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Abstract 

 
A novel approach based on the neural network (NN) technique is formulated and used for 

development of a NN ensemble stochastic convection parameterization for climate 

models.  This fast parameterization is built based on data from Cloud Resolving Model 

(CRM) simulations initialized with and driven by the TOGA-COARE data available for 

the 4-month winter season from November 1992 to February 1993. CRM simulated data 

were averaged and projected onto the GCM space of atmospheric states to implicitly 

define a stochastic convection parameterization.  This parameterization is emulated using 

an ensemble of neural networks (NNs).  The developed NNs are trained and tested.  The 

inherent uncertainty of the stochastic convection parameterization derived following this 

approach is estimated. The newly developed NN convection parameterization has been 

tested in a diagnostic mode of NCAR CAM.  It produced reasonable and promising 

climate simulations for the TOGA-COARE winter. This paper is devoted to discussion of 

the concept, methodology, initial results,and the major challenges of development of NN 

convection parameterizations for climate and numerical weather prediction (NWR) 

models. 
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1. Introduction 

 

Clouds and convection are among the most important and complex phenomena of the 

Earth’s physical climate system. The processes that control clouds, and through which 

they interact with other components of the Earth system involve slow and fast fluid 

motions carrying heat, moisture, momentum and trace constituents, and influence other 

important physical processes through phase changes of water substances, radiative 

transfer, chemistry, production and removal of trace constituents, and atmospheric 

electricity. Clouds are strong regulators of radiant energy, sites for chemical processing, 

participate in many climate feedbacks, and are potentially very susceptible to 

anthropogenic change (indirect aerosol effects). They figure prominently in all climate 

change assessments. 

 

In spite of intense studies for centuries, clouds still provide an intellectual and 

computational challenge. Because of the vast range of time and space scales involved, 

researchers typically focus on a particular component of a cloud system, with a narrow 

range of time and space scales, and prescribe features of the cloud that operate outside of 

that range. For example, ‘box’ models treat a small air parcel as an approximately 

spatially homogeneous medium over length scales of order a meter to explore the 

evolution of a cloud drop spectrum. Motions of the air as a fluid are prescribed, and the 

focus is on molecular scale motions (e.g. vapor deposition) and drop scale motions (e.g. 

drop coagulation). At the other end of the spectrum of representations of clouds is their 

representation in large scale models, for example, in General Circulation or Global 
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Climate Models (GCMs). GCMs treat convective clouds very simply. While scientific 

problems that use these models are among the most computationally intensive 

applications in the history of scientific exploration, the models employ drastic 

simplifications in their treatment of many processes important in climate and weather.  

 

Parameterizations must represent the effect of clouds on time and space scales that are 

well below the resolution of the scales explicitly treated in GCMs, which resolve 

atmospheric features with space scales of order 100km, and time scales of order 10 

minutes. NWP models typically operate at smaller spatial and temporal scales, but most 

cloud processes are still acting well below these scales. Cloud systems are driven by and 

interact with the Earth system through a variety of physical processes, and this is the 

reason that we see the incredible variety of clouds in the atmosphere.  

 

Clouds that exist in situations where buoyant overturning is one of the major controlling 

component processes are called convective clouds. GCMs frequently treat convective 

clouds in parameterizations as ‘plumes’ consisting of updrafts and downdrafts. All of 

these aspects of clouds must be treated in some fashion in models that attempt to 

realistically represent atmospheric evolution, and it has become traditional in large scale 

models to treat many of these regimes and processes (stratiform clouds, convective 

clouds, microphysics, sub-gridscale cloud fraction, and sub-gridscale cloud overlap) 

somewhat independently, even though they are intimately connected. For this reason, 

models produce independent, but connected ‘parameterizations’ (representations) of each 

of these processes.  



 5 

In this paper we focus on improving the representation (parameterization) of convective 

clouds. Convective clouds are loci for some of the most vigorous vertical motions in the 

atmosphere, transporting heat, momentum, moisture, and trace constituents from near the 

surface to 10s of km in altitude in minutes. They are also regions where much of the rain 

hitting the earth’s surface is produced, and the local origin or source of water that appears 

in stratiform clouds like ‘cirrus anvils’. 

 

The representation of cloud processes has long been recognized as a challenge at any of 

the space and time scales mentioned above, and the problem is particularly difficult for 

global models.  The scientific community realizes that many critical aspects of our ability 

to represent the atmosphere for climate and NWP problems are being hindered by the 

representation of clouds, and that we have reached an impasse in our ability to improve 

these processes. These issues are eloquently discussed by Randall et al. (2003). That 

paper makes the point that models that explicitly resolve processes at the smaller time 

and space scales that are relevant to many features of clouds systems (e.g. 10s of meters 

to less than 10 kilometers, and time scales of seconds to minutes), so called Cloud 

Resolving Models (CRM) also called Cloud System Resolving Models(CSRMs) or Large 

Eddy Simulation Models (LES), are usually (but not invariably) able to simulate 

component aspects and evolution of the cloud systems much more realistically than large 

scale models. The improvements seen in representing clouds using CSRMs and LES have 

provided the motivation for the approaches described in section 2. 
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1.1. Problems seen using traditional approaches in 
representing convection 

    In spite of their importance to the Earth system, and the attention that atmospheric 

modelers have paid to them over the last 30 years, it is clear from a variety of analyses 

that our current parameterizations of convective processes are inadequate. We list a few 

of the studies documenting these inadequacies.  We stress that the features are present in 

virtually all global models today, and are also documented in many other studies with 

many other models. 

 

1. Global atmospheric model used for NWP seem unable to produce the correct 

balance in the wind, water substances, mass, and temperature field to allow precipitation 

to be produced realistically when models are started from observed atmospheric initial 

conditions. This phenomena, termed convective ‘precipitation spin up’ (see, e.g., Donner 

and Rasch, 1989) results in substantial imbalance in these atmospheric fields and require 

explicit adjustments to initial conditions used in weather forecast models to avoid 

unrealistic transients in precipitation forecasts.  

2. Global large scale models used in either forecast or climate mode show problems 

in predicting the diurnal variation of convection, both over land, and oceans (e.g. Rasch 

et al., 2006). This problem is less prevalent in CSRM simulations of convection (e.g. 

Guichard et. al., 2004, Grabowski et al., 2006), which suggest that shallow convection 

may play a role in moistening the lower troposphere prior to deep convection, and that 

there may be a need for a time evolving cumulus entrainment rate in the convection.  

3. Global Models frequently produce a persistent ‘double ITCZ’ (Inter-Tropical 

Convergence Zone) in the western and central tropical Pacific and the Indian Ocean, that 
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is seen only occasionally in the real world, and only over a very limited region of the 

pacific (Hack et al, 2006). These biases have been shown to be quite sensