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Lagrangian Properties of the Ocean
Coherent structures

Commonly observed
Descriptive physical pheonomena
are often in Lagrangian nature

Lagrangian trajectories
Directly related to dynamics

Maybe associated with  
Lagrangian structures

( , )d t dt d= +x v x η
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Combining the Elements

Data Assimilation
Using Eulerian Models

Lagrangian Observations
Along the Paths

Lagrangian Data Assimilation

Observing System Design:Observing System Design:
Optimal Deployment StrategiesOptimal Deployment Strategies

Dynamical Systems Theory
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Eulerian Model and Observation

Eulerian model Eulerian observation at rs
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Lagrangian Observations and Eulerian Model

Observation yo
k of the true positions yt

k subject to noise εt
k 

along the instrument path, k=1,…,K, 

True drifter dynamics (may be stochastic)
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Model forecast xD(tk)
Simulated drifter dynamics (deterministic)
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Lagrangian Data Assimilation (LaDA) 
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Augmented systemfor the ocean (xF) and drifter (xD) states
State vector x is N=NF + ND dimensional & dynamics is one-way interaction

Error covariance P is NxN=(NF + ND)(NF + ND ) dimensional
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Ensemble Kalman Filter (EnKF)

xF

xD

yD
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Application to Shallow-Water Ocean Circulation

Can LaDA recover xt(t) after assimilating the drifter positions yo(tk)?
How many drifters?
How often?
Where to deploy?

T=0
(IC) ??

80 Ensemble members
have=550m
hstd =50m

control run
have=500m
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One Drifter at ν= 500m2s-1  & (∆T, Ne, rloc) =(1day, 80, ∞)

T=90
days

T=0
(IC)

Truth (Control run) Without DAWith DA
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Performance Verification
Parameters

Degree of turbulence ν
Assimilation time interval ∆T
Ensemble number Ne

Localization length scale rloc

Performance validation by comparing 
True error norm

Predicted error and ensemble spread
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Lagrangian Decorrelation Time Scale (TL) at ν= 500m2s-1

Region A: TL ~ O(10 days)

Region B: TL ~ O(100+ days)

Results for TL are similar at ν= 400m2s-1
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Effect of Assimilation Time Interval ∆T

Lagrangian time scale is about TL~10days

∆T =1,2,4,5,8,10,15 and 20 days

(ν, rloc, Ne) =(500m2s-1, 300km, 80)

The method is stable if ∆T <TL

Height Error Kinetic Energy Error
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Effect of Turbulence ν
Reducing ν leads to turbulent flow

ν=500m2s-1 to 400m2s-1

(rloc , ∆T, Ne) =(∞, 1day, 80) 

Convergence deteriorate relative to ν=500m2s-1

Predicted error does not match true error

Increasing to 36 drifters does not rectify the problem

Norm comparison Chaotic advection of xD
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Effect of Ensemble Size Ne and Localization rloc

Error covariance is approximated by ensembles;
Slow convergence ~ (Ne)-1/2

Noisy correlation between remote regions for small Ne

leading to deterioration of filtering

A remedy is to introduce localization of error correlation
K= ρ ○(PHT) ( ρ○(HPHT) + R )-1

ρ ○() is the function of distance between
Grid points
Grid and drifter
drifters

denoting the Schur product (Hamill, 2001)
rloc gives the radius of influence
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Effect of Localization rloc for Turbulent Dynamics

Three localization radii investigated

rloc=150km, 300km, 600m

(ν,∆T, Ne) =(400m2s-1, 1days, 80) and 36 drifters

Better convergence using the localization

Optimal rloc=300km

Norm comparison Chaotic advection of xD
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Drifter Update Examples 

Along the jet
Large derivation: can be still 
successful

In the recirculating region

Can Can LaDALaDA handle chaotic drifter dynamics?handle chaotic drifter dynamics?

1

2

3

1

2
3

In the eddies
Detrainment process by 
the saddle

3
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Dealing with Lagrangian Saddle:
Estimation of Coherent Structures

Parameters (σ, ρ, ∆T)=(0.04, 0.02, 1.5)
Ex: failuer case for I.C.no.3
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Saddle Effect with the Eulerian Model 

Large updates in drifter position occur near saddle point
Prior PDF distribution can be bimodal; Unimodal Gaussian 
distribution breaks down.

It can potentially produce large and spurious changes in the flow

Ensemble Spread of drifter Update mechanism of the mean
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Saddle Effect
Saddle effect  occurs near the linearly 
hyperbolic region of velocity 
(λ: hyperbolicity given by the 

positive local Lyapunov exponent)

∆xa
F may be unreasonably large because 

PFD may be approximated by too large with exponent λ:

Dragged by a large innovation (yo
D-xo

D) 
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Tracer Control: Sanity check for ∆xa
F

CF ≡ Standard deviation of ∆xa
F with respect to the expected error

Pf
FF is independent of xf

D or xt
D: the flow has no knowledge of the drifters

Implementation
if CF < δ: Update of xF

if CF ≥ δ: No update of xF (but xD is updated)

CF is computed for xD within rFD from xD (rFD <rloc)

Control is applied to entire xD within rloc from xD
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Tracer Control with Vortex System

∆T=1.5 and δ=3

EKF
Without TC

With TC

EnKF
Without TC

With TC
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Dynamical Systems Theory
Two-dimensional drifter dynamics
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Unsteady flow 

Steady flow 

• Velocity u(x,y,t), is tangent to the streamfunction Ψ(x,y,t)

• Any trajectory remains on the iso- Ψ(x,y)  curve
• Streamfunction field Ψ(x,y) completely describes the global flow geometry
• Stable and unstable trajectories from the hyperbolic fixed point (saddle) define the global 

template

( ) ( )( )
( ) ( )( ) ( ) ( )( )0 0

, 0

    , ,

D D

D D D D

d x t y t
dt

x t y t x t y t

ψ =

ψ = ψ

• Stable and unstable invariant manifolds (material curve) from the hyperbolic trajectory 
(Lagrangian saddle) define the global template of the Lagrangian dynamics
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Targeted Observing System Design

Centers (eddies)
Hyperbolic trajectories
Mixed cases

Centers
Hyperbolic trajectories
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Preliminary Results
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Control

Mixed

Centers 

Hyperbolic trajectories

T=365 daysTargeted Observation System
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Control

Mixed

T=50T=25T=0
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T=200T=100

Control

T=75

Mixed
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Observing System Design for Transient Flow Dynamics: 
Finite Time Lyapunov Exponents
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Future Directions: Atmospheric Applications
Atmospheric motion vector / Cloud wind vector

Global wind vectors are used for 
the initial value of Numerical 
Weather Prediction (NWP), via 
data assimilation. 

Satellite-based observations 
provide wide coverage for the 
monitoring of atmospheric motion 
vectors by tracking the movement 
of clouds and interpolating the 
movement in time. 

Idea: Use Lagrangian data assimilation method 
& assimilate the cloud feature positions directly into the morel, 
- without any interpolation in time
- cloud height information is naturally taken care of
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Summary and Work in Progress

Data Assimilation
Using Eulerian Models

Lagrangian Observations
Along the Paths

Lagrangian Data Assimilation

Observing System Design:Observing System Design:
Optimal Deployment StrategiesOptimal Deployment Strategies

Dynamical Systems Theory


