The Spectrum of Progressive Derecho Formation Environments

Corey T. Guastini

University at Albany, SUNY 26 August 2014 Support provided by NSF AGS-1240502 and AMS Graduate Fellowship **Derecho:** a swath of severe winds 400 km long or greater caused by bowing mesoscale convective system (MCS)

Two types:

- Progressive
- Serial

Adapted from Johns and Hirt (1987)

Serial Derecho Schematic Mean Wind Direction Source: SPC About Derechos

Adapted from Johns and Hirt (1987)

120 km

Motivation

- Progressive derechos are high impact events
- Progressive derectors may be poorly predicted due to the benign synoptic environments in which they form
 - Able to sustain themselves through cold pool dynamics far away from initial forcing for ascent as long as unfavorable environment not encountered
 - Predicting extent of storm track difficult
- Can progressive derecho formation environments be systematically categorized?

29–30 June 2012 Derecho: Statistics

- Duration: ~11 h (1700-0400 UTC)
- Length: ~1200 km (IL/IN to DE/MD)
- Fatalities: 13 direct, 31 indirect
- Peak wind gust: 79 kt (Fort Wayne, IN)
- Damage: \$1+Billion (source: NCDC)
- Power outages: ~4 million customers
- Heat stress: Millions of people
- Source: http://www.ncdc.noaa.gov/news/preliminary-info-2012-us-billion-dollarextreme-weatherclimate-events

Power outage recovery

Flight tracks: 1700 UTC 29 June to 0500 UTC 30 June 2012

A look at how the FAA and the airlines managed flight tracks during the long-lived derecho of 29-30 June 2012

- Source: Daniel Vietor¹ and David Bright²
 - 1: Senior Research Meteorologist, CIRA-CSU and NCEP Aviation Weather Center
 - 2: Chief, Aviation support Branch, NCEP Aviation Weather Center

Flight tracks

Motivation

- Progressive derechos are high impact events
- Progressive derectors may be poorly predicted due to the benign synoptic environments in which they form
 - Able to sustain themselves through cold pool dynamics far away from initial forcing for ascent as long as unfavorable environment not encountered
 - Predicting extent of storm track difficult
- Can progressive derecho formation environments be systematically categorized?

Motivation

- Progressive derechos are high impact events
- Progressive derectors may be poorly predicted due to the benign synoptic environments in which they form
 - Able to sustain themselves through cold pool dynamics far away from initial forcing for ascent as long as unfavorable environment not encountered
 - Predicting extent of storm track difficult
- Can progressive derecho formation environments be systematically categorized?

Outline

- Partial extension of existing climatology
 - Warm season (May-August) progressive derechos
 - Storm Prediction Center severe storm reports and NCDC radar archive
- Subjective composites
 - Formation spectrum
 - 0.5° Climate Forecast System Reanalysis (CFSR) data
- Two case studies
 - Ends of formation spectrum
 - North American Regional Reanalysis (NARR), sounding, satellite, radar, surface observations
- Science and forecasting issues

Origin of Derecho Climatologies

- Derecho first coined in 1888 (Hinrichs)
- First attempt to systematically identify derechos by Johns and Hirt (1987) using the following criteria based on Fujita and Wakimoto's (1981) definition of a family of downburst clusters:
 - Concentrated area of wind reports > 26 m s⁻¹ (50 kt) at least 400 km long
 - Reports must exhibit a pattern in a singular swath
 - Must be at least three reports separated by 64 km or more of either F1 damage and/or gusts of 33 m s⁻¹ or greater
 - No more than three hours can elapse between successive wind reports

Origin of Derecho Climatologies

- Derecho first coined in 1888 (Hinrichs)
- First attempt to systematically identify derechos by Johns and Hirt (1987) using the following criteria based on Fujita and Wakimoto's (1981) definition of a family of downburst clusters:
 - Concentrated area of wind reports > 26 m s⁻¹ (50 kt) at least 400 km long
 - Reports must exhibit a pattern in a singular swath
 - Must be at least three reports separated by 64 km or more of either F1 damage and/or gusts of 33 m s⁻¹ or greater
 - No more than three hours can elapse between successive wind reports

1996–2013 progressive derecho climatology

Composite categories

Subjective Composite Categories

- 0.5° Climate Forecast System Reanalysis (CFSR) data
 - Create plots using analysis closest to derecho initiation time (time of first wind report) from surface to 250 hPa
 - Independently group → meet → regroup → repeat until relatively simple classification scheme agreed upon

Case study

Northwest flow

29–30 June 2012

1500 UTC 26 June 2012 (72 hours prior to initiation)

Precipitable water (gray and purple fill; mm), 700–500-hPa lapse rates (colored contours; C km⁻¹), 500 hPa geopotential heights (black contours; dam), and 700–500-hPa layer averaged winds (barbs; kt)

250-hPa wind magnitude (fill; kt), mean sea level pressure (contours; hPa), and surface winds (barbs; kt)

1500 UTC 28 June 2012 (24 hours prior to initiation)

Precipitable water (gray and purple fill; mm), 700–500-hPa lapse rates (colored contours; C km⁻¹), 500 hPa geopotential heights (black contours; dam), and 700–500-hPa layer averaged winds (barbs; kt)

250-hPa wind magnitude (fill; kt), mean sea level pressure (contours; hPa), and surface winds (barbs; kt)

1500 UTC 29 June 2012 (at initiation)

Precipitable water (gray and purple fill; mm), 700–500-hPa lapse rates (colored contours; C km⁻¹), 500 hPa geopotential heights (black contours; dam), and 700–500-hPa layer averaged winds (barbs; kt)

250-hPa wind magnitude (fill; kt), mean sea level pressure (contours; hPa), and surface winds (barbs; kt)

96-hour back trajectories ending at 850-hPa at 1200 UTC 29 June 2012

1200 UTC 29 June 2012 Overlap of instability and vertical wind shear

Composite reflectivity overlaid on NARR CAPE (grayscale; J kg⁻¹), winds derived from surface observations (black barbs; kt), and surface–500 hPa wind shear (blue barbs; kt)

1200 UTC 29 June 2012 Convection initiation mechanism

Temperature advection at 850 hPa (fill; × 10⁻⁵ C s⁻¹), 850-hPa temperatures (red dashed contours; C), and 850-hPa geopotential heights (black contours; dam).

Frontogenesis at 925 hPa (fill; C 3 h⁻¹ 100 km⁻¹), 925-hPa temperature (red dashed contours; C), and 925-hPa geopotential heights (black contours; dam)

Early MCS evolution

Elevated to surface-based transition 1700 UTC 29 June 2012

Elevated to surface-based transition IR satellite imagery

Source: CIMSS Satellite Blog

2130 UTC 29 June 2012 IR/Radar

0000 UTC 30 June 2012 IR/Radar

0300 UTC 30 June 2012 IR/Radar

Coastal Impact

Source: Iowa Environmental Mesonet

0000 UTC 30 June 2012 Surface Analysis

IAD 12 Hour Forecast Soundings (dashed) vs. Observed (solid) for 0000 UTC 30 June 2012

GFS

NAM

Source: Geoffrey Manikin

29–30 June 2012 WRF Run

- Initialized at 0000 UTC 29 June 2012 with NAM data
- 12 km outer grid with 4 km nested grid
- Convection explicitly resolved in 4km grid
- Morrison double-moment microphysics
- Mellor-Yamada-Janjic PBL scheme

Perturbation θ_e (K, fill) and system relative winds (kt, barbs)

Perturbation	Equivalent	Potentia	l Tempe	erature (K)	
-36 -30 -24 -	18 12 6	0 6	10 18	24 30 36	

