13b2, 14b, and 14d for the
melting, evaporation, and sublimation of precipitating
particles. Since these effects are relatively slow com-
pared to the processes taking place within the updrafts,

FIG. 14. As in Fig. 11, but for (a),(b) evaporation of rain and (c),(d) sublimation of snow–graupel
(1028 kg kg21 s21; note the difference in units from the previous figures).
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Implementation

λ 1−σ( )3 + 1−σ( )−1= 0 .

(12)

Inspection of (12) shows that σ →1  as λ →∞ , and σ → 0  as λ → 0 . The curve defined by the 
solution of (12) can be plotted most easily by rearranging (12) to write λ  as a function of σ :

λ = σ
1−σ( )3

.

(13)

Inspection of (13) shows that λ ≥σ  for 0 ≤σ ≤1 .

A possible “quick” implementation strategy:

1. Choose an existing conventional parameterization that includes the equation of vertical 
motion for the plumes.

2. Using the plume model, calculate ′w ′ψ( )
E

 and δw , and δψ . These will be functions of 

height. To determine δw  and δψ , we have to choose a particular cloud type.

3. Evaluate λ  using (11) and σ  using (12). These will be functions of height.

4. Use (5) to “scale back” the convective fluxes.

5. Scale the “non-transport” parts of the tendencies (e.g., the condensation rate) with σ  for 
the convective part, and 1−σ  for the environment.
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Implementation?



Practical implementation of Unified Parameterization (I)

The	eddy	transport	in	the	unified	parameterization	is	relaxed	through	σ.

𝑤"ℎ′ = 1 − 𝜎 )	𝑤"ℎ+" 	

σ is	determined	through	large-scale	destabilization	and	convective	strength

𝜆 1 − 𝜎 - − 𝜆 = 0

𝜆 =
	𝑤"ℎ+"

𝑤/ − 𝑤0)(ℎ/ − ℎ3
	

from	cumulus	parameterization

from	plume	model



𝑤"ℎ+" 	is	determined	through	the	closure	assumption	in	the	cumulus	parameterization

𝑀5𝐹 =
max A − 𝐴<, 	0

τ

𝑤"ℎ+
" = 𝑀?(ℎ? − ℎ3)

𝑀? = 𝑀5𝑒AB(C)

Zhang	and	McFarlane	scheme	(1995),	currently	CAM5	deep	convection	scheme

Practical implementation of Unified Parameterization (II)



deRoode et.	al	(2012)	vertical	kinetic	energy	equation

1
2
𝑑𝑤/)

𝑑𝑧 = 𝛼𝐵 − 𝛽𝜖𝑤)ECMWF(2010)

Kim	and	Kang	(2011)

1
2
𝑑𝑤/)

𝑑𝑧 = 𝛼 1 − 𝐶L 𝐵, 𝐶L = 1 𝑅𝐻⁄

Practical implementation of Unified Parameterization (III)



Preliminary	results	of	ZM	diagnoses

Xiao,	Wu	et	al	2015



solid	line:	𝑤"ℎ"_CRM
dash	line:	𝑤"ℎ"_ZM

Eddy	transport	of	moist	static	energy	for	ZM	scheme

• Whole	period	of	DYNAMO	active	phase	(15	days)	simulation	instead	of	idealized	forcing.
• Generally	weaker	eddy	transport	as	well	as	weaker	variability	in	ZM.
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Example of 𝜎 distribution  in ZM scheme

σ UP

(ratio)

unit: %
d=4km

• Smaller	𝜎 in	ZM	compared	to	that	in	the	CRM	
probably	due	to	weaker	eddy	fluxes	in	ZM	scheme.	



Example of 𝜎 dependency in ZM scheme
• 𝜎	in	ZM	shows	good	relationship	with	that	in	CRM	but	with	strong	variability.


