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1 Definition and motivation of OSSEs  
 

Observing System Simulation Experiments (OSSEs) are typically designed to use 
data assimilation ideas (chapter Mathematical Concepts in Data Assimilation, 
Nichols) to investigate the potential impacts of prospective observing systems 
(observation types and deployments). They may also be used to investigate current 
observational and data assimilation systems by testing the impact of new 
observations on them. The information obtained from OSSEs is generally difficult, 
or in some contexts impossible, to obtain in any other way. 

In an OSSE, simulated rather than real observations are the input to a data 
assimilation system (DAS for short). Simulated observational values are drawn from 
some appropriate source (several possibilities have been considered; see Section 3). 
These values are generally augmented by implicitly or explicitly estimating 
respective values of observational errors to make them more realistic (see Section 4). 
The resulting values are then ingested into a DAS (that may be as complex as an 
operational one) just as corresponding real observations would be. Simulations of 
both analyses and subsequent forecasts are then produced for several experiments, 
with each considering a distinct envisioned observing system; i.e., a distinct set of 
observation types and characteristics. The analysis and forecast products are then 
compared to evaluate the impacts of the various systems considered.  



 

 

OSSEs are closely related to Observing System Experiments (OSEs). For an 
observing system in operational use, the OSE methodology consists of:   

• A control run in which all observational data currently used for every-day 
operations are included; 

• A perturbation run from which the observation type under evaluation is 
excluded while all other data are kept as for the control; 

• A comparison of forecast skill between the control and perturbation runs. 
 
OSEs are effectively Data-Denial Experiments (DDEs, discussed in Section 7.1). 

They reveal specifically what happens when a DAS is degraded by removing 
particular subsets of observations and thus measure the impacts of those 
observations.  

The structure of an OSSE is formally similar to that of an OSE with one 
important difference: OSSEs are assessment tools for new data, i.e., data obtained by 
hypothetical observing systems that do not yet exist. The methodology of an OSSE 
consists of: 

• Generation of reference atmospheric states for the entire OSSE period. This 
is usually done with a good-quality, realistic atmospheric model in a free-
running mode without data assimilation. This is often called the Nature Run 
(NR for short), providing the proxy “truth,” from which observations are 
simulated and against which subsequent OSSE assimilation experiments are 
verified; 

• The generation of simulated observations, including realistic errors, for all 
existing observing systems and for the hypothetical future observing 
system; 

• A control run (or experiment) in which all the data representing the current 
operational observational data stream are included; 

• A perturbation run (or experiment) in which the simulated candidate 
observations under evaluation are added; 

• A comparison of forecast skill between the control and perturbation runs. 
 
The most common motivation for OSSEs regards estimating the potential impact 

of proposed new observation types. Although a new type may be highly accurate and 
robust, it does not provide complete, instantaneous global coverage with perfect 
accuracy. All new observation types therefore will be used in conjunction with other, 
mostly already existing, observation types and a background derived from a short-
term model forecast. Since data assimilation is a blending of all such useful 
information, the impact of a new type can only be estimated by considering it in the 
context of all the other useful types. It is therefore necessary to investigate potential 
impacts in a complete and realistic DAS context. 

New observation types that do not yet exist cannot provide observational values 
to be assimilated. If a prototype does exist but is not already deployed as envisioned, 
impacts that can be currently measured may be unrepresentative of future potential 
impacts or not statistically significant. The latter is always an issue with data 
assimilation because the data analysis problem is fundamentally statistical due to 
unknown aspects of observational and modelling errors. Under these conditions, the 



 

 

only way of estimating the potential impact of new observations is by appropriately 
simulating them; i.e., performing an OSSE of some kind. 

Besides estimating the impact, and therefore the value, of an augmentation to the 
observing system, an OSSE can be used to compare the effectiveness of competing 
observation designs or deployment options. What is the cost to benefit ratio, for 
example, between using a nadir-looking versus a side-scanning instrument on a 
satellite? Or, for a lidar, what are the relative benefits of using various power settings 
for the beams? An OSSE can aid the design before putting an instrument in 
production. Thus, well-conducted OSSEs can be invaluable for deciding trade-offs 
between competing instrument proposals or designs: the cost of an OSSE is a tiny 
fraction of the cost of developing and deploying almost any new observing system. 

Furthermore, by running OSSEs, current operational data assimilation systems 
can be tested, and upgraded to handle new data types and volume, thus accelerating 
use of future instruments and observing systems. Additionally, OSSEs can hasten 
database development, data processing (including formatting) and quality control 
software. Recent OSSEs show that some basic tuning strategies can be developed 
before the actual data become available. All of this accelerates the operational use of 
new observing systems. Through OSSEs future observing systems can be designed to 
optimize the use of data assimilation and forecast systems to improve weather 
forecasts, thus giving maximum societal and economic impact (Arnold and Dey 
1986; Lord et al. 1997; Atlas 1997).  

There is another motivation for OSSEs that has been less often discussed. It 
exploits the existence of a known “truth” in the context of an OSSE. For a variety of 
purposes, including validating or improving an existing DAS or designing 
perturbations for predictability studies or ensemble forecasting, it is useful to 
characterize critical aspects of analysis errors. Evidence to guide such 
characterization is generally elusive since the DAS-produced analyses themselves 
are often the best estimates of the atmospheric state (by design) and, therefore, there 
is no independent dataset for determining errors. All observations have presumably 
been used, accounting optimally (to some degree) for their error statistics and 
accounting for their mutual relationships in time (using a forecast model for 
extrapolation or interpolation) or in space (e.g. quasi-geostrophy and spatial 
correlations) and thus robust independent datasets for verification are usually absent 
(although, e.g., research data such as ozonesondes and ozone from some instruments 
are not commonly assimilated, and thus are available for independent verification). 
While some information about DAS errors can be derived from existing data sources, 
it necessarily is incomplete and imperfect. Although any OSSE is necessarily also an 
imperfect simulation of reality, the analysis and forecast errors can be completely 
and accurately computed and thus fully characterized within the simulated context.  

The fact that they are widely used and relied upon does not mean that OSSEs, or 
the experimental results created by them, are free of controversy. Because of the 
wide-ranging consequences of decisions on major Earth Observing Systems, any 
OSSE results on which these decisions are based will have to withstand intense 
scrutiny and criticism. One goal of this chapter is to suggest ways in which OSSEs 
can be made robust and credible.  

In this chapter we present the basic guidelines for conducting OSSEs. A 
historical review is provided, and experiences from OSSEs conducted at the National 



 

 

Centers for Environmental Prediction (NCEP OSSE) are presented; finally, 
conclusions and the way forward are outlined.  

 
2 Historical summary of OSSEs 

 

The OSSE approach was first adopted in the meteorological community to assess the 
impact of prospective observations, i.e., not available from current instruments, in 
order to test potential improvements in numerical weather prediction, NWP (Nitta 
1975; Atlas 1997; Lord et al. 1997; Atlas et al. 2003a). In a review paper, Arnold 
and Dey (1986) summarize the early history of OSSEs and present a description of 
the OSSE methodology, its capabilities and limitations, and considerations for the 
design of future experiments. Meanwhile, OSSEs have been performed to assess 
trade-offs in the design of observing networks and to test new observing systems 
(e.g. Stoffelen et al. 2006). 

In early OSSE studies, the same model used to generate the “Nature Run” or 
truth was used to assimilate the synthetic data, and to run forecasts (Halem and 
Dlouhy 1984). In these so-called “identical twin” OSSEs the physical 
parametrizations and discretized dynamical processes in the assimilating model 
exactly represent those in the surrogate atmosphere. Model errors due to 
parametrization and numerical implementation are thus neglected and a free model 
forecast run from given initial conditions would provide identical results for the 
Nature Run and the DAS model. Consequently, forecast errors arising from 
deficiencies in the forecast model representation of the real atmosphere are not 
accounted for; only forecast errors due to errors in the initial conditions are 
represented. This limitation has been noted to lead to overly optimistic forecast skill 
in the OSSE DAS.  

Another effect of the neglected model errors is that the differences between 
observations, both existing and future ones, and background (i.e., forecast), O-B, 
tend to be smaller in case of an identical twin OSSE than in operational practice 
(Atlas 1997; Stoffelen et al. 2006). As a result, both the observation minus analysis 
(O-A) differences and analysis impact of the observations, A-B (analysis less 
background), tend to be smaller than expected. Several ways exist to test the reduced 
observation impact and overly optimistic forecast skill: e.g., by comparing the O-B 
and O-A distributions, single observing system impacts, and forecast skill metrics in 
the OSSE and operational practice (calibration). The chapter Evaluation of 

Assimilation Algorithms (Talagrand) provides details of methods used to evaluate the 
assimilation process. 

Since the DAS background model error space in identical twin OSSEs is limited 
with respect to an operational model’s error space, fewer observations are needed to 
correct the model state in the analysis step. In fact, the simulated observation set, 
unlike the real observations, has systematic characteristics consistent with the model 
formulation (e.g. scales of motion, mass-wind balance). Therefore, just a few 
observations could potentially correct the initial state errors and provide improved 
forecasts in an identical twin OSSE. On the other hand, as Atlas et al. (1985) point 
out, due to the simplified error space, observation “saturation” in the DAS will tend 
to occur at lower data volumes in an identical twin OSSE than in the case of 
assimilation of the real observations. This saturation may lead to underestimation of 



 

 

the impact of observing systems with extensive coverage (e.g. satellite systems). 
Moreover, observing systems that tend to correct errors due to numerical truncation 
of the dynamics or due to physical parametrization, may be undervalued. This 
potential non-linear effect of sampling on identical twin OSSE forecast scores, 
makes the above-mentioned calibration tests (involving, e.g., O-A and O-B 
distributions) on the OSSE data assimilation system increasingly relevant. 

