Accounting for an imperfect model in 4D-Var

Yannick TRÉMOLET - ECMWF

February 2006

• Introduction
• Weak constraint 4D-Var
• Model error covariance matrix
• Some results
• Future work
Imperfect model in 4D-Var

4D Variational Data Assimilation

Variational data assimilation is based on the minimisation of:

\[J(x) = \frac{1}{2} [\mathcal{H}(x) - y]^T R^{-1} [\mathcal{H}(x) - y] \]

\[+ \frac{1}{2} (x_0 - x_b)^T B^{-1} (x_0 - x_b) + \frac{1}{2} \mathcal{F}(x)^T C^{-1} \mathcal{F}(x) \]

- \(x \) is the 4D state of the atmosphere over the assimilation window.
- \(\mathcal{H} \) is a 4D observation operator, accounting for the time dimension.
- \(\mathcal{F} \) represents the remaining theoretical knowledge after background information has been accounted for (balance, DFI...).
- Control variable reduces to \(x_0 \) using the relation: \(x_i = \mathcal{M}_i(x_{i-1}) \).
- Used in operational 4D-Var implementations.
- Model \(\mathcal{M} \) verified exactly although it is not perfect...
Weak constraint 4D-Var

- The model can be imposed as a constraint in the cost function, in the same way as other sources of information:

\[\mathcal{F}_i(x) = x_i - \mathcal{M}_i(x_{i-1}) \]

- Model error \(\eta \) is defined as: \(\eta_i = x_i - \mathcal{M}_i(x_{i-1}) \)

- The cost function becomes:

\[
J(x) = \frac{1}{2} \sum_{i=0}^{n} [\mathcal{H}(x_i) - y_i]^T R_i^{-1} [\mathcal{H}(x_i) - y_i]
\]

\[
+ \frac{1}{2} (x_0 - x_b)^T B^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{i=1}^{n} \eta_i^T Q_i^{-1} \eta_i
\]

- Model error covariance matrix \(Q \) has to be defined.

- Strong constraint 4D-Var is \(\mathcal{F}_i(x) \equiv 0 \) i.e. \(\eta \equiv 0 \) (perfect model).
Imperfect model in 4D-Var

Control Variable in 4D-Var

<table>
<thead>
<tr>
<th>4D-Var</th>
<th>4D-Var(_x)</th>
<th>4D-Var(_\eta)</th>
<th>4D-Var(_\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>(x)</td>
<td>(x_0, \eta)</td>
<td>(x_0, \beta)</td>
</tr>
<tr>
<td>(x_i = M_i(x_{i-1}))</td>
<td>(x_i \approx M_i(x_{i-1}))</td>
<td>(x_i = M_i(x_{i-1}) + \eta_i)</td>
<td>(x_i = M_{i,0}(x_0) + \beta_i)</td>
</tr>
<tr>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td>3D Initial Condition</td>
<td>4D Model Trajectory</td>
<td>3D I.C. + Model Error Forcing</td>
<td>3D I.C. + Model Bias</td>
</tr>
</tbody>
</table>

Yannick Trémolet
Model Error Forcing Control Variable
Imperfect model in 4D-Var

\textbf{4D-Var with Model Error Forcing}

\[J(x_0, \eta) = \frac{1}{2} \sum_{i=0}^{n} [H(x_i) - y_i]^T R_i^{-1} [H(x_i) - y_i] \]

\[+ \frac{1}{2} (x_0 - x_b)^T B^{-1} (x_0 - x_b) + \eta^T Q^{-1} \eta \]

with \(x_i = M_i(x_{i-1}) + \eta_i \).

- The \textit{usual} model error term in 4D-Var.

