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Representation Error

• Data assimilation maps the difference between a 

model simulation and observations into the 

model state space

• We estimate the present state of the system 

using the observations with a filter

xa = xf + PfHT (HPfHT + R)-1 (yo - Hxf) (1)
Pf is forecast error covariance xf is the model forecast

εf = xt - xf is the forecast error xa is the model analysis

yo is the observation xt is the “true” model

R is the observation error covariance

H is the mapping operator which maps the model state to the 
observation space



The model-data misfit, innovation. can be decomposed into 

instrument error, forecast error and representation error in the
following way:

yo - Hxf = (yo – yt) + (yt – Hxt) + (Hxt - Hxf) (2)

=     εo + εR + Hεf (3)

yt is the “true” value of the observed quantity. The three terms 

on the right hand side of (3) are the instrument error, the 
representation error and the forecast error mapped into 
observation space 

Observation Error



Representation Error

Outline

• Results from North Pacific Climate Model

• information content and Reduced state space 
filter design

• Definition of Observation Error Subspace and 
estimation of Observation Error covariance

• Posterior statistical analysis of representation 
error

• Preliminary results for the ocean component 
of the Climate Forecast System



North Pacific Circulation 

Model

• Model:  

Parallel Ocean 
Program (POP) model

• Domain:  

105°E to 85°W

30°S to 64°N

• Resolution:
1°at Equator on 

mercator projection

0.5°average resolution

50 vertical levels with 25 
in top 500 m
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Bathymetry of North Pacific Model
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North Pacific Upper Ocean 

Model
• Model initialized from 

Levitus WOA98 
temperature and salinity

• 26 years (1979 thru 2004) 
of NCEP/DOE Reanalysis 
Fields are used to force the 
model

• Model is restored to the 
WOA98 surface salinity 
with 30 day restoration 
time

• Mixing is the upper ocean 
with the KPP mixed layer 
model of Large et al (1994)
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Initial SST for North Pacific Model
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Model and Data Comparison for a non-El 

Nino year (Jan 1996) and an El Nino year 

(Jan 1998)

SST SSH



Correlation between model 

forecast and the remotely sensed 

SST and Sea Level Observations



Large number of state variables prohibits solving the full system 

Reduced State Space Kalman Filter

1) Compute the multivariate empirical orthogonal 
functions (EOF's) of our 26 year time series of 
deviations from the seasonal cycle,

2) A statistical test is performed in order to estimate the number of 
significant degrees of freedom.  (Preisendorfer, 1988)  (35 modes 
accounting for  59% of the total variance)

3) Recast the Kalman filter problem in terms of a Reduced State Space 
of approximately 35 EOFs instead of 105 discrete points

4) We estimate the multivariate model error covariance Pf by performing 
linear regressions to fit the EOF's of the SST model data misfits with 
the temperature component of the model multivariate EOF's.  

5) Using the estimated model covariance, we calculate the Kalman gain 
and the update the model to combine with the observations.



Information Content of North 

Pacific Ocean Model

• Using a 26 year 

simulation we 

calculate the 

EOFs of the 

model, 

observations 

and innovations 

(data-model 

misfits)
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Variance described by Model 

SST EOFs
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EOF Analysis of Sea Surface 

Temperature Anomalies
• The first EOF which 

describes 7% of the total 
variance is dominated by 
equatorial variability of 
the El Nino cycles. In the 
equatorial region, this 
mode describes 60-80% 
of the SST variance.  The 
SST anomaly at 140W 
(blue) can be described 
by the first EOF (red) with 
the next two EOFs (black) 
making an insignificant 
contribution to the 
temperature.
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EOF Analysis of Sea Surface 

Temperature Anomalies
• The second EOF of the 

SST with 4% of the total 
variance described is 
dominated by variability in 
the strength of the 
subtropical gyre.  In the 
subtropical gyre, this 
mode describes 30-50% 
of the SST variance.  The 
SST anomaly at HOT 
(blue) is dominated by the 
second mode (red) with 
little contribution by the 
other two modes (black) 
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Model Multivariate EOF 

