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PUMP

PUMP is a process study to observe
and model the complex of mechanisms
that connect the thermocline to the
surface in

the equatorial Pacific cold tongue.

Its premises are:

e climate-scale ocean models are ready to
exploit realistic vertical exchange
processes,
but need adequate observational guidance

* historical records now exist upon which we
can target process experiments (TAO)

 observational capabilities are superior to
what they were 20 years ago



ENSO Is not a solved
problem!

The past few years have shown that we
are along way from being able to make
accurate ENSO forecasts even a few
months ahead.

There are few targets the climate
community could set for itself that would
make more difference to more people
than to improve our abllity to forecast
ENSO and its effects.



OGCM meridional circulation
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ENSO amplitude is principally controlled
by the efficiency of communication
between the thermocline and the surface
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Meehl et al (2001)

“The dominant influence on EI Nino
amplitude is the magnitude of the ocean
model background vertical diffusivity.
Across all model experiments, regardless
of resolution of ocean physics, the runs
with the lowest values of background
vertical diffusivity have the largest Nino3
amplitudes.”
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OGCM meridional circulations
are very different
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Cold blas occurs
. Forced OGCMs:
INn forced GFDL OM-3, NCAR gx1v3
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Upwelling requires mixing
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We do not understand the
regime-dependence of equatorial
mixina

All existing eddy
diffusivity profiles
in the cold tongue

logle ) (W kg™')

160 200- " u
i 6 5 4 -3 -2
-1
ol log(Kp/ m?s™)
Year Day i Gregg (1998)

Dissipation rate during 10 days of TIWE
Lien and D’Asaro



TIWE  Variability over 38 days at 0° 140°W late Fall 1991
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Something else is required
- Internal Gravity Waves?

<u'w'>wave ~ 0.3 Nm2

Smyth & Moum 2002 idealized study
<u'w'>wave ~ 30 Nm-2
(Several orders of magnitude > ZPG)

— NO sensible estimates to date



wwwwwww

Period (hr)
10 Tox To 1072
20 UL R L |||TI"I]I T | LR

0 30m

16 -1

nigh{\A 2

o
T

m
T

Temperature variance 1073 ¢c?)

Ll Lol N (AN
Olo" 10° 10 10°
Frequency (cph)

frequency spectrum of
temperature from mooring

Wavelength (m)

5200 250 25 Theoretical studies
b aprit 14-8 1 © confirm scales of instabilities
o |+ suggest role of wave radiation in
. vertical momentum transport
i A night i
& Observational quantification
g | ]
H % 1 of momentum transport by vertically-
: | propagating internal waves is lacking
i ]
ol o MR
1o 107 1072 [o}

Frequency (Hz)
wavenumber spectrum of

iIsotherm displacement from
towed thermistor chain

107° - '-"=‘|025 . 1035
[P e
|1 e 6\‘8\ :
!6 g |T=10s
10 @ ./(}, <
~ D He (T lsiOias
y ARt i |
“g 10 A Wave PE vs ¢
5 g ’/ Hourly average values are highly correlated
A e and related through a decay time scale which
e Is at most a few hours
’ 10=8 I 107% ””1Iol‘ Tor3 1072



What's new?

« 20-year records at the equator to aid
In
targeting the process experiment

* new types of observations

* new ways of thinking about ocean
turbulence observations

« advances in modeling capabilities,
resolution and techniques



Primary Objectives of PUMP

To observe and understand:

1) The evolution of the equatorial cell under varying
winds

2) The mixing mechanisms that determine
(a) the depth of wind-input momentum
(b) the transmission of surface heat fluxes into the
upper thermocline

3) The processes that allow and control exchange
across the sharp SST front north of the cold tongue

PUMP will put mixing observations in their regime conte



Components of PUMP

® Reanalysis of historical data
® Multi-scale modeling effort

® 2-3 year moored array along 140°W,
to establish the scales and variability of
equatorial upwelling

® Two IOPs, both on and just north of the
equator at 140°W, to quantify the
relative effects of upwelling and mixing
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PUMP Intensive Observing Periods A
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Goal is to determine:

* The mechanisms by which internal waves are modulated, on and off the Eq
» The spatial structure of mixing across the equatorial region

» The variability of mixing and air-sea forcing across the SST front

* The turbulent heat flux integral on a scale to be compared to upwelling

* The nature of mixing during the rapid and reduced cooling periods



Perfecting OGCMs
for climate forecasting

Four elements:

1) Improve the forcing fields

2) Provide benchmark data sets to

compare
model circulations across the upwelling

cell
3) Improve mixing parameterizations

4) Learn to use sparse sustained
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What Is already happening?

1) Test measurement of near-surface shear
Point doppler current meters at 5-25m
on a test mooring at 2°N,140°W

2) Funding for a post-doc to study array
design (OSSESs). Arriving at PMEL this
summer.

3) Test moored mixing sensors (fast-
response thermistors). To be deployed
at 0°,140°W later this year.
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PUMP timeline:

Component

2005 | 2006 | 2007 | 2008

Data analysis

Historical

2009

Existing small-scale observations

PUMP data

Modeling

Design/OSSEs

Process Models

LES, DNS, fine-scale simulations

Parameterization
development

Moorings (17 sites)

Mixing cruises (2 ships)

(I0Ps during Rapid and Reduced
Cooling seasons)

Meridional fine-structure
cruises (3rd ship during I0Ps)

Nov-+Dec IOP

Strawma
n

Budget
$0.5M

$3.0M

$8.1M

$8.1M

$19.7M



Summary rationale for PUMP:

1. The processes of mixing and upwelling that control
equatorial SST are poorly understood and
modeled.

2. Present-generation OGCM representations of the
upwelling cell are not adequately constrained by
observed reality and differ widely among models.

3. This deficiency contributes to the fundamental
problems of coupled models of the tropical climate.

4. The tools both to observe these phenomena and to

Improve the models are at hand.
E PUMP will spur a leap in our ability to diagnose and

model the
tropical Pacific (and Atlantic) and to predict its variability.
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rapid reduced
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Figure 1: Annual cyele of SST at 09, 140°W, illustrating the periods of heating
and cooling during the vear. Light grav lines show each individual vear since 1934
overlaid {vears of strong ENSO anomalies have heen omitted as noted). The heavy
black line shows the average annual cyvele. Shading shows the months of maximum
heating and maximun cooling, and a period of reduced cooling with active tropical
instability wave activity, that ocour consistently in almost all years.
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Questions

what triggers low-Ri instabilities/waves/growth/mixing?

what is vertical momentum flux via IGW?

what distinguishes rapid cooling from reduced cooling phase?
what is the role of turbulent mixing in each case?

how does the mixing regime change during a TIW?



Geophysical flows

® instabilities are a part of the
continuum of fluid motions

¢ neither origins nor consequences
are generally clear

N 12417 W .
Segtember 2001
B 2011 GMT -
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Turbulent heat flux profiles
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Divergence must be sampled

very near the surface
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Estimate of meridional scale
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Sensitivity of winds to SST

2—4 September 1999

a) TMI Sea Surfclce Temperature
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Dependence of mixing on Ri IS not

|0.5- i s asauab it v aaaaal Laaaiy
6% 3
. 1075 s
l? 3 o
] ] - [
o E
E ] [
v 0°, 3
|0-9~—: B
3 - . F
10'° — ST -
10 10 10 10

Moum etal 1989

Depth/(m)

simple

80

160

OO

tan”' (Ri)
60°

90°

1
1
1
1
[
[}

€/(Wkg"
1078

|07

1079

Ri=10
Hebert etal 1991



Cold tongue SST Is a function
of the entire circulation cell