- \(\eta_i \) is a 3D atmospheric state,

- \(\eta_i \) represents the instantaneous model error,

- \(\eta \) is constrained by the fact that it is propagated by the model.
• TL and AD models can be used with little modification,

• Information is propagated between observations and IC control variable by TL and AD models.
Imperfect model in 4D-Var

Model Error Forcing: Properties

\[J'' = \begin{pmatrix} B^{-1} & 0 \\ Q_1^{-1} & \ddots \\ 0 & Q_n^{-1} \end{pmatrix} + \begin{pmatrix} H_{0,n}^T R_0^{-1} H_{0,n} & 0 \\ H_{1,n}^T R_1^{-1} H_{1,n} & \ddots \\ 0 & H_n^T R_n^{-1} H_n \end{pmatrix} \]

- Hessian of the preconditioned problem:

\[
I + B^{T/2} H_{0,n}^T R_0^{-1} H_{0,n} B^{1/2}
\]

\[
I + Q_i^{T/2} H_{i,n}^T R_i^{-1} H_{i,n} Q_i^{1/2}
\]

- Largest eigenvalue:

\[
\lambda_{max} \approx 1 + 2n_{obs} \max \left[(\sigma_b/\sigma_o)^2, (\sigma_q/\sigma_o)^2 \right]
\]

- This is similar to strong constraint 4D-Var.
Imperfect model in 4D-Var

Model Bias Control Variable
4D-Var with Model Bias

\[J(x_0, \beta) = \frac{1}{2} \sum_{i=0}^{n} \left[H(x_m^i + \beta_i) - y_i \right]^T R_i^{-1} \left[H(x_m^i + \beta_i) - y_i \right] + \frac{1}{2} (x_0 - x_b)^T B^{-1} (x_0 - x_b) + \beta^T Q_{\beta}^{-1} \beta \]

with \(x_m^i = M_{i,0}(x_0) \).

• \(\beta_i \) is a 3D atmospheric state,

• The model is not perturbed,

• \(\beta \) sees global (model – all observations) bias,

• Does not correct for bias of one subset of observations against another subset of observations.
• Bias added to forecast at post-processing stage,
• Makes sense if β is slowly varying or constant ($\beta_i = \beta$),
• Information is propagated between observations and IC control variable by TL and AD models (not modified).
Model Bias: Properties

\[J'' = \begin{pmatrix} B^{-1} & 0 \\ 0 & Q_{\beta}^{-1} \end{pmatrix} + \begin{pmatrix} H^T R^{-1} H & 0 \\ 0 & H^T R^{-1} H \end{pmatrix} \]

- Change of variable: \(\chi_0 = B^{-1/2} x_0 \) and \(\chi_1 = Q_{\beta}^{-1/2} \beta \),

\[\hat{J}'' = \begin{pmatrix} I + B^{T/2} H^T R^{-1} H B^{1/2} & 0 \\ 0 & I + Q_{\beta}^{T/2} H^T R^{-1} H Q_{\beta}^{1/2} \end{pmatrix} \]

- Largest eigenvalue: \(\lambda_{max} \approx 1 + 2n_{obs} \max \left[(\sigma_b/\sigma_o)^2, (\sigma_{\beta}/\sigma_o)^2 \right] \),

- Model bias is represented by additional parameters, without entering the model equations,

- Optimisation problem is very similar to strong constraint 4D-Var.
Model State Control Variable
Imperfect model in 4D-Var

Model State Control Variable

- Use \(\{x_i\}_{i=0,...,n} \) as the control variable.

- Incremental cost function:

\[
J(\delta x) = \frac{1}{2} (\delta x_0 - b)^T B^{-1} (\delta x_0 - b) + \frac{1}{2} \sum_{i=0}^{n} (H \delta x_i - d_i)^T R_i^{-1} (H \delta x_i - d_i) \\
+ \frac{1}{2} \sum_{i=1}^{n} (q_i + M_{i-1} \delta x_{i-1} - \delta x_i)^T Q_i^{-1} (q_i + M_{i-1} \delta x_{i-1} - \delta x_i)
\]

where \(b = x^g - x_b, d_i = H(x^g_i) - y_i \) and \(q_i = M_{i-1}(x^g_{i-1}) - x^g_i \).
• Model integrations within each time-step (or sub-window) are independent:
 – Information is not propagated across sub-windows by TL/AD models,
 – Natural parallel implementation (in theory...).