Arnold and Dey (1986) recommend “fraternal twin” OSSEs as a way to address 
the shortcomings of “identical twin” OSSEs. In fraternal twin OSSEs, the NWP 
model used to simulate the observations is different from the forecast model in the 
OSSE data assimilation system, but not as different as the true atmosphere is from an 
operational forecast model. Examples can be found in Rohaly and Krishnamurti 
(1993), Keil (2004) and Lahoz et al. (2005). It is clear that the problems noted above 
with identical twin experiments will be reduced, but not absent for fraternal twin 
experiments. Stoffelen et al. (2006) test the absence of unrealistic observation impact 
in a fraternal twin OSSE. To avoid potential fraternal twin problems, the Nature Run 
and atmospheric data base may be produced at one NWP centre (Becker et al. 1996), 
while the impact experiments are run by another independent NWP centre (Masutani 
et al. 2006, 2009). 

Another reported measure to reduce identical twin effects is to produce the 
Nature Run at high resolution and run the OSSE data assimilation system at lower 
spatial resolution. While useful for some studies, a potential disadvantage is that the 
observing system impact of a prospective system is tested at a resolution which is 
obsolete by the time the new observing system will be operationally implemented. 

Atlas et al. (1985) report on the exaggerated OSSE impact of satellite-derived 
temperature soundings. At that time, the fraternal twin problem was raised as one 
cause, although these satellite soundings are rather abundant (see above). Other, and 
with hindsight perhaps more plausible, noted causes are: 

- Simplified observation error characteristics. Observing systems can have 
complicated relationships (geophysical, spatial, and temporal) with the 
forecast model’s atmospheric state and special care is needed to simulate them; 

- The simulated observation coverage is over-optimistic. For example, the 
degree of cloud contamination of the measurements may be underestimated 
(e.g. Masutani et al. 1999); 

- The simplifying assumption, usually made in OSSEs, that the distribution of 
observation errors is perfectly known; 

- Temperature data are both simulated and assimilated, with no error from the 
Radiative Transfer Model (RTM) involved. 

 
Again, comparison of observation impact and forecast skill, e.g., by comparing 

the O-B and O-A distributions; single observing system impacts; and forecast skill 
metrics in the OSSE and operational practice involving OSSE calibration, should 
reveal such problems. 

Various simulation experiments have been attempted which use real data for 
existing instruments and only simulate future instruments. These methods do not 
require a Nature Run and allow experimentation on a specific (extreme) weather 
event. Observing System Replacement Experiments (OSREs) could, for example, be 
used to test the impact of existing wind profile observations over Northern 



 

 

Hemisphere land and how these may be replaced by another observing system (Cress 
and Wergen 2001). Although an OSRE indicates how one could replace existing 
observing systems, it is, however, not a priori clear how to extrapolate these results 
to faithfully test new observation capabilities, e.g., like the DWL (Doppler Wind 
Lidar) capability to resolve the incomplete wind profile coverage over the oceans. To 
test new observation capabilities, Marseille et al. (2008a-c) developed a method 
called the Sensitivity Observing System Experiment (SOSE). In a SOSE, adjoint 
sensitivity structures are used to define a pseudo-true atmospheric state for the 
simulation of the prospective observing system. In a SOSE the forecast error is 
projected back onto the initial state, thereby setting the maximum achievable forecast 
improvement. An alternative method, the Analysis Ensemble System (AES) (Tan et 

al. 2007) uses the spread in the ensemble as a proxy for the analysis and background 
uncertainty based on arguments of error growth (Fisher 2003). Since the background, 
analysis and observation errors are larger in the AES than in the real DAS, it is not 
clear whether the same set of observations in both systems remain optimal for 
reducing the background uncertainty. In order to test the realism of the OSRE, SOSE 
and AES, both the analysis and forecast impacts need to be carefully calibrated, just 
as in an OSSE.  

In this chapter, the term OSSE (sometimes full OSSE to distinguish from other 
simulation experiments) refers to a simulation experiment with a Nature Run model 
significantly different from the NWP model used for data assimilation. This provides 
a truth independent of the data assimilation system NWP model and of the Global 
Observing System (GOS) data coverage and quality. In an OSSE, all observations 
used for the DAS have to be simulated from the Nature Run. In a SOSE, OSRE or 
AES, only the future observations are simulated from analysis or forecast fields. 
These fields used may have limitations in comparison with a Nature Run in terms of 
biases and temporal consistency due to the GOS, DAS and NWP (adjoint) model 
involved. It is considered that simulation of all observations is a significant initial 
investment for an OSSE, but that interpolating observations is part of a DAS. In 
OSSEs, all the usual analysis and forecast verification metrics can be used to 
evaluate data impact, and the simulated data can be tested with several different data 
assimilation systems with minor modification to the operational systems. The data 
impact for OSSEs (and their variants) often varies with verification metric and DAS 
used. Note, however, that a truth is available for further verification of the DAS 
characteristics. Although a SOSE, OSRE or AES allow quick study of real extreme 
events, the SOSE requires an adjoint model to generate the new observations and the 
AES requires an established ensemble system. Calibration and interpretation of the 
results is complicated and needs to be tested carefully for the SOSE, OSRE and AES. 
Full OSSEs with a long Nature Run allow quantitative assessment of the analysis and 
forecast impact. Note, however, that there are many OSSEs conducted without 
calibration. Furthermore, during the early years of OSSEs, identical twin OSSEs or 
fraternal twin OSSEs were often conducted due to the lack of variety in state-of-the-
art NWP models. 

To conclude, although initial investment is required for a full OSSE, it is today 
the most reliable strategy to use full OSSEs for impact assessment of prospective 
observing systems. 
 



 

 

3 The Nature Run 
 

The Nature Run is a long, uninterrupted forecast by a NWP model whose statistical 
behaviour matches that of the real atmosphere. The ideal Nature Run would be a 
coupled atmosphere-ocean-cryosphere model with a fully interactive lower 
boundary. However, it is still customary to supply the lower boundary conditions 
(sea surface temperature, SST, and ice cover) appropriate for the span of time being 
simulated. Meteorological science is approaching this ideal, but such coupled 
systems are not yet mature enough to be used for Nature Runs. Although fully 
coupled systems are available, their usefulness and accuracy for OSSEs is unknown. 
Preliminary tests, however, suggest that coupled systems may be good enough for 
operational NWP in the near future (Saha et al. 2006; Kistler et al. 2008).  

The advantage of using a long, free-running forecast to simulate the Nature Run 
is that the simulated atmospheric system evolves continuously in a dynamically 
consistent way. One can extract atmospheric states at any time. Because the real 
atmosphere is a chaotic system governed mainly by conditions at its lower boundary, 
it diverges from the real atmosphere a few weeks after the simulation begins. This 
does not matter provided that the climatological statistics of the Nature Run match 
those of the real atmosphere. A Nature Run should be a separate universe, ultimately 
independent from but with very similar characteristics to the real atmosphere. 

 
3.1 Characteristics of the Nature Run 

 
One of the challenges for an OSSE is to demonstrate that the Nature Run does have 
the same statistical behaviour as the real atmosphere in every aspect relevant to the 
observing system under scrutiny. For example, an OSSE for a wind-finding lidar on 
board a satellite requires a Nature Run with realistic cloud climatology because lidars 
operate at wavelengths for which thick clouds are opaque. The cloud distribution 
thus determines the location and number of observations. 

The Nature Run is central to an OSSE. It defines the true atmospheric state 
against which forecasts using simulated observations will be evaluated. This concept 
deserves more explanation. In 1986, Andrew Lorenc suggested the following 
definition of the “truth”: the projection of the true state of the atmosphere onto the 
model basis. As an example, if a spectral model produces a Nature Run, the true 
atmospheric state might be represented by spectral coefficients corresponding to 
triangular truncation at total wave number n (Tn) on L vertical levels. Atmospheric 
features too small to be captured by the model resolution are not incorporated in this 
truth. 

The Nature Run is also the source of simulated observations. For each observing 
system, existing or future, a set of realistic observing times and locations is 
developed along with a list of observed parameters. An interpolation algorithm looks 
at the accumulated output of the Nature Run, goes to the proper time and location 
and then extracts the value of the observed parameter. If the Nature Run does not 
explicitly provide an observed parameter, the parameter is estimated from related 
variables that the model does provide. Because observations extracted from the 
Nature Run are the same as the defined truth (they are “perfect”), various sources of 



 

 

error must also be simulated and added to form observations with realistic accuracy 
with respect to the Nature Run itself.  

Some OSSEs have used a succession of atmospheric analyses as a substitute for a 
Nature Run (Keil 2004; Lahoz et al. 2005). A succession of analyses is a collection 
of snapshots of the real atmosphere. For example, in the case of four-dimensional 
variational assimilation (4D-Var, chapter Variational Assimilation, Talagrand), 
although the analyses may each be a realizable model state, they all lie on different 
model trajectories. The background (first guess) lies on the same model trajectory as 
the previous analysis because, in 4D-Var the analysis is a realizable model state (it 
does not require separate initialization or balancing). Once this background is 
adjusted by new data in 4D-Var, the model lies on a new trajectory, which may be 
close to the old one (the one that the background was on) but is nonetheless different. 
Each analysis marks a discontinuity in model trajectory, determined by the 
information content extracted by a DAS from the existing global observing systems 
(chapter The Global Observing System, Thépaut and Andersson). Furthermore, 
residual systematic effects due to the spatially non-uniform and often biased 
observations, the DAS or the model state, may either favourably or unfavourably 
affect the potential of new observing systems to improve the forecasts. Thus, 
considering a succession of analyses as truth seriously compromises the attempt to 
conduct a “clean” experiment.  

 
3.2 Evaluation and potential adjustment of the Nature Run   

 

No Nature Run is perfect and its shortcomings need to be investigated by comparison 
with real-world climatology and, if the shortcomings can compromise a particular 
OSSE, adjustments to the Nature Run may be needed. 

Several NCEP OSSEs (Masutani et al. 2006, 2009) have used the Nature Run 
with T213 horizontal resolution and 31 vertical levels (T213 NR) provided by the 
European Centre for Medium-Range Weather Forecasts (ECMWF) and described in 
Becker et al. (1996). For the T213 NR, quadratic grids with 60 km horizontal 
resolution were used to compute the physics. Note the corresponding linear grid 
space would be 90 km, which is more representative of the scale resolved by the 
T213 NR. A one-month model run starting on 5 February 1993 was saved every six 
hours.  

It is important that the Nature Run contain realistic clouds for evaluation of 
Doppler Wind Lidar (DWL) and cloud motion vector (CMV) data and simulation of 
radiances. Doppler Wind Lidar data can be retrieved only if the DWL shots hit the 
target. Clouds are important targets for a DWL but they also interfere with the DWL 
shots at lower atmospheric levels. Therefore, large differences in the Nature Run 
cloud amount will affect the sampling of simulated data. Realistic clouds are also 
necessary for generating realistic cloud track winds from geostationary platforms. 
Clouds moreover affect the sampling and simulation of radiance data.  

The observed estimates for total cloud cover come from three different sources: 
the USAF Real-Time Nephanalysis (RTNEPH; Hamill 1992; Henderson-Sellers 
1986); the International Satellite Cloud Climatology Project (ISCCP); and the 
NESDIS experimental product, Clouds from the Advanced Very high Resolution 
Radiometer (CLAVR-phase; http://cimss.ssec.wisc.edu/clavr). The differences 



 

 

between the total cloud cover (TCC) in the three observational sources and the 
Nature Run are within the variability of the observations. In the T213 NR, the High-
level Cloud Cover (HCC) amount seems larger than the satellite observed estimate 
across all areas of the globe. The amount of Low-level Cloud Cover (LCC) in the 
T213 NR over the ocean is less than observed and the amount of LCC over snow is 
too high. After careful investigation, it was found that, due to the lack of reliable 
observations, there is no strong evidence for an over-estimation of HCC and polar 
cloud by the T213 NR. However, the under-estimation of low level stratocumulus 
clouds over the oceans and its over-estimation over snow was clearly evident, and 
adjustments were consequently applied (see Masutani et al. 1999).  

Although the OSSE using the T213 NR produced many valuable results, it also 
had limitations. First of all, due to advances in model development, it is neither 
realistic nor suitable to use a Nature Run produced by a NWP model more than 10 
years old to test a current DAS. Second, since there is a significant drift from 
analyses in the tropics during the first several weeks of the Nature Run, the one-
month long Nature Run cannot be used to evaluate data impact in the tropics. The 
T213 NR employed fixed SSTs; although fixed SSTs were not found to jeopardize 
the OSSEs, this is still a serious limitation of the T213 NR. Note that a more recent 
T511 Nature Run produced by ECMWF (Reale et al. 2007) showed a reduction of 
tropical convective rainfall during the first few weeks of the Nature Run period. This 
may mean that the Nature Run has much less convective rainfall compared to the real 
atmosphere, or that the analysis has too much convective rainfall compared to the 
real atmosphere. For the Nature Run to be useful, its statistics must lie within the 
climatological variability in the real analyses.  

Producing accurate tropical forcing is a challenge for current NWP models. 
Nevertheless, the recent T511 NR produced by ECMWF (see above) faithfully 
reproduces many aspects of the tropical atmosphere, at least in a statistical sense 
(Reale et al. 2007). For example, it reproduces the African Easterly Jet and African 
Easterly Waves in good agreement with observations.  

There is great interest in OSSEs for studying forecasts of tropical waves and 
tropical cyclones (TCs). A prerequisite for such studies is a Nature Run that 
generates realistic tropical disturbances, e.g., hurricanes with well defined warm 
cores and realistic tracks. However, there are still significant differences between 
model produced tropical cyclones and observations, and the interaction of TCs with 
SSTs requires further study (Tsutsui and Kasahara 1996). Finally, the properties of 
tropical cyclones relevant to the evaluation of a DAS are still to be investigated. 

Mid latitude cyclone statistics in the Nature Run must also be realistic. The basic 
measures commonly used to compile mid latitude cyclone statistics are: 

• Distribution of cyclone strength across a wide range of pressures; 
• Cyclone lifespan; 
• Cyclone deepening; 
• Regions of cyclogenesis and cyclolysis; 
• Distribution of cyclone speed and direction. 

 

3.3 Requirements for a future Nature Run  
 



 

 

The preparation of the Nature Run and the simulation of data from it consume 
significant resources. It is of practical importance to have one or two good-quality 
Nature Runs shared by many OSSEs. OSSEs with different Nature Runs are difficult 
to compare but OSSEs using different data assimilation systems and the same Nature 
Run can provide valuable cross-validation of data impact results. If Nature Runs are 
widely accessible, the Nature Runs and simulated data ought to be shared between 
many of the institutes carrying out the actual OSSEs.  

The primary specifications of a Nature Run based on past experience of OSSEs 
are: 

a. Employ a NWP model with demonstrated forecast skill; 
b. Simulation span: since the data impact depends on the season, it is 

important that future Nature Runs cover long periods, preferably a whole 
year to allow selection of interesting subperiods for closer study; 

c. Simulation sample: a temporal resolution higher than the OSSE analysis 
cycle. If more than one DAS is involved, this would ideally be a resolution 
higher than that of all participating data assimilation systems; 

d. Simulation should resolve scales compatible with the main observing 
systems; 

e. It is desirable that they should be based on an atmosphere-ocean coupled 
model; or at least, the Nature Run must be forced by an analysis 
incorporating frequently updated SST and sea ice; 

f. Data archiving should be user-friendly and shareable with the community; 
g. Simulation should agree with the real analyses in a statistical sense; 
h. Chemistry and aerosol information which affect the data should be 

evaluated;  
i. There should be a trade-off between the resolution and the complexity of 

the model; 
 
The set of archived Nature Run variables should be enhanced to accommodate 

the need for OSSEs. For example, geopotential height at model levels is very 
desirable. Archiving of this variable will help the simulation of observations based 
on height coordinates, such as those from DWL and profilers. Low resolution 
pressure level data and isentropic level data output on a standard grid are also very 
useful for OSSEs, as they can be used for verification of the experiments. However, 
producing these verification datasets can take up significant resources at the initial 
stages of setting up an OSSE. 

A main requirement of full OSSE experiments is to avoid the identical or 
fraternal twin (“incest”) problem, as discussed in Section 2. If the model from which 
hypothetical observations are extracted is the same as the assimilating model, the 
OSSE results will show unrealistic observation impact and overly optimistic forecast 
skill (Arnold and Dey 1986; Stoffelen et al. 2006). Thus the forecast model used for 
the Nature Run should not be used later on for DAS experiments in the full OSSE. 
 

4 Assignment of realistic observation errors  
 



 

 

The following definitions concern data assimilation in general – see also chapter 
Mathematical Concepts of Data Assimilation (Nichols). In the definitions below, x, y 
and εεεε are vectors, and H  H  H  H     is a non-linear operator. 

a) The observation:  mt εyy +=  

y is the observed value, measured by some instrument, and εεεεm is the observation 
error. The subscript t refers to the true atmospheric value. We define the true value as 
the weighted average of the true atmospheric values within the volume sampled by 
the instrument. Petersen (1968) defined the “true” observation in this way, but 
quantitatively by means of an integral. Different instruments sample different 
volumes so that the true value of temperature appropriate for a radiosonde may not 
match the true value appropriate for the AMDAR (Aircraft Meteorological DAta 
Relay) system aboard a commercial jet, even if the two observations are assigned to 
the same location and time. Thus, the observed “truth” is very much scale-dependent, 
but defining it in this way is consistent with the definition of truth with respect to 
model resolution as proposed by Lorenc (1986) and discussed immediately below.  
εm refers to errors incurred during measurement or subsequent data processing. 

The errors can be random or systematic (i.e., biased).  

b) The model state:  ft εxx +=  

εεεεf  is the model state error. The state of a DAS model is defined by a set of parameters 
stored at the points of a model grid, or, alternatively, by a set of spectral coefficients. 
As noted above, we follow Lorenc (1986), in defining the true model state xt as the 
true atmospheric state containing all scales from long waves down to cloud 
microphysics, but spectrally truncated at the model grid. Scales of motion that cannot 
be captured by the model grid (or the spectral truncation) are not included in the 
definition of the true state. The numerical model forecasts the state x, but the forecast 
is subject to error εf , which is the result of truncation associated with finite 
differencing, imperfect dynamics, and errors in the representation of physical 
processes, whether parametrized or not. 
c) The forward model:  HHHH        (x) 

Forecasts are usually verified against observations (sometimes against an 
analysis). Because observations hardly ever coincide with model grid points, it is 
necessary to map the model forecast to the observations in order to make a direct 
comparison. The forward model H  H  H  H     does this. Another name for HHHH  is the observation 

operator, because HHHH  operates on the model grid to generate a pseudo-observation, a 
best estimate of the observed value. It relies on the parameters computed by the 
model on the model grid in order to make a best estimate of the observed value. 
Sometimes the calculation is as simple as 3-D linear interpolation, but if the observed 
quantity does not match one of the predicted quantities, then HHHH  will also involve a 
transformation of variables. For example, the model may predict relative humidity, 
but the observed quantity is column integrated water vapour. In this case, in addition 
to interpolation, the forward model has to convert the predicted relative humidity and 
temperature to a specific humidity and integrate the specific humidity vertically from 
the surface to the top of the model atmosphere.  

d) Representativeness:   rtt εxy += )(HHHH  



 

 

If the forward model HHHH could be applied to the true values tx  (unknown in 

practice) on the model grid, we would have an observation that still lacks a 

representativeness error rε . The representativeness error has two causes: 

1) The model grid volume does not match the atmospheric volume that is the 
object of measurement. If the observed volume is small compared to the model grid 
volume, the measurement will represent scales of motion that the model grid cannot 
resolve. From the model’s point of view, the observation contains subgrid scale 
noise, and this will contribute to the value of εr. In other words, because the 

representation of xt is spectrally truncated, the projection )( txHHHH  does not capture 

the subgrid scale atmospheric variance inherent in the observation. If the observed 
volume is larger than the model grid volume (e.g. a measurement of radiance in the 
microwave portion of the electromagnetic spectrum could involve a volume of 
atmosphere larger than the model grid volume), then the forward model will be an 
averaging operator rather than an interpolation operator. From the model’s point of 
view, the observation is too smooth and εr will relate to how well the model average 
spatially and temporally represents y. 

2) If a transformation of variables is included in HHHH, the relationship is imperfectly 
known or it is approximated in order to minimize the number of computations, e.g., 
in case of radiance observations. This also contributes to εr. In fact, any operation 
incorporated in HHHH  may contribute an error component to εr. 

To summarize, representativeness error arises from the mismatch between the 
DAS model grid volume and the volume sampled by the instrument, and also from a 
mismatch between the observed and predicted variables. 

Some aspects of the representativeness error are not random but systematic. Even 
if we exclude subgrid effects that may be small if the model resolution is high 
enough, a computationally fast radiative transfer model applied to an atmospheric 
profile will generally yield imperfect radiances compared to the real atmosphere. 
This error will be almost identical whenever the atmospheric profiles are the same, 
since the model and physics remain unchanged. If such imperfections are complex 
functions of the atmospheric state, they may appear as random errors when computed 
from collections of states although they are in fact systematic. Modelling the 
representativeness error as though it were random may therefore introduce unrealistic 
effects if some aspect of the systematic nature of the error is important. 

In all aspects of the data assimilation problem, representativeness error appears 
combined with instrument error. The combined error is called the “observation 
error”, and its covariance (denoted by R) is a key statistic that determines the 
analysis error covariance. If the instrument and representativeness errors are 
uncorrelated, then R=E+F, where E and F are the covariances of instrument and 
representativeness errors, respectively: 

 
E = EEEE [(εεεεm - 〈εεεεm〉)(εεεεm - 〈εεεεm〉)

T] and 
 

F = EEEE [(εεεεr - 〈εεεεr〉)(εεεεr - 〈εεεεr〉)
T],  

 



 

 

where  denotes an average,  EEEE [.] denotes expectation value, and the superscript 

T means vector transpose.  The R, rather than E or F, is actually specified in the 
DAS.  E, F and R are matrices. 

Techniques to estimate R are imperfect. A poor specification will yield a 
suboptimal system; i.e., one with larger analysis error variance than otherwise. 
Generally, some further tuning of the error estimates is conducted so that the R 
incorporated in the system experiments appears close to optimal. These are, 
therefore, generally the values that must be duplicated as the observational errors in 
the OSSE if the responses in the real and simulated systems are to appear similar.  
e) Application to OSSEs: 

In practice, real observations come with only an instrument error; they are 
inherently representative of the volume of atmosphere sampled. The 
representativeness error arises from the forward operator and has the two 
components mentioned above. We account for instrument error and, to be rigorous, 
also for the representativeness error, when we specify the observation error 
covariance in the DAS penalty function that is part of the variational analysis. In 

practice, we compute )(xHHHH , not )( txHHHH . 

By contrast, in an OSSE, one uses a forward model to generate an observation. 
After the forward model is applied to the grid point values of the Nature Run, we 

must add a random contribution rε  to the forward model output. The finer the 

resolution of the Nature Run and the more accurate the forward model, the smaller 
the representativeness error will be. Finally, we must also add an appropriate 
instrument error to improve realism. In summary, we must compute:   

 

                                     mrtmt εεxεyy ++=+= )(HHHH . 

 

The random contribution rε  accounts for the missing subgrid scale variance, say 

rε
S and any error associated with a transformation in the forward model, say rε

H = 

)()( ttt xx HHHHHHHH −  (so rε = rε
S+ rε

H), where HHHHt  is a hypothetical perfect forward 

model that operates on the NWP model defined truth. We find that: 
 

              mr
S

ttmtttr
S

t εεxεxxεxy ++=++−+= )()()()( HHHHHHHHHHHHHHHH  

 
Note that y represents the Nature Run transformed through the hypothetical 

perfect forward model. Additionally, one should consider whether the difference 

)()( ttt xx HHHHHHHH −  might have a systematic component (i.e., a bias), since a normal 

random error distribution is assumed above in εr.  
 
5 Simulation of observations 
 
5.1 Basic guidelines  



 

 

 
Although a particular OSSE may be motivated by evaluation of a single instrument, 
it is still generally necessary to simulate all observations that are expected to be used 
along with it. Even a poor observing system will be better than none at all since the 
atmosphere is chaotic. Irrespective of how close to the real atmosphere a data 
assimilation experiment begins, without the constraint of further observations, after 
15 days or so it will diverge to states expected to be as dissimilar to the atmosphere 
as two states randomly selected for the same month but different years. Thus, using a 
single observation type in an OSSE with other observations excluded results in a 
very large impact compared with no assimilation at all, but a much smaller and more 
realistic impact if other observations are considered. 

Current observations quite effectively constrain the atmospheric analysis. In 
many places, the expected error variance of the analysis is less than that of most 
observations that have been employed in the analysis of the DAS model state.  (Note 
that many observations contain more information about the local atmosphere than the 
analysis; however, in the truncated model domain, the errors of these observations 
are larger, due to the representativeness error.) The analysis is better because it has 
used all nearby observations, including those implied by the background, accounting 
for the error statistics of each, at least in a crude but still useful way. The weighting 
of a new observation within the DAS will be determined by the presence of other 
observations. The impact of any additional observation essentially competes with 
that of all others. When the impacts of any single observation type are measured, 
therefore, the improvements to the analysis or forecasts are generally quite small. 
Progress occurs when innovative instruments are added to those already used, but by 
small steps rather than great leaps.  

Once the Nature Run is sufficiently validated, observations may be simulated. To 
do so, it is necessary to understand the relationship between the observations and the 
atmosphere, both the real atmosphere and the one represented by the Nature Run. 
Furthermore, at the next step in preparing the OSSE, simulated errors are generated 
to add to the corresponding simulated observations. The accuracy with which the 
DAS can reproduce the Nature Run in the OSSE will depend strongly on the 
characteristics of the errors associated with the observations. Prior to selecting a 
method for simulating the observations, it is therefore prudent to also understand the 
nature of all the types of error realistically associated with them.  

Various observing instruments are designed to respond to differing atmospheric 
characteristics. Here, two such instruments will be contrasted: (i) a radiosonde, and 
(ii) a satellite instrument that measures infrared radiances. Together they represent 
several of the various aspects that must be considered when simulating observations 
and their errors. 

The radiosonde is a comparatively simple instrument with a thermo-resister used 
to measure temperature as the balloon ascends. The measurement is made along 
short segments of the trajectory of the balloon, with their length determined by the 
response and reporting times of the instrument. Compared with the much coarser 
resolution represented by the Nature Run, these may be considered as (almost) point 
values that are affected by all spatial scales. A function must therefore be developed 
to relate the observed value to the atmosphere as represented by the assimilating 
model (i.e., a function for the spatial representativeness error). 



