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Outline: certaintyOutline: certainty and uncertaintyand uncertainty

Motivation for the revival of normal mode expansion 
with emphasis on large-scale tropical motions

Derivation of normal modes for various datasets 

Quantification of energy in three analysis datasets: 
CAM/DART, ECMWF and NCEP 

Analysis of time averaged analysis increments in 
terms of various motions and scales

Quantification of short-range forecast uncertainties 
in the ensemble system DART/CAM 

Conclusions 



• Linearization around the mean state (vertically stratified in 
Nz σ levels and at rest)

• New mass variable P

D - separation constant of dimension 
length - “equivalent depth”

Normal mode functionsNormal mode functions

KasaharaKasahara and Puri, 1981and Puri, 1981

q=ln(ps) 

assume separation of variables by 
new vertical dependence function Ψ

Stability parameter



System of equations for the 
horizontal structure of modes  

Hough functions

n - vertical mode index  

r - meridional mode index  
s - zonal mode index  

σ – eigen frequency 

(*)

Normal mode functionsNormal mode functions

Beauty of physical significance

Energy partitioned into rotational (ROT) 
and inertio-gravity (IG) motions 
(eastward-EIG and westward-WIG) for 
each vertical mode



Motivation for the present researchMotivation for the present research

Ref  to 
results of 

• Previous applications of normal modes indicated a negligible 
amount of energy in divergent motions and a dominance of 
the first vertical mode in the energy spectra (Tanaka et al., J.
Met. Soc. Japan)

• In the NWP model applications normal mode functions have 
been primarily used for the initialization purposes  

• State of the art NWP and climate models with good physical 
parameterizations and high resolution represent divergent 
motions much better. 

• Large-scale equatorial waves in recent years have been 
diagnosed from different mass-field observations. Quantification 
of their variance and dynamical relevance still puzzling.

• Divergent tropical circulations crucial, but unreliable from 
present (re)analysis



Tropics Tropics Region with largest uncertainties 
in the existing (re)analysis 
datasets, because of 

• Lack of direct observations of 
the wind field, especially wind 
profiles

• Difficult task of the tropical data 
assimilation due to balance issue



Uncertainty concerning the role of divergent Uncertainty concerning the role of divergent 
motions: static motions: static bkgbkg--error covarianceerror covariance

Single temperature  observation example

Rossby waves
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Rossby, K, MRG Rossby, K, 
MRG, EIG waves

Background –error spectra derived 
for ECMWF 500 hPa: 43% ER, 39% 
EIG, 8% K, 10%MRG
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Single zonal wind observation

Rossby waves Rossby, K, MRG
Rossby, K, 
MRG, EIG waves
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ECMWF 500 hPa:

43% ER, 39% EIG,

8% K, 10%MRG

Uncertainty concerning the role of divergent Uncertainty concerning the role of divergent 
motions: static motions: static bkgbkg--error covarianceerror covariance



Sensitivity experiments with 3DSensitivity experiments with 3D--Var   Var   

Reliable B matrix, simple tropical model: result from a study 
about added value by the second satellite with respect to 
ADM-Aeolus DWL satellite in terms of the reduction % of the 
first-guess error (Žagar et al., MWR, 2008)

u wind v windtemperature 

3D-Var assimilation acts as a univariate analysis !



Tropics Tropics 

Remedies 

• Improved global observing system

• More advanced data assimilation procedures 

• Improvements of the models, especially 
convective parameterizations and resolution

Region with largest uncertainties 
in the existing (re)analysis 
datasets, because of 

• Lack of direct observations of 
the wind field, especially wind 
profiles

• Difficult task of the tropical data 
assimilation due to balance issue



Tropics Tropics Questions 

How much of the large-scale 
tropical circulation is made up by 
the Kelvin wave, mixed Rossby-
gravity wave, other inertio-gravity 
waves?

How is this dependent on the 
model resolution, physics, biases? 

What is the spectra of forecast errors in the tropics like?     
How are the tropical forecast errors spread across the scales 
and motion types? What modes do the biases project onto?

Related data assimilation issues

How important are special tropical waves (Kelvin, mixed
Rossby-gravity, large-scale IG) for the data assimilation?  

What is the real potential of the EnKF in the tropics due to 
flow-dependent background-error covariances in comparison 
to 4D-Var?



Application of normal modes to CAM, NCEP, Application of normal modes to CAM, NCEP, 
and ECMWF dataand ECMWF data

Three analysis dataset for July 2007, global fields every 
6 hours

DART/CAM: ensemble mean from the DART system, 
version 3.1, T85 horizontal resolution, 26 vertical levels 
up to 3.5 hPa. Limited number of observations 
(conventional observations and AMVs). 