• Tangent linear and adjoint models:
 – can be used without modification,
 – propagate information between observations and control variable within each sub-window.
Model State Control Variable: Properties

- Preconditioning with $B^{-1/2}, Q_1^{-1/2}, \ldots, Q_n^{-1/2}$

- The Hessian of the preconditioned cost function is:

$$
\hat{J}'' =
\begin{pmatrix}
I + M_1^T M_1 & -M_1^T & 0 \\
-M_1 & I + M_2^T M_2 & -M_2^T \\
-M_2 & I + M_3^T M_3 & \cdots
\end{pmatrix}
$$

- The off-diagonal terms propagate the information between the sub-windows.
Imperfect model in 4D-Var

Model State Control Variable: Properties

- Over one time step, $M_i \approx I$:

\[
\hat{J}' \approx \begin{pmatrix}
2I & -I & 0 \\
-I & 2I & -I \\
-2I & -I & 2I \\
\end{pmatrix}
\]

- The largest eigenvalue is:

\[
\lambda_{max} \approx 4 + 2n_{obs} / n \max \left[(\sigma_b / \sigma_o)^2, (\sigma_q / \sigma_o)^2 \right]
\]

- Approximately the same as the maximum eigenvalue of strong constraint 4D-Var for the sub-windows.

- But...
Imperfect model in 4D-Var

Model State Control Variable: Properties

• Smallest eigenvalue:

\[\lambda_{\text{min}} \propto 1/n^2 \]

• Condition number:

\[\kappa \approx 2n \, n_{\text{obs}} \left(\frac{\sigma_q}{\sigma_o} \right)^2 \]

 – Larger than for strong constraint 4D-Var,
 – Increases with the number of sub-windows (it takes \(n \) iterations to propagate information).

• Simplified Hessian of the cost function

 – can be used as preconditioner,
 – \(\approx \) Laplacian operator: small eigenvalues are obtained for constant perturbations which might be well observed and project onto eigenvectors of \(J_o \)” associated with large eigenvalues.

Yannick Trémolet
Weak Constraint 4D-Var: Examples

- 6-hour sub-windows:
 - Better than 6-hour 4D-Var: two cycles are coupled through J_q,
 - Better than 12-hour 4D-Var: more information (imperfect model), more control,
 - It makes more sense to use $Q = \alpha B$ in that case.

- One time step sub-windows:
 - Each assimilation problem is instantaneous = 3D-Var,
 - Equivalent to a string of 3D-Var problems coupled together and solved as a single minimisation problem,
 - Approximation can be extended to non instantaneous sub-windows.
Imperfect model in 4D-Var

Weak Constraint 4D-Var: Sliding Window

(1) Weak constraint 4D-Var

(2) Extended window

(3) Initial term has converged

(4) Assimilation window is moved forward

- This implementation is an approximation of weak constraint 4D-Var with an assimilation window that extends indefinitely in the past...

- ...which is equivalent to a Kalman filter that has been running indefinitely.
Model Error Covariance Matrix
Imperfect model in 4D-Var

Model error covariance matrix

- The usual choice is $Q = \alpha B$.
- Linearisation in incremental formulation gives:

\[
\delta x_n = M_n \ldots M_1 \delta x_0 + \sum_{i=1}^{n} M_n \ldots M_{i+1} \eta_i
\]

- δx_0 can be identified with η_0.
- The solution of the analysis equation satisfies:

\[
\delta x_0 = BH^T (R + H BH^T)^{-1} (y - \mathcal{H}(x_b)) \\
\eta = QH^T (R + HQH^T)^{-1} (y - \mathcal{H}(x_b))
\]

- If Q and B are proportional, δx_0 and η are constrained in the same directions, may be with different relative amplitudes.
- They both predominantly retrieve the same information: $Q = \alpha B$ is too limiting.
Generating a Model Error Covariance Matrix

- B is estimated from an ensemble of 4D-Var assimilations.
- Considering the forecasts run from the 4D-Var members:
 - At a given step, each model state is supposed to represent the same *true* atmospheric state,
 - The tendencies from each of these model states should represent possible evolutions of the atmosphere from that same *true* atmospheric state,
 - The differences between these tendencies can be interpreted as possible uncertainties in the model or realisations of *model error*.
- Q can be estimated by applying the statistical model used for B to tendencies instead of analysis increments.
Imperfect model in 4D-Var

Model Error Covariance Matrix

- Run forecasts from 4D-Var ensemble (T319),
- Save tendencies after 12h, 18h, 24h, 30h,
- Normalise tendencies to 1 hour time-steps,
- 10 members, one month (26 days),
- 936 realisations of *model errors*,
- Run statistical model.
Imperfect model in 4D-Var