 

 

The other instrument is on board a satellite designed to measure infrared 
radiances coming from the Earth and atmosphere below. The satellite actually 
measures the energy of photons over some range of electromagnetic wavelengths 
collected on an antenna (see chapter Research Satellites, Lahoz). For the purpose of 
NWP as opposed to climate monitoring, data assimilation is mainly concerned with 
atmospheric fields: temperature, wind, pressure and constituents (e.g. water vapour, 
ozone, and perhaps minor species and aerosols). The observed radiances must be 
related to these fields if they are to be useful. Presumably an appropriate relationship 
exists; otherwise the observation would not be used for this purpose. The antenna 
collects radiances emitted from a possibly large volume of the atmosphere and is 
therefore most accurately related to some kind of average (with spatial weights 
determined by the viewing characteristics of the antenna and the orbiting satellite). 
This average will not in general correspond to that defining a grid volume average in 
a model data representation. Thus, some spatial interpolation or integrating 
relationship must also be defined. 

For any observation types already used within a DAS, a useful relationship 
between what is observed and the representation of fields being analysed necessarily 
already exists. In the standard notation used for atmospheric data assimilation, this is 
the operator HHHH  that acts on the background field during the assimilation cycle (see 
Section 4). For a new instrument not yet used, this operator needs to be developed. 
Development can be either empirical or physically based.  

In general, HHHH  can be expanded into a sequence of one to several distinct 
functions acting on the state x; e.g., as:  

 
      HHHH        (x) = SSSS    (FFFF    (IIII  (x)))  

 
The function IIII  denotes a possible interpolation from grid-point (or other discrete 

data representation) to observation locations;  FFFF denotes a possible physical (or 
other) relationship such as radiative transfer relating temperature and moisture to 
satellite-observed radiances; SSSS  denotes a possible integration of values, such as 
along a line of sight or within an antenna footprint. Any of SSSS, FFFF, or IIII  may be absent 
for a particular observation type, and some types may be better described by a 
different sequence of operators or the employment of additional ones. The equation 
should therefore be considered as schematic, although for some observation types the 
presentation may be precise. 

The more realistic the relationship between values representing the model state 
and the observed quantity, the more useful the real observation will be to the DAS 
and, correspondingly, the more realistic the simulated observation will be in the 
OSSE. A problem is that the time to develop the most accurate relationships may be 
prohibitive, and the benefits may be tiny compared to other shortcomings in the 
system. A relationship must be designed to be “good enough” for the intended 
purpose. Results must be carefully interpreted mindful of these criteria. The way 
these choices are evaluated will depend on the purpose. Inaccuracies in the results 
when compared to the “true” physical relationship can be handled to some degree by 
the statistical approach to representing errors in the DAS.  



 

 

The HHHH  is designed with speed as well as accuracy in mind, especially if the DAS 
solves a large variational problem. In that case, a tangent linear version of HHHH  and its 
adjoint (see chapter Variational Assimilation, Talagrand) are generally applied to 
every iteration of the analysis increments (i.e., the difference between the analysis 
and the forecast). Thus, some compromises may be made that are not necessary 
when speed is not an issue. An example of this latter case is the generation of 
simulated observations from the Nature Run; these need only be produced once to be 
used in all subsequent relevant OSSEs. Thus, the simulation of observations from the 
Nature Run need not be done in the same way as the assimilation model. In fact, 
there are good reasons for selecting a different algorithm. These and other 
considerations are described in the next section. 

 
5.2 Specific issues related to different observational types 
 
Standard and simple forward models are used for extracting observed quantities from 
the “true” (i.e., Nature Run) background fields as the basis for the simulation of 
observations for use in OSSE experiments. This procedure will inevitably omit some 
fraction of the error (from instrument variability and lack of model 
representativeness) to be found in real observations. Thus, simulation of observations 
for OSSE work is usually thought of as the synthesis of a signal from the background 
truth field (often referred to as a “perfect” observation), and some appropriate 
amount of noise, or “error.”  If the noise or error is indeed appropriate, then the 
impact of simulated observations on an OSSE will be similar to the impact that real-
world observations have on operational assimilation. Although the instrument errors 
are in most cases fairly well defined, the derivation of the total error levels 
appropriate for application to perfect observations is a complex subject. This section 
describes some of the issues surrounding the creation of the perfect part of simulated 
observations.  
 

5.2.1 Simulation of conventional observations 
   

In order to create perfect observations, it is only necessary to locate the observation 
type to be simulated in the space and time coordinates of the background field. The 
most straightforward approach to this problem, for the case of simulating existing 
data sources, is just to use the locations of real observations for any given time and 
place. In the case of conventional observation sources (for example, TEMP, PILOT, 
SYNOP, AIREP, SHIP, BUOY, SATOB; see chapter Assimilation of Operational 

Data, Andersson and Thépaut) real world data patterns are readily available, and the 
specification of realistic simulated data patterns for these data types is simple. For 
the purposes of many OSSE experiments already conducted, this technique of 
locating conventional observing patterns is sufficient. However, in the set of 
simulated observations, the effects of observation circumstances and the expected 
evolution of the observing system should also be taken into account. Below we 
discuss several examples. 

Radiosonde launch points can be located from existing real world datasets, but 
the balloon ascent and drift will depend on the atmosphere being sampled. The track 
of each radiosonde can be calculated using relatively simple transport models. For 



 

 

maximum realism, the calculation should be stepped at intervals sufficiently small to 
obtain information from the full vertical resolution of the Nature Run true fields. The 
resulting simulated profiles might be used without change in OSSE experiments, but 
would more likely be transformed into the more recognizable pattern of mandatory 
and significant vertical levels as presented to an operational DAS.  

Surface land observations (for example, SYNOPs, METAR) present several 
issues to be considered for achieving realistic simulations. The question of location 
involves mainly the surface elevation and the measuring height. Although most real-
world analogues contain some measure of the observation height, it may be 
advantageous in some cases to use a very high resolution digital elevation model and 
tables of particular instrument measuring heights to locate these data. There is also a 
need to interpolate surface values from the Nature Run background fields on a 
smoothed topography to a realistic topography of simulated observation points. 

Commercial aircraft, the source of most aircraft observations, fly routes which 
use wind patterns to save fuel cost and avoid turbulence. Ideally, flight tracks for the 
OSSE should be formulated for simulated aircraft in the same way as they are for 
real cases. However, the location of jets and turbulence can be very different for the 
Nature Run and the real world; the flight planning software is complicated, 
proprietary and even unique to individual airlines. It may be possible and worthwhile 
to develop a simplified generalized approach to formulating simulated flight track 
planning based on some general principles, in lieu of using the actual software 
employed by the airlines. 

Cloud-tracked wind observations, and their unique observing errors, will depend 
on the specification and perception of cloud fields from the Nature Run. Satellite-
borne instruments and observations of all types have unique relationships with 
various types of clouds, so this is a very important aspect for realistic simulation of 
satellite-based observations.  

In general, it seems desirable to make use of synoptic features from the 
background truth fields to determine realistic locations for all simulated 
observations, at least to the extent this can be accomplished without exerting undue 
effort, or employing unrealistic assumptions. Many more OSSE experiments will 
need to be designed, conducted, and carefully examined in order to determine how 
important a realistic distribution of simulated observation locations is. 

 
5.2.2 Simulation of radiance data  

 
For the NCEP OSSE (see Section 9), the use of different Radiative Transfer Models 
(RTMs) for simulation and assimilation helps understand the errors associated with 
RTMs. Radiative transfer models used for simulation have been generally based on 
the RTTOV-6 (Radiative Transfer for TOVS) algorithm (Saunders et al. 1999). At 
NCEP, the OPTRAN model developed by NESDIS was used in the assimilation 
(Kleespies et al. 2004). Brightness temperatures were simulated and level-1B 
radiances synthesized with correlated measurement errors; the impact of clouds was 
also considered (Kleespies and Cosby 2001). Currently, the Community Radiative 
Transfer Model (CRTM) (Han et al. 2006; Weng 2007) and RTTOV are widely used 
in operational data assimilation systems. The SARTA (Stand-alone AIRS Radiative 
Transfer Algorithm) model (Strow et al. 1998) is also available and has been 



 

 

routinely used to simulate radiance data. These models allow the implementation of 
OSSEs using different RTMs for simulation and assimilation.     

The simulation of radiances involves many procedures: simulation of orbits, 
evaluation of cloudiness, and assignment of surface conditions. Various properties 
such as surface emissivity and spectral response function have to be evaluated for 
each instrument. The characteristics of the instruments can change after launch, 
requiring a different set of coefficients at each stage. Ideally, the radiance data would 
be simulated as the Nature Run is produced. However, it is safer to save the Nature 
Run output frequently and simulate the radiance data afterwards, since radiances 
have to be simulated repeatedly with various conditions and error assignments.  

If only clear-sky radiance data are used, a subgrid-scale sampling algorithm has 
to be developed when the radiances are simulated. If the footprint sizes are smaller 
than the Nature Run grid spacing, clear radiance data through small holes within the 
cloudy grid have to be simulated. Using a probabilistic procedure to simulate cloud 
porosity is a possible way to produce the correct statistics. A functional relationship 
between clear sky probability and cloud fraction profile has to be derived to obtain a 
reasonable distribution (e.g. Marseille and Stoffelen 2003). If the cloud cover is used 
simply as a cut-off criterion for clear sky radiances, much of the clear sky radiance 
data from the porous areas of cumulus clouds are eliminated and large amounts of 
radiance data from above the clouds will be eliminated. Note that there are many 
stratospheric channels which are never affected by cloud.  