ECMWF: operational analyses, 12-hour 4D-Var system, 
Cycle 32r2, T799 interpolated to N64 grid, 91 vertical 
level up to 1 Pa. Large amounts of satellite 
observations.

NCEP-NCAR reanalyses from NCAR mass archive: 3D-
Var system, T62 horizontal resolution, 28 vertical levels 
up to 2.7 hPa.  The assimilation system not the recent 
one.



Tropical winds in 3 analysis datasets in July 2007 at 370 Tropical winds in 3 analysis datasets in July 2007 at 370 hPahPa

DART/CAM: u wind,  370 hPa, along  5N NCEP: u wind,  370 hPa, along  5N ECMWF: u wind, 370 hPa, along 5N



Normal mode expansionNormal mode expansion

Basic idea: select the expansion basis which provides the best 
fit (best correlation and variance fit to the input grid-point 
fields) tuning of the truncation parameters Nk, Nn , Nm
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common expansion 
coefficient

normalization matrix

3D normal mode 
functions

input data vector
Nm – no. vertical  modes, index m
Nn – no. meridional modes per wave type, index n

Nk – no. zonal waves, index k 
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Vertical Vertical eigenstructures eigenstructures for CAMfor CAM

Input information: 
vertical discretization, 
temperature profile, 
stability profiles

Heq from 10 km to 0.3 m

10 km, 6.2 km, 2.2 km, 
985 m, 572 m, 379 m, 
250 m, 162 m, 107 m

Modes 10-26 have Heq
below 100 m



Vertical Vertical eigenstructures eigenstructures for ECMWFfor ECMWF
A difficult one:  

Heq from 10 km to 8 mm

First 18 with Heq > 100 m

Modes 19-38 between 100 m and 
10 m, 39-66 between 10 and 1 
m, and 66-91 below 1 m.



Horizontal structures: Kelvin wave exampleHorizontal structures: Kelvin wave example

Higher vertical modes 
and higher zonal wave 
numbers <=> horizontal 
structures more 
meridionally trapped 

m=1, 
k=31m=20, 

k=1



Tuning the expansion: an exampleTuning the expansion: an example of tuning of tuning NNnn

Choosing a (Nk,Nn,Nm) combination that will represent the most of 
input data variance. A trafe-off between the desired fit, regions 
and variable of most interest



Verification of the expansion quality for CAMVerification of the expansion quality for CAM

Nk = 80

Nn = 25

Nm= 25

Below 900 hPa zonal 
wind variance 
overestimated in the 
tropics, and 
underestimated in the 
mid-latitudes

Mass-field variance 
poor close to the 
surface due to 
orography

Correlation coefficient

Variance 
ratio



Tuning the expansion: Tuning the expansion: 
NCEP solution    NCEP solution    

Little variability of the 
mass field in the tropics

Fit worst at lowest levels 

Variance of the tropical 
zonal wind overestimated 
at lowest levels

Temporal variation of the 
expansion quality do not 
vary significantly in time 

Nk = 46

Nn = 20

Nm= 25



Example of the Example of the 
projection quality projection quality 

for NCEP wind field for NCEP wind field 
at 884 at 884 hPahPa levellevel



Energy distribution in CAMEnergy distribution in CAM

Posterior ensemble mean, average 
over 25-day period 6-31 July 2007

2∑∑∑
k n m

knmeqgH χ
(m,n) ∑

(m,k) ∑ (n,k) ∑

WIGEIG

ROT

EIG
WIG

ROT

88% 7% 5%



WIGEIGROT
(k

,n
)

(m
,n

)

KW make    
36% of EIG

2.6% of Etotal



Mean lowMean low--level July circulation in CAMlevel July circulation in CAM
R
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IG

Model level  24 (~929 hPa)



Tropics as envisaged by A. Gill (1980)

Level 15 (~269 hPa) Level 23 (~868 hPa)

KW

EIG

IG

ROT (V factor 3)

Movie to follow: CAM-KW



Kelvin wave evolution in CAM in July 2007

Movie is available at
//www.cgd.ucar.edu/cdp/nzagar/cam_kw.gif



How reliable is this Kelvin wave evolution?

DART/CAM uses few observations in the tropics. The assimilation 
uses flow-derived (multivariate) background-error covariances 

• Inter-comparison with other analyses 

Kelvin wave evolution in CAM: summary 

• Reversed flow in the lower and upper troposphere 

• Spatial discontinuity of the k=1 signal 

• Stronger k=1 signal developed by the end of month, especially 
in the Pacific

• Oscillations of daily period due to observations 



Kelvin wave evolution in July 2007 by NCEP 

Movie is available at
//www.cgd.ucar.edu/cdp/nzagar/ncep_kw.gif



Kelvin wave evolution in July 2007 by ECMWF

Movie is available at
//www.cgd.ucar.edu/cdp/nzagar/ecm_kw.gif



Temporal evolution of the KW, k=1 signal

CAM ECMWF NCEP

Heq(5-7) = 570, 
370, 250 m

Tidal signal Heq(5-6) = 500, 300 mHeq(7-11) = 700, 528, 
413, 332, 271



How reliable is this Kelvin wave evolution?