Average Temperature Vertical Correlations

Background Error

Model Error

Yannick Trémolet
Imperfect model in 4D-Var

Temperature Horizontal Correlations

Background Error

Model Error

Yannick Trémolet
Imperfect model in 4D-Var

Average Standard Deviation Profiles

- Vorticity * 1.0E5
- Divergence * 1.0E5
- Temperature
- Background Error
- Model Error

Q has narrower correlations and smaller amplitudes than B
Results: Constant Model Error Forcing
Imperfect model in 4D-Var

Results: Fit to observations

AMprofiler-windspeed Std Dev N.Amer

Background Departure

Analysis Departure

- Fit to observations is more uniform over the assimilation window.
- Background fit improved only at the start: error varies in time?
Model Error Forcing

Zonal Mean Temperature
July 2004

M.E. Forcing \rightarrow
M.E. Mean Increment

Control Mean Increment
\downarrow

Yannick Trémolet
Imperfect model in 4D-Var

Mean Model Error Forcing

Temperature
Model level 11 (∼5hPa)

Mean M.E. Forcing → M.E. Mean Increment

Control Mean Increment

Monday 5 July 2004 00UTC ©ECMWF Mean Increment (enrc)
Temperature, Model Level 11
Min = -1.97, Max = 1.61, RMS Global=0.66, N.hem=0.54, S.hem=0.65, Tropics=0.77

Wednesday 30 June 2004 21UTC ©ECMWF Mean Model Error Forcing (eptg)
Temperature, Model Level 11
Min = -0.05, Max = 0.10, RMS Global=0.02, N.hem=0.01, S.hem=0.03, Tropics=0.01

Min = -1.60, Max = 1.15, RMS Global=0.55, N.hem=0.51, S.hem=0.41, Tropics=0.69

Yannick Trémolet
Imperfect model in 4D-Var

AMSU-A Departures

STATISTICS FOR RADIANCES FROM NOAA-16 / AMSU-A - 13
MEAN FIRST GUESS DEPARTURE (OBS-FG) (BCORR.) (CLEAR)
DATA PERIOD = 2004070200 - 2004073118 , HOUR = ALL
EXP = ENRC
Min: -1.9618 Max: 2.7 Mean: -0.169506

STATISTICS FOR RADIANCES FROM NOAA-16 / AMSU-A - 13
MEAN FIRST GUESS DEPARTURE (OBS-FG) (BCORR.) (CLEAR)
DATA PERIOD = 2004070200 - 2004073118 , HOUR = ALL
EXP = EPTG
Min: -1.6688 Max: 0.8 Mean: -0.231773

STATISTICS FOR RADIANCES FROM NOAA-16 / AMSU-A - 14
MEAN FIRST GUESS DEPARTURE (OBS-FG) (BCORR.) (CLEAR)
DATA PERIOD = 2004070200 - 2004073118 , HOUR = ALL
EXP = ENRC
Min: -3.3564 Max: 5.46 Mean: 0.006309

STATISTICS FOR RADIANCES FROM NOAA-16 / AMSU-A - 14
MEAN FIRST GUESS DEPARTURE (OBS-FG) (BCORR.) (CLEAR)
DATA PERIOD = 2004070200 - 2004073118 , HOUR = ALL
EXP = EPTG
Min: -2.6 Max: 2.16 Mean: -0.111883

Control

Model Error

Yannick Trémolet
Imperfect model in 4D-Var

Yannick Trémolet

AMSU-A Statistics

- Bias is more uniform,
- BG std. dev. is reduced in SH,
- More data is used.
Imperfect model in 4D-Var

Temperature Analysis Profile

Yannick Trémolet
Imperfect model in 4D-Var

Temperature Increments Profile

Yannick Trémolet
Temperature Increments Profile

Increment - Temperature (K)

Forcing - Temperature (K/h)

Mod.Err. B
Mod.Err. Q

Forcing B
Forcing Q

Yannick Trémolet
Imperfect model in 4D-Var

Fit to radiosonde data

- Oscillations in bias are reduced,
- Std. deviation is reduced above 50 hPa (bg and an).