Although both the OPTRAN and RTTOV models can simulate cloudy radiances, 
cloudy radiances have not been used in data assimilation systems (McNally et al. 
2000). Further development of RTMs will include cloudy radiances in data 
assimilation systems (Liu and Weng 2006a, b). Cloudy radiances allow the 
simulation of imagery and moisture channels. While most of these channels may not 
be used for data assimilation, imagery and moisture channels can be used with 
observations to evaluate the Nature Run as well as the RTM itself. Note that since 
the Nature Run does not resolve cloud scales, even when radiances are modelled 
through cloud fraction, subgrid-scale clouds still need to be represented appropriately 
(e.g. in a statistical sense). Modelling the subgrid-scale cloud remains important to 
simulate cloudy radiances and for assimilation of radiance data. Testing RTMs with 
clouds is an important area for OSSEs. 

Calibration of the radiance data includes a sampling algorithm which produces a 
similar distribution of observations as the real data. The adjoint technique (Zhu and 
Gelaro 2008) is especially useful in the calibration of radiance data, as it allows the 
skill of an individual channel to be assessed. The skill has to be evaluated for various 
conditions, as real errors are likely to be a function of geography, local atmospheric 
flow, season, and viewing angle. These errors are also likely to be correlated. The 
bias, variance, error correlation, and distribution function for the errors have to be 
modelled to be used by any data assimilation system. Bias correction is now a part of 
data assimilation systems (chapter Bias Estimation, Ménard). As a result, one can 
bias correct the Nature Run radiances or implement the bias correction in the DAS 
itself. 
 
5.2.3 Simulation of Doppler Wind Lidar (DWL) data    

 



 

 

As noted in the introduction (Section 1), one of the primary uses of OSSEs is to 
investigate and quantify the potential impact of a new observing system or 
combination of observing systems not currently being used together. No other 
instrument has been subjected to OSSE evaluation more than the Doppler Wind 
Lidar (DWL). With only radiosondes and a few radar wind profilers providing 
complete vertical profiles of the horizontal wind vector, gaining insight into the 
impact of a new wind profiler, especially over oceans and sparsely populated land 
areas, requires simulating the performance of the sounder without the benefit of a 
heritage instrument. Issues of observation errors including measurement errors and 
error of representativeness must be addressed. The DWL instrument is critically 
affected by both clouds and aerosols. While clouds are represented reasonably well 
by current numerical models, aerosols are not.  

In the United States, NASA and the Department of Defense (DoD) have 
supported the development of a Doppler Lidar Simulation Model, DLSM (Wood et 

al. 2000; Emmitt and Wood 2001). The DLSM was designed specifically to operate 
with the Nature Runs generated for OSSEs. Much attention has been given to 
incorporating cloud effects on the scale of the lidar beams (~100 m) and representing 
subgrid-scale turbulence that would affect the precision of the DWL line-of-sight 
(LOS) measurement (Emmitt and Wood 1989, 1991a). 

A major role for OSSEs in preparing for a space-based DWL mission has been 
the generation of data requirements and subsequently derived instrument design 
specifications (Atlas et al. 2003b). Instrument designers have used the DLSM to 
conduct NWP impact trade-off studies related to orbit, instrument wavelengths, laser 
pulse energies, and signal processing strategies (Emmitt and Wood 1991b). NASA 
and NOAA have conducted numerous OSSEs using DWL observations simulated by 
the DLSM (Atlas and Emmitt 1995; Lord et al. 2002; Masutani et al. 2003; 
Riishøjgaard et al. 2003; Woollen et al. 2008). 

In Europe, a similar Doppler Lidar In-space Performance Atmospheric Simulator 
(LIPAS) has been developed (Marseille and Stoffelen 2003) in support of the ADM-
Aeolus mission to fly a space-borne DWL in 2011 (Stoffelen et al. 2005) - see 
chapter Research Satellites (Lahoz). LIPAS has been used to conduct OSSEs 
(Stoffelen et al. 2006) and simulates aerosol variability, vertical overlap of clouds 
and all relevant instrument performance characteristics. 

The usual OSSE process involves a team composed of representatives of the 
operational weather forecasting community, instrument specialists and data 
stakeholders. The availability of models such as the DLSM and LIPAS allows the 
optimistic perspective of the instrument proposers and the more cautious 
expectations from the NWP communities to be explored over a range of assumed 
instrument performance within a realistic model and data assimilation environment. 
In the case of the DWL, the competition with other sources of wind information 
(including wind information contained in the background state) leads to an integrated 
impact which is usually more modest than that expected by the technologists. On the 
other hand, synergies with other sources of wind information (e.g. scatterometers and 
cloud motion vectors) are illuminated in ways not easily quantified without the 
OSSE.  

 
6 Initial conditions and spin-up period  



 

 

 
6.1 Initial conditions 

 
The initial conditions for an OSSE must be generated carefully to reduce noise due to 
the difference between the Nature Run and the NWP model used for OSSEs. If an 
appropriate initial condition is not used, the OSSE will be contaminated by noise 
from the initial conditions and it will be hard to assess the data impact. 

When starting a limited-period OSSE at some point within the Nature Run, initial 
conditions have to be generated carefully. If the initial conditions are generated from 
a different model, large biases between the models have to be removed, and some 
model variables may have to be estimated. Possible strategies to generate initial 
conditions include: 
i)   Generate the initial conditions by interpolation from the Nature Run. 

It is possible to interpolate the initial conditions from the Nature Run to an OSSE 
model grid and use this as the initial conditions. As there is a large amount of noise 
produced from inconsistent initial conditions, it usually takes a few weeks for the 
OSSE to settle down. This procedure requires careful development of the 
interpolation procedure. Both the differences between the model variables and the 
bias between the Nature Run and the OSSE data assimilation system have to be 
carefully handled. 
ii)  Take the initial conditions from a precursor analysis. 

In this approach one generates a precursor analysis starting from the same time 
and date as the Nature Run and uses the analysis as the initial conditions with the 
same DAS used for the OSSEs. The precursor analysis does not have to be of a high 
resolution but should be provided at the lowest resolution used for the OSSE. Not all 
operational data have to be included, but there should be enough data over the ocean 
to provide a reasonable description of large scale features, particularly in the 
Southern Hemisphere.  

If the DAS used for the precursor run is the same as the OSSE data assimilation 
system, but has a higher resolution than the precursor analysis, the transition from 
the precursor analysis to the OSSE will be smooth. However, it takes a few time 
steps for the OSSE system to show the full resolution features.  

If the OSSE DAS is different from the DAS used for the precursor run, an 
interpolation has to be performed. Exchanging analyses between different DAS is 
routinely done in real operational forecasting. This process can also be evaluated by 
OSSEs. 

  
6.2 Spin-up period  

 
A real analysis is used for the initial conditions of the Nature Run. During the first 2 
to 3 weeks, a drift occurs from the real atmosphere to the model atmosphere, 
particularly in the tropics. This period (called the spin-up period) should not be used 
for an OSSE because it lies within the limit of predictability (at least for the largest 
scales) and still contains traces of the real atmospheric conditions.  

The Nature Run NWP model and initial analysis have errors that depend on the 
real atmospheric state due to data distribution, and DAS and NWP model 



 

 

specification. When the Nature Run state has evolved to one which is unrelated to 
the real atmosphere, these errors can be assumed to have disappeared. One can use 
trends in the O-B (observation minus background) and O-A (observation minus 
analysis) differences to determine whether the Nature Run errors are independent of 
those of the real atmosphere. Depending on the type of experiment, the time for error 
independence to occur could be less than 2-3 weeks (see above).  
 
7 Evaluation of OSSE results  
  
The data impact in an analysis and forecast could be very different. For example, if 
the model is not performing well, large differences between the background 
(forecast) and observations will create a large analysis impact; however, that 
improvement will not be maintained in the forecast skill. On the other hand, a small 
analysis impact may become a large forecast improvement in areas where the model 
is performing well. The areas showing data impact in the analysis and forecast may 
not be the same. Improvements can also propagate between regions: e.g., 
improvements in upper level wind will propagate towards lower levels in the 
forecast. 

Data impact varies with spatial and time scales. For example, the impact in the 
mass fields could be very different from the impact in the wind fields. Below we 
discuss various aspects of data impact. 

  
7.1 Data denial (or adding) experiments (DDEs) 

 
The most common method used to test the impact of specific data is to compare the 
analysis and forecast skill with and without the specific data. Many diagnostic 
methods used to evaluate the Nature Run can also be used to evaluate the forecast 
and analysis. With real data the impact is measured as the forecast skill without the 
specific data compared against the best analysis or fit to observations. Usually, the 
analysis with the most data is considered to be the best and used as the control 
(defined in Section 1). Various skill scores for simulated experiments can be 
evaluated against either the control experiment or the Nature Run itself, while 
experiments with real data can be evaluated only against the control. 

There are many evaluation methods, but it is important to produce a consistent 
evaluation for all experiments when the results are compared. Many diagnostic 
techniques used to evaluate the Nature Run can also be used to evaluate the results. 
Examples are given below. 