- Morrison double-moment microphysics
- Mellor-Yamada-Janjic PBL scheme

OUTPUT FROM WRF V3.4 MODEL WE = 619 ; SN = 277 ; Levels = 35 ; Dis = 4km ; Phys Opt = 10 ; PBL Opt = 2 ; Cu Opt = 0

Perturbation θ_e (K, fill) and system relative winds (kt, barbs)

-36 -30 -24 -18 -12 -6 0 6 12 18 24 30 36

- Morrison double-moment microphysics
- Mellor-Yamada-Janjic PBL scheme

OUTPUT FROM WRF V3.4 MODEL WE = 619 ; SN = 277 ; Levels = 35 ; Dis = 4km ; Phys Opt = 10 ; PBL Opt = 2 ; Cu Opt = 0

- Morrison double-moment microphysics
- Mellor-Yamada-Janjic PBL scheme

Perturbation $\theta_{\rm e}$ (K, fill) and system relative winds (kt, barbs)

-36 -30 -24 -18 -12 -6 0 6 12 18 24 30 36

OUTPUT FROM WRF V3.4 MODEL WE = 619 ; SN = 277 ; Levels = 35 ; Dis = 4km ; Phys Opt = 10 ; PBL Opt = 2 ; Cu Opt = 0

Perturbation θ_e (K, fill) and system relative winds (kt, barbs)

	Pertu	urbat	ion E	quiva	alent	Pot	entia	al Te	empe	eratu	re (K	.)
_	36 -30	0 -24	1 -18	-12	-6	0	6	12	18	24	30	36

- Morrison double-moment microphysics
- Mellor-Yamada-Janjic PBL scheme

OUTPUT FROM WRF V3.4 MODEL WE = 619 ; SN = 277 ; Levels = 35 ; Dis = 4km ; Phys Opt = 10 ; PBL Opt = 2 ; Cu Opt = 0

Perturbation θ_{e} (K, fill) and system relative winds (kt, barbs)

I	Pertu	urba	tior	ו Ee	quiva	alent	t Pot	entia	al Te	mpe	eratu	re (K)	
-3	6 -3	0 -2	- 4	18	-12	-6	0	6	12	18	24	30	36	

- Morrison double-moment microphysics
- Mellor-Yamada-Janjic PBL scheme

OUTPUT FROM WRF V3.4 MODEL WE = 619 ; SN = 277 ; Levels = 35 ; Dis = 4km ; Phys Opt = 10 ; PBL Opt = 2 ; Cu Opt = 0

Brief comparison to WRF-ARW run presented by Morris Weisman 2200 UTC

700-hPa Theta-e

0000 UTC initialization 4km NAM Morrison MYJ 1200 UTC initialization 3km DART Analysis Morrison MYJ

0000 UTC

0000 UTC initialization 40% 4km 39% NAM 38% Morrison 37% MYJ

1200 UTC initialization 3km DART Analysis Morrison MYJ

Case study

Upper-level trough

12–13 June 2013

Radar Continuity Map and Storm Reports

2100 UTC 9 June 2013 (72 hours prior to initiation)

Precipitable water (gray and purple fill; mm), 700–500-hPa lapse rates (colored contours; C km⁻¹), 500 hPa geopotential heights (black contours; dam), and 700–500-hPa layer averaged winds (barbs; kt)

250-hPa wind magnitude (fill; kt), mean sea level pressure (contours; hPa), and surface winds (barbs; kt)

2100 UTC 11 June 2013 (24 hours prior to initiation)

Precipitable water (gray and purple fill; mm), 700–500-hPa lapse rates (colored contours; C km⁻¹), 500 hPa geopotential heights (black contours; dam), and 700–500-hPa layer averaged winds (barbs; kt)

250-hPa wind magnitude (fill; kt), mean sea level pressure (contours; hPa), and surface winds (barbs; kt)

2100 UTC 12 June 2013 (at initiation)

Precipitable water (gray and purple fill; mm), 700–500-hPa lapse rates (colored contours; C km⁻¹), 500 hPa geopotential heights (black contours; dam), and 700–500-hPa layer averaged winds (barbs; kt)

250-hPa wind magnitude (fill; kt), mean sea level pressure (contours; hPa), and surface winds (barbs; kt)

96-hour back trajectories ending at 850-hPa at 1800 UTC 12 June 2013

310 K isentropic analysis using system-relative winds

 0.5° composite reflectivity, NARR CAPE (grayscale; J kg⁻¹), 1000 – 500-hPa shear magnitude (blue contours; kt), and surface observations

Omega (fill; hPa s⁻¹ × 10⁻³), pressure (contours, hPa), and system relative winds assuming propagation to the southeast at 45 kt

310 K isentropic analysis using system-relative winds

 0.5° composite reflectivity, NARR CAPE (grayscale; J kg⁻¹), 1000 – 500-hPa shear magnitude (blue contours; kt), and surface observations

Omega (fill; hPa s⁻¹ × 10⁻³), pressure (contours, hPa), and system relative winds assuming propagation to the southeast at 45 kt

Wilmington, OH (ILN) and Pittsburgh, PA (PIT) Soundings for 0000 UTC 13 June 2013

Offshore Convection

RAW 28000

26176

24231

22286

20341

18396

16451

14506 250.00

100.0090,0070.0060,0050.0040.00<math>30,0025,00

20.00 1553.500 10.00

7.50

\$5.000 2.50

1.00 0.0505 0.25 0.10 - 3000

- Lightning Strike Density
 - Vaisala NLDN
 - Vaisala GLD360

LTNG_5MIN 130613/1150 EXPERIMENTAL ltng strike density (count/km**2/min)*10^{***} 3 130613/1149 GOES14-RAW VIS

Source: Joe Sienkiewicz 2013 NCEP Production Suite Review

Comparison of 29–30 June 2012 and 12–13 June 2013 progressive derechos

Comparison of June 2012 and June 2013 Progressive Derechos

Comparison of June 2012 and June 2013 Progressive Derechos

29–30 June 2012	12–13 June 2013
Zonally oriented instability corridor	Meridionally oriented instability corridor
Weak forcing for ascent (frontogenesis and low-level WAA) along east/west oriented surface boundary	Strong forcing for ascent (isentropic lift) associated with surface cyclone ahead of upper-level trough
Crossed Appalachians due to strong cold pool (~9 hPa) and extreme lee instability	Largely failed to cross Appalachians due to weak cold pool (~3 hPa) and moderate lee instability
Persistent weakly forced large-	Deepening upper-level trough

Persistent weakly forced large- Deepening upper-level trough scale pattern through life cycle through life cycle

Science issues

- Role of Rockies in derecho formation (e.g., lee troughs and upslope flow)
- Dynamic and thermodynamic processes associated with elevated to surface-based transitions
- Role of Appalachians in MCSs reaching the Atlantic Coast
- Impact of increasing synoptic-scale forcing on derecho maintenance and severity (June 2013 progressive derecho)
Forecast issues

- More accurate representation of planetary boundary layer temperatures, dew points, and winds
- Better understanding the extent to which cold pool depth and strength in a sheared environment controls MCS maintenance across the Appalachians
- Better understanding of the factors controlling MCS longevity in general

Questions?

Email: cguastini@albany.edu

Extra

WRF IAD Sounding, Surface Mixing Ratio, Winds, and Sea-level Pressure

Composite Reflectivity, Surface Observations, and Hand-Analyzed Surface Temperature 1100 UTC 13 June 2013

Composite Reflectivity, Surface Observations, and Hand-Analyzed Surface Temperature 1400 UTC 13 June 2013

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

FIG. 1. (a) Total number of derechos occurring during the warm season, 1980–83 (JH87). (b) Total number of derechos occurring during the warm season, 1986–95.

Derecho initiation latitude through the warm season

Derecho initiation longitude through the day