• The first EOF of the 

surface velocity, 

temperature, salinity 

and sea level

• The first EOF is 

dominated by ENSO



Large number of state variables prohibits solving the full system 

Reduced State Space Kalman Filter

1) Compute the multivariate empirical orthogonal functions (EOF's) of 
our 26 year time series of deviations from the seasonal cycle,

2) A statistical test is performed in order to estimate the number of 
significant degrees of freedom.  (Preisendorfer, 1988)  (35 modes 
accounting for  59% of the total variance)

3) Recast the Kalman filter problem in terms of a Reduced State Space 
of approximately 35 EOFs instead of 105 discrete points

4) We estimate the multivariate model error covariance Pf by performing 
linear regressions to fit the EOF's of the SST model data misfits with 
the temperature components of the model multivariate EOF's.  

5) Using the estimated model covariance, we calculate the Kalman gain 
and the update the model to combine with the observations.



Information Content

• The spectrum of the 

model EOFs is 

compared to the 

spectrum of gaussian 

noise with the same 

variance as the model

• Data assimilation only 

uses the projection of 

the innovations onto 

the model state space

Model EOFS

Gaussian Noise

xa = xf + PfHT (HPfHT + R)-1 (yo - Hxf)



Large number of state variables prohibits solving the full system 

Reduced State Space Kalman Filter

1) Compute the multivariate empirical orthogonal functions (EOF's) of 
our 26 year time series of deviations from the seasonal cycle,

2) A statistical test is performed in order to estimate the number of 
significant degrees of freedom.  (Preisendorfer (1988))  (35 modes 
accounting for  59% of the total variance)

3) Recast the Kalman filter problem in terms of a Reduced State 
Space of approximately 35 EOFs instead of 105 discrete points

4) We estimate the multivariate model error covariance Pf by 
performing linear regressions to fit the EOF's of the SST model 
data misfits with the temperature components of the model 
multivariate EOF's.  

5) Using the estimated model covariance, we calculate the Kalman 
gain and the update the model to combine with the observations.



Estimation of the forecast error 
covariance

• We estimate the multivariate model error covariance matrix Pf = VDVT, 
where V is a matrix whose columns are linear combinations of the 
multivariate EOFs of the model and D is a diagonal matrix whose (i,i)th

entry is the variance associated with the ith EOF of the model-data 
misfits.  

• The coefficients αij in the linear combination 

• Vi = Σj αij Xj,                (3)

• where the Xj is the jth multivariate EOF of the model, are chosen to 
minimize

• (Ui - Σj αij HXj)
T (Ui - Σj αij HXj) (4)

• where Ui is the ith EOF of the model-data misfits, Vi is the ith column of V
and H is the matrix that maps the state vector into the SST or SSH field

• The first eight (30) Ui contain about 15 (37)% of the total variability of 
the SST model-data misfit variance and 13 (26)% of the SSH mode-
data misfit variances.



Estimation of the forecast error 
covariance

• The estimate of Pf based on (3) is used along with the 
approximation: 

• (HPfHT + R)-1 (yo - Hxf)  ≈ UĎ-1UT (yo - Hxf)   (5)

• to implement a data assimilation scheme based on the 

formula for optimal interpolation given in (1).  We consider 
the matrix Pf ≈ V DVT to be fixed, and do not run the model 

between assimilation steps.  In this experiment, we only 
update surface values of the velocity components, the 

temperature and the salinity, as well as the sea surface 

height anomaly.  We do not update the model state below 
the surface. 

• With these assumptions, the gain matrix becomes:

• K = VD(HV)TUĎ-1UT (6)



Estimation of the forecast error 
covariance

• We may examine the updating process by writing the analysis 
increment as

• VD * (HV)T * Ď-1UT (yo - Hxf)   (7)

• The last term is the projection of the innovation vector on the leading 
EOFs of the model-data misfits, with the result weighted by the 
inverses of variances contributed by each EOF. The second term is 
the projection of the lead EOFs of the misfits onto the HVi, 
themselves linear combinations of the multivariate EOFs of the model 
output, so the second and third terms amount to a projection of the 
innovation vector into the space defined by the HXi. Forming the 
product of these projections with the first term V maps the projections 
back into the multivariate model state space. 

• The only assimilated variability is that which projects into the model 
state space. 