1) Root Mean Square Error (RMSE). Root mean square error does not require 
climatology; therefore, this is the easiest evaluation that can be performed, and is 
often the first evaluation to be implemented. In a real system, RMSE is computed as 
the departure from the control experiment, which is usually the analysis with the 
most observations. For simulated experiments, RMSE can be computed from the 
departure from the Nature Run. The RMSE can be evaluated with the zonal mean or 
the time mean removed; 

2) Anomaly correlation (AC). Anomaly correlation is affected by the climatology 
used, so it is important to use the same climatology for all skill comparisons. It is 



 

 

better to use a less than perfect climatology than to use different climatologies in 
skill comparisons. Traditionally, the AC of the 500 hPa geopotential height has been 
used, but Masutani et al. (2006, 2009) showed that other levels and variables need to 
be evaluated. Calculating ACs for different spatial scales is also crucial; 

3) Storm track and intensity. Evaluations are done to determine the improvement 
in the storm track for selected events; 

4) Fit to observations. This requires a forward model (see Section 4). For the 
NCEP OSSEs, an evaluation against Nature Run will replace this method. It is still 
important to compare the fit to observations during the calibration process, i.e., test 
the realism of the O-B and the O-A distributions (see chapter Evaluation of 

Assimilation Algorithms, Talagrand); 
5) Evaluation of the realism of a Nature Run by assessing the likelihood of 

extremes lying outside the normal range of analysed or measured values; 
6) Amplitude, wavelength and propagation speed (or phase) of waves; 
7) Comparisons which may shed light on the realism of disturbances in the model 

and identify possibly unrealistic or spurious scales of motion; 
8) Evaluating the analysis and forecast of precipitation using, e.g., threat scores 

TS (TS=AC/(AF+AO–AC), where AC=area correct, AF=area forecast, AO=area 
observed); 

9) The statistics of analysis increments. Errico et al. (2007) showed that the 
spectral decomposition of analysis increments reveals the performance of a DAS. 

 

7.2 Adjoint–based techniques 

 
An adjoint–based technique (ADJ) to estimate the impact of observations on NWP 
analyses has been developed and is described in detail in Langland and Baker (2004) 
– see also chapter Variational Assimilation (Talagrand). This is a powerful method 
that describes the contributions from different observations. This technique allows 
detection of impact, be it positive or negative, from any observation. There are 
advantages and disadvantages compared with Data Denial Experiments (DDEs) (Zhu 
and Gelaro 2008; Gelaro and Zhu 2009): 

• The ADJ measures the impacts of observations in the context of all other 
observations present in the assimilation system, while the observing system 
is modified in the DDE (i.e.,  gain matrix differs for each DDE member); 

• The ADJ measures the impact of observations separately at every analysis 
cycle versus the background, while the DDE measures the total impact of 
removing data information accumulated in both the background and 
analysis; 

• The ADJ measures the response of a single forecast metric to all 
perturbations of the observing system, while the OSE measures the effect of 
a single perturbation on all forecast metrics; 

• The ADJ is restricted by the tangent linear assumption (valid ~1-3 days), 
while the DDE is not; 

• The ADJ and DDE techniques produce a similar qualitative pattern on the 
short-term forecast with some exceptions; 



 

 

• The ADJ may help our understanding in the interactions and redundancies 
among various observing systems. 

 

8 Calibration of OSSEs  
 

Calibration of OSSEs verifies the simulated data impact by comparing it to real data 
impact. In order to conduct an OSSE calibration, the data impact of existing 
instruments has to be compared to their impact in the OSSE.   

The simulated impact experiments should mimic the equivalent real experiments. 
In any case, the observation-minus-background (i.e., forecast) difference is the sum 
of three terms: the measurement error, the representativeness error, and a background 
error transformed by HHHH. Realistic estimates of the variances and spatial covariance of 
these errors must be made for an effective OSSE. One way to ensure that 
measurement errors, representativeness errors, and forecast (background) errors are 
all properly specified is to compare the statistical properties of y-HHHH    (x) (the 
innovation) of the OSSE with those of the real world assimilation y-HHHH    (x) for each 
observing system; they should match. Similarly, the statistical properties of the 
analysis increments for the OSSE and the real world assimilation should match. 
Thus, distributions of observation minus background (O-B) differences and 
observation minus analysis (O-A) differences for each observation type in the 
simulation should be similar to the statistics in an equivalent experiment with real 
data. In effect, the simulated observations should force the OSSE model state toward 
the Nature Run in the same way that real observations force the operational model 
state toward the projected true atmospheric state.  

One way of calibrating an OSSE is to use a DDE (see Section 7.1) to find out 
whether the assimilation of a specific type of observation has the same statistical 
effect on a forecast within the simulation as it does in the real world. For example, if 
automated aircraft reports are withheld from an operational data assimilation system, 
will the statistical measures of forecast degradation be the same as they would be in a 
system where all observation types are simulated and the Nature Run provides truth?  
An alternative method of calibration is to use the ADJ (see Section 7.2) to adjust the 
observational error so as to achieve a similar data impact with real observations.  

When calibrating the OSSE, similarity in the amount of impact from existing data 
in the real and simulated atmospheres needs to be achieved. If the impacts are 
different this needs to be explained. For example, synoptic systems in the Nature 
Run and the real world are different, and that will cause differences in the data 
impact. If the differences are caused by the procedure used in simulating the data, the 
simulation of the data has to be repeated until a satisfactory agreement is achieved.  

Ideally, a complete calibration would be performed every time the DAS changes. 
However, we would spend our entire resources on calibration if we try for perfection. 
Of course, we will never reach the perfect calibration. Thus, we need to select test 
sets of experiments to use for calibration and for verification.  
 
9 Experiences from the NCEP OSSE 
 
9.1 Background of the NCEP OSSE 



 

 

 
Various types of OSSEs have been performed (see Section 2); however, to our 
knowledge, the OSSE performed at the National Centers for Environmental 
Prediction (NCEP) is the most extensive one so far, and one where calibrations have 
been performed and presented in a regular manner. The calibration of data impact 
has been performed by comparing the data impact with both real and simulated data. 
Without calibration, the simulated data impact cannot be related to the real data 
impact. The NCEP OSSE is also the first OSSE where radiance data from satellites 
were simulated and assimilated. A forecast run with a version of the ECMWF model 
was used to produce the Nature Run, instead of using an analysis or using the same 
NWP model used for the assimilation (see Sections 1-3). 

Since the DWL is one of the most costly instruments, various simulation 
experiments have been funded and performed. In the NCEP OSSE, instead of 
evaluating a specific instrument, four representative types of DWL were evaluated 
(see Section 9.3 below for details). The results show a potentially powerful impact 
from DWL, but also show that without a careful design of the observing system and 
a significant effort in developing the data assimilation system, DWL will not be 
utilized to its best potential. 

  

9.2    Calibration performed for NCEP OSSE 
 
The calibrations were performed on existing instruments, such as the denial of 
RAOB (radiosonde observations) wind, RAOB temperature, and TIROS Operational 
Vertical Sounder (TOVS) radiances in various combinations. The geographical 
distribution of time-averaged Root Mean Square Error (RMSE) shows generally 
satisfactory agreement between real and simulated impacts. In both the real and 
simulated analysis, a large analysis impact in the tropics is seen to decrease in the 
forecast fields. In the Northern Hemisphere mid latitudes, the RMSE distribution of 
forecasts shows similar spatial patterns in the real and simulated analyses.  
 



 

 

 
Fig. 1. 500 hPa height anomaly correlation, time averaged between February 13 and 28. 72-

hour forecast fields are verified against the control analysis. Control runs include all 
conventional data and TOVS radiances. For each run the RAOB winds, RAOB temperatures 
and TOVS radiance are withdrawn in turn (experiments NWIN, NTMP, NTV, respectively). 

The left two panels are for the Northern Hemisphere and the right two panels for the Southern 
Hemisphere. The top two panels are for simulation experiments and the bottom two are for 

real experiments. With permission from Masutani et al. (2009). 
 
Figure 1 shows anomaly correlation (AC) skill in the 72-hour 500 hPa 

geopotential height forecasts verified against the analysis from control experiments. 
The analysis of the control experiments (CTL) includes conventional observations 
and TOVS. TOVS (NTV experiment), RAOB wind (NWIN experiment), and RAOB 
temperature (NTMP experiment) are withdrawn, and the real and simulated data 
impacts are compared.  

In both real and simulated experiments, the RAOB wind has the most impact: 
overall for the Northern Hemisphere; very slightly more than RAOB temperature for 
the Southern Hemisphere. Its impact and the magnitude and spatial pattern of the 
impact are in good agreement for real and simulated experiments. However, the 
effect of withholding TOVS data in the Southern Hemisphere is much greater in 
reality than in simulation. Note that a time-varying real SST was used in the 
assimilation and a constant SST in the simulation. In order to investigate the cause of 
this inconsistent result, eight experiments were compared: real or simulated analysis, 
constant or real SSTs, and with or without TOVS data. The consistency in response 
between the simulated and real atmosphere to the two different SSTs was confirmed. 
These results suggest that if the SST has a large temporal variability, the impact of 
TOVS data becomes more important. When TOVS data are used, the analyses with 
the two different SSTs become closer because TOVS data contain information about 
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SSTs. Although using constant SSTs to generate the Nature Run is not desirable, we 
conclude that the data impact of slowly varying SSTs in the Southern Hemisphere 
can be tested with the T213 NR (see Section 3.2). 