One source of model error was corrected by the forcing term.
Model Error Forcing

STATISTICS FOR RADIANCES FROM NOAA-15 / AMSU-A - 13
MEAN FIRST GUESS DEPARTURE (OBS-FG) (BCORR.) (CLEAR)
DATA PERIOD = 2004013118 - 2004021512 , HOUR = ALL
EXP = EJ5H
Min: -2.1916 Max: 1.8620 Mean: -0.309585

STATISTICS FOR RADIANCES FROM NOAA-15 / AMSU-A - 13
MEAN FIRST GUESS DEPARTURE (OBS-FG) (BCORR.) (CLEAR)
DATA PERIOD = 2004013118 - 2004021512 , HOUR = ALL
EXP = EJ5J
Min: -1.9278 Max: 1.2571 Mean: -0.333228

Northern hemisphere winter case (February 2004)
Model bias in the stratosphere is reduced.
Imperfect model in 4D-Var

Low Level Mean Model Error Forcing

Friday 30 April 2004 21UTC ©ECMWF Mean Model Error (ej6a)
Temperature, Model Level 60
Min = -0.10, Max = 0.05, RMS Global=0.00, N.hem=0.01, S.hem=0.00, Tropics=0.00

Yannick Trémolet
Low Level Mean Model Error Forcing

Friday 30 April 2004 21UTC ©ECMWF Mean Model Error (ej6a)
Temperature, Model Level 60
Min = -0.10, Max = 0.05, RMS Global=0.00, N.hem=0.01, S.hem=0.00, Tropics=0.00

Yannick Trémolet
• The only significant source of data in the box is aircraft data (Denver airport).
• The bias for aircraft low level temperature observations was reduced.
Imperfect model in 4D-Var

Low Level Mean Model Error Forcing

Friday 30 April 2004 21UTC ©ECMWF Mean Model Error (ej8k)
Temperature, Model Level 60
Min = -0.07, Max = 0.06, RMS Global=0.00, N.hem=0.01, S.hem=0.00, Tropics=0.00

Removing aircraft data in the box eliminates the spurious forcing.
Aircraft Temperature Bias

USA ACARS and TEMP 00z temperature biases
Monthly averages for asc, desc and cruise level

Observations are biased.

Figure from Lars Isaksen
Imperfect model in 4D-Var

12 Observations Experiment

Systematic model error captures stationary errors (model or observations).

Yannick Trémolet
Imperfect model in 4D-Var

Model Bias Experiments

Final Cost Function
Model Bias (enxh) Control (enrc)

Jo enxh
10*Jb enxh
100*Jc enxh
10*Jq enxh
Jo enrc
10*Jb enrc
100*Jc enrc

Yannick Trémolet
Model Bias Experiments

- Fits observations and background better,
- Observation statistics show some improvements and some degradations,
- Might absorb some of the signal,
- Scores slightly negative,
- Add bias to forecast at post-processing stage,
- Q should have large scale correlations?
Conclusions
Imperfect model in 4D-Var

Weak Constraint 4D-Var

- Weak constraint 4D-Var with model bias or forcing model error is essentially an initial value problem with parameter estimation (parameters happen to represent model error).

- Weak constraint 4D-Var with model state control variable is a 4D problem.

- J_q acts as coupling between sub-windows:
 - propagates information across sub-windows,
 - forgetting factor because model equations are not strictly verified.

- Takes into account the fact that the model is imperfect without directly estimating model error.

- Long window weak constraint 4D-Var is equivalent to a full rank Kalman smoother: the sliding window is an efficient algorithm to implement it.
Results

- Weak constraint 4D-Var is technically implemented in the IFS (x coming...),
- With constant model error forcing:
 - Fits the data more uniformly over the assimilation window,
 - Capture some model errors (winter stratosphere),
 - Captures some observation bias (ascending/descending aircrafts),
- Systematic differences between model and observations:
 - Distinction between model bias and observation bias?
 - Interactions with variational observation bias correction?
- Two tools to define the errors we wish to capture:
 - Model error covariance matrix (scales, ...),
 - Model for model error in η and β formulations (constant 3D state).
Future Work

- Compare various formulations of weak constraint 4D-Var (η, β, x),
- What type of model error (random vs. systematic vs. bias)?
- Determine appropriate model error covariance matrix,
- Interactions between model error and observation bias,
- Long window 4D-Var,
- Operational analysis and Reanalysis.