DART/CAM uses few observations in the tropics. The assimilation 
uses flow-derived (multivariate) background-error covariances 

• Inter-comparison with other analyses 

• Impact of models’ biases

• Estimate of the analysis uncertainty

Kelvin wave evolution in CAM: summary 

• Reversed flow in the lower and upper troposphere 

• Spatial discontinuity of the k=1 signal 

• Stronger k=1 signal developed by the end of month, especially 
in the Pacific

• Oscillations of daily period due to observations 



Average IG 
motions in July 
2007 in the lower 
troposphere

Quantitative 
comparison for the 
wind field



Time-averaged analysis increments ~ biases



Biases split in ROT and IG modes



Qualitative agreement in most of balanced modes  

CAM ECMWF NCEP

Example: ROT, m=1, n=3



Analyses 
inter-
comparison

CAM

On average, 
smallest energy % 
in IG  among the 
three datasets

ECMWF

n-mode symmetry 
in EIG-WIG, 

Lowest vertical 
mode dominant  

NCEP

Significant 
energy % in IG 
modes also in 
mid-latitudes

ROT

EIG
WIG

only wind part



Uncertainty on
initial state

Initial states

Final states

Ensemble assimilation: Ensemble assimilation: 
for CAM/DART solved for CAM/DART solved within the “ensemble adjustment Kalman filter”

Analysis

True initial 
state True final state

Deterministic forecasts

Ensemble 
mean

Climatology

So far, I used  
this   



Quantifying uncertainties in CAM analyses

To analyse the uncertainty, each prior and posterior ensemble 
member projected. 

To analyse equivalents of 6-hr forecast errors, departures from the 
ensemble mean fields projected. 
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Ensemble size problem accounted for by:  

• Covariance localization – reduces the impact of an observation on 
a state variable by a factor which is a function of their physical 
distance. 

• Covariance inflation – increases the prior ensemble spread leaving 
the mean and correlations between the variables unchanged (here 
used is a time constant, spatially varying inflation applied on 
posterior)
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AveragedAveraged ensens mean and its uncertainty mean and its uncertainty 
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EIG, po mean

EIG, po spread WIG, po spread

WIG, po meanROT, po mean

ROT, po spread



Analysis and its uncertainties: ROT modes

D11-T2, rot, po mean D35-T2, rot, po mean D61-T2, rot, po mean

D11-T2, rot, po spread D35-T2, rot, po spread D61-T2, rot, po spread

E
n
se

m
b
le

 m
ea

n
E
n
se

m
b
le

 s
p
re

ad Related to the impact of inflated 
covariances, observation coverage, 
flow properties



Uncertainty reduction in timeUncertainty reduction in time

D11-T2, rot, dep. po D35-T2, rot, dep. po D61-T2, rot, dep. po 

D11-T2, dep. po-pr D35-T2, dep. po-pr D61-T2, dep. po-pr 
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Reduction of uncertainties does not necessarily 
coincide with the structure of the spread

Uncertainties reduced where observations exist
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Impact of observations

D11-T2, rot, incs D35-T2, rot, incs D61-T2, rot, incs

Reduction of the ensemble spread
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Mean energy and its uncertainties in EIG modes

D11-T2, eig, po mean D35-T2, eig, po mean D61-T2, eig, po mean

D11-T2, eig, po spread D35-T2, eig, po spread D61-T2, eig, po spread
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Analysis uncertainties in WIG modes

D11-T2, wig, po mean D35-T2, wig, po mean D61-T2, wig, po mean

D11-T2, wig, po spread D35-T2, wig, po spread D61-T2, wig, po spread
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Observation non-homogeneity and inflation

06 UTC 12 UTC 18 UTC 24 UTC
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Summary Summary 

• Tropics are the area with largest uncertainties in existing analysis 
datasets. Tropics are the area with largest biases in three studied 
data assimilation systems

• Normal mode expansion allows to quantify energy in various 
motions and to modify traditional view of inertio-gravity motions as 
junk. With normal modes it is possible to quantify variance in 
various tropical divergent motions and its relevance for data 
assimilation. 

• Application of normal modes offers a physically attractive approach 
to the quantification of uncertainties in analyses and forecasts. It 
points out the scales and motion types most affected by the 
inflation, localization, observations and model biases.

• Uncertainties vary in time and space, thus an argument for a flow-
dependent covariance matrix for the forecast errors. The normal 
mode application may also help to address modeling aspects such as 
model-error covariances and the initialization.