Model and Data Correlations before and 

after Reduced State Space OI



The Kalman filter blending of the model and the observations made a 
modest improvement of the model ouputs

Why was not there a bigger impact?

The model cannot represent all of the variability observed in the data.

Using the Reduced State Space, we can estimate this error of 
representation

The difference between the model data misfit and the EOF 
representation of this misfit (error of representation) gives us
information on where improvement is needed.

Representation error



Representation Error

• The innovations are 

projected onto the 

model state space.

• The remainder of 

the innovations can 

be decomposed 

into EOFs to show 

the spatial 

variability of the 

representation 

error
R = U D2 UT



Representation Error is not the 

same as interpolation error

• Representation error often is defined as 

mapping or interpolation error for unresolved 

scales

• Interpolation error can be found by examining 

the difference between resolved observations 

mapped onto the coarse model grid and then 

remapped onto the finer observation grid

• Interpolation error does not account for missing 

model physics



Interpolation Error

• Results from 1/10°

POP model are 

compared to 1°POP

• The 1°POP doesn’t 

generate meanders or 

eddies

• The 1/10°POP 

features have scales 

which are mapped 

reasonably well on 

the 1°POP grid



POSTERIOR STATISTICAL EVALUATION

• Estimate of the covariance of the innovation:

• < ( yo - Hxf) ( yo - Hxf)T > ≈ (σo)2I + WWT + HVTVHT (10)

• W is the matrix whose columns are the eight leading EOFs of the 
representation error, weighted by their corresponding singular values, 
< εo εoT > is assumed to be a multiple of the identity matrix I. 

• Assume no cross correlation for the errors

• < Hεf εoT > = < Hεf εRT > = 0 (11)

• Assume that εo is determined by the properties of the instrument, rather 
than those of the physical system. 

• εf and εR arere constructed to be orthogonal, but they may not be 
uncorrelated since the small scale variability may be linked to larger 
scale phenomena, so, e.g., the rate at which eddies are generated may 
be related to large scale factors. 

• We test the hypotheses (10) and (11) by an ensemble experiment.



ESTIMATION OF REPRESENTATION 

ERROR STATISTICS

• We can generate a 

Monte Carlo estimate of 

the representation error 

from the EOFS of the 

representation error

• The resulting pdf of the 

Monte Carlo estimate of 

the SST misfit is 

indistinguishable from 

the actual SST misfit 

pdf



Error Estimation for 16 year 0.5°

CFS model run

• Using a 16 year free run of the 0.5°CFS, 
we calculate the mutivariate eofs

• The lead eof accounts for 12.2% of the 
anomaly variance and is correlated with 
the SOI at 0.76

• The SST innovations are projected onto 
the SST component of the multivariate 
eofs

• The residuals are the orthogonal error 
space



Multivariate 

EOFs for 0.5°

CFS



Multivariate 

EOFs for 0.5°

CFS



Representation Error for 0.5°CFS

• The eofs of 

the SST 

misfits 

orthogonal 

space

• Approximately 

52 modes 

pass the 

Preisendorfer 

test

Preisendorfer Test EOF1  4.3%

EOF2  2.9% EOF3  2.2%



Representation Error for 0.5°CFS

• The amplitudes 

of the eofs of 

the SST misfit 

orthogonal 

space

Preisendorfer Test PC1  4.3%

PC2  2.9% PC3  2.2%



Information Content and 

Representation Error

• We have developed a technique to determine 

the information that a model can represent 

(information content) and the information 

which the model cannot describe due to lack 

of resolution or inadequate model physics 

(representation error)

• The technique tested with a coarse resolution 

climate model, but can be generalized to any 

model



Conclusions

• Using an ensemble approach, we can define the information content 
of a model using the Priesendorfer test to separate significant eofs 
from noise

• Analyses from ensemble techniques are linear combinations of the 
ensemble members

• The portion of the model-data misfits (innovations) that does not lie 
in the ensemble eof space is observation error

• The significant eofs of the observation or representation error can be 
used to determine the spatial correlations

• The representation error is model and resolution dependent, but 
differs from the interpolation error.

• A posterior test of the representation error shows that an ensemble 
constructed from our error eofs is indistinguishable from the actual 
innovations.