These results suggest that a realistically variable SST is required for a more 
reliable OSSE. Ideally, an ocean-atmosphere coupled model is desirable for 
producing a better Nature Run, but this may require further development of current 
coupled models. 

  

9.3 Evaluation of DWL impact using the NCEP OSSE 
 

In the NCEP OSSE, instead of evaluating a specific type of the DWL instrument, 
four representative types of DWL are evaluated. The data impact from a specific type 
of DWL is expected to be estimated from the data impact of these four types of 
DWL. After these idealized experiments, a more realistic DWL will be simulated and 
evaluated. The four types of DWL are as follows: 

• DWL with scanning, while sampling is from all vertical levels; 
• DWL without scanning, while sampling is from all vertical levels and in 

only one direction; 
• DWL with scanning, while sampling is from upper levels; 
• DWL with scanning, while sampling is from lower levels and clouds. 

 
Upper and lower level sampling represent DWL measurements of molecular and 

aerosol particle returns, respectively.  
First, many experiments were done to illustrate the impact of conventional and 

DWL data over the first few days of the period under investigation. Then, selected 
sets of experiments, including model forecasts, were extended to the whole Nature 
Run period. The impact of DWL was assessed using AC (anomaly correlation) for 
500 hPa geopotential heights; then the results of time-averaged geographical 
distributions and a time series of RMSE were also studied. Traditionally, the AC for 
500 hPa geopotential height is used to evaluate the data impact, but it was soon 
evident in this study that the impact on 500 hPa geopotential height is very limited. 

The meridional wind (v) is mainly used to assess the performance of the DWL.  
Note that the evolution of atmospheric phenomena at the shorter time and smaller 
spatial scales is dominated by the wind field, while for longer time and larger spatial 
scales the mass (temperature) field is dominant (Stoffelen et al. 2005; Kalnay 1985). 
In the Northern Hemisphere, excellent skill at the global scale is mostly achieved by 
existing data (conventional and TOVS). Therefore, the impact of DWL is expected at 
the synoptic scales. The skill to predict temperature (T) comes mainly from planetary 
scale events, while the skill to predict v comes mainly from the synoptic scale.  The 
zonal wind (u) and meridional wind (v) contain the information about relative 
vorticity at the synoptic scale, while u and T contain information about the wave 
guide (Hoskins and Ambrizzi 1993). Therefore, v depicts information about relative 
vorticity. The large scale u component can be inferred from temperature, T, 
observations in the extratropics, while DWL wind observations mainly define the 
synoptic scale wave which is represented in relative vorticity and the meridional 
wind, v. 



 

 

The data impact further depends on the resolution of the DAS. There are many 
reasons to expect that the data impact might be reduced with higher resolution 
models (or better forecast models), because they can provide much better 
background (forecast) fields and there is less room for data to improve the analysis. 
On the other hand, a higher resolution model will be able to effectively utilize data in 
finer detail, and that may lead to a higher data impact. Moreover, the smaller scales 
evolve faster than the larger scales, so their evolution needs to be analysed more 
often with new observations. 

Masutani et al. (2006, 2009) showed that improvements in AC (anomaly 
correlation) scores caused by the insertion of DWL winds are less in a higher-
resolution DAS than for a lower-resolution DAS because the first guess field from a 
higher resolution forecast model is more accurate and leaves less room for 
improvement. At the larger spatial scales, improvements in the model are more 
important, but wind data clearly improve the analysis and forecast at the smaller 
spatial scales. The results very much depend on the spatial scale considered. The 
NCEP OSSE also showed that the data impact depends on the DAS. Therefore, 
OSSEs performed using various DAS will be needed to establish confidence in the 
evaluation of future instruments. 

Finally, data impact is also tested using various thinning strategies. For example, 
data are thinned to 10% in various ways: 

• Uniformly; 
• 10 minutes on followed by 90 minutes off; 
• Targeted to areas with large analysis error; 
• Targeted to data void areas; 
• Comparison between thinning and increase in observational error. 

 
The NCEP OSSE results show that OSSEs are a very powerful tool for assessing 

the effect of data distribution.  
 

10 Summary and concluding remarks for OSSEs  
 

Credible OSSEs may be performed that realistically evaluate the impact of 
prospective observations. The challenges of OSSEs, such as differences in character 
between the Nature Run and real atmosphere, the process of simulating data and the 
estimation of observational errors all affect the results. Evaluation metrics moreover 
affect the conclusions. Thus, consistency in results is important. Some results may be 
optimistic and some pessimistic. However, it is important to be able to evaluate the 
sources of errors and uncertainties. As more information is gathered, we can perform 
more credible OSSEs. If the results are inconsistent, the cause of the inconsistency 
needs to be investigated carefully. Only when the inconsistencies are explained, 
interpretation of the results becomes credible. 

The NCEP OSSEs (Masutani et al. 2006, 2009) have demonstrated that carefully 
conducted OSSEs are able to provide useful recommendations which influence the 
design of future observing systems. Based on this work, OSSEs can be used to 
investigate:  

• The effective design of orbit and configuration of an observing system;  



 

 

• The effective horizontal and vertical data density; 
• The evolution of data impact with forecasts; 
• The balance between model improvement and improvements in data density 

and quality;  
• The combined impacts of mass (temperature) data and wind data;  
• The development of bias correction strategies. 

 
As models improve, there is less improvement in the forecast due to the 

observations. Sometimes the improvement in forecasts due to model improvements 
can be larger than the improvement due to observations. However, even in the 
Northern Hemisphere, forecasts at the subsynoptic scales require much better 
observations. In the tropics, models need to be improved to retain the analysis 
improvement for more than a few days of the forecast (Žagar et al. 2008). OSSEs 
will be a powerful tool for providing guidelines for future development in these 
areas. 

(i) Value of OSSEs:  

Operational centres are busy getting the best possible value out of existing 
instruments. We expect that carefully designed OSSEs will enable scientists to make 
strong and important contributions to the decision making process for future 
observing systems. Time will be saved in using the new data when compared to the 
work required to use observing systems that were built without any guidance from 
OSSEs. However, there is a serious dilemma in spending resources on OSSEs. If a 
NWP centre devotes resources to getting the greatest benefit out of existing data 
sources, it misses the opportunity to assess critical future observing systems, with the 
result that it must live with whatever new observing systems appear in the future 
rather than influence their development. If it devotes its resources entirely to OSSEs, 
it may not be paying enough attention to today’s valuable data. 

(ii) Challenges of OSSEs:  

OSSEs are a challenge to weather services. OSSEs require strong leaders with a 
clear vision, because many of the efforts offer long-term rather than short-term 
benefits. Although operational systems should benefit from carefully executed 
OSSEs through lower cost of implementation, there are immediate costs to OSSEs. 

OSSEs are very labour intensive. The Nature Run has to be produced using state-
of-the-art NWP models at the highest resolution. Simulating data from a Nature Run 
requires large computational resources, and simulations and assimilations have to be 
repeated with various configurations. OSSEs also require extensive knowledge of 
many aspects of the NWP system. Expert knowledge is also required for each 
instrument. Efficient collaborations are thus essential for producing timely and 
reliable results.  

(iii)  Role of stakeholders:  

OSSEs will be conducted by various scientists with different interests. Some will 
want to promote particular instruments. Others may want to aid in the design of the 
global observing system. Specific interests may introduce bias into OSSEs but they 
may also introduce strong motivations. Operational centres will perform the role of 
finding a balance among conflicting interests to seek an actual improvement in 
weather predictions. They may be regarded as unbiased and thus be best placed for 
this role; on the other hand, difficulties in finding resources may hamper their effort.  



 

 

(iv) Recommendations: 

Ideally, all new instruments should be tested by OSSEs before they are selected 
for construction and deployment. OSSEs will also be important in influencing the 
design of the instruments and the configuration of the global observing system 
(chapter The Global Observing System, Thépaut and Andersson). While the 
instruments are being built, OSSEs will help prepare the DAS for the new 
instruments. Developing a DAS to assimilate a new type of data is a significant task. 
However, this effort has traditionally been made only after the data became 
available. The OSSE effort demands that this same work be completed earlier; this 
will speed up the actual use of the new data and proper testing, increasing the 
exploitation lifetime of an innovative satellite mission. 

From the experience of performing OSSEs during recent decades, we realize that 
using the same Nature Run is essential for conducting OSSEs to deliver reliable 
results in a timely manner. The simulation of observations requires access to the 
complete model data and a large amount of resources; thus it is important that the 
simulated data from many institutes be shared among all the OSSEs. By sharing the 
Nature Run and simulated data, multiple participants in OSSEs will be able to 
produce results which can be compared; this will enhance the credibility of the 
results.  

(v) Final word: 

NCEP’s experience with OSSEs demonstrates that they often produce 
unexpected results. Theoretical predictions of the data impact and theoretical backup 
of the OSSE results are very important as they provide guidance on what to expect. 
On the other hand, unexpected OSSE results will stimulate further theoretical 
investigations. When all efforts come together, OSSEs will help with timely and 
reliable recommendations for future observing systems. 
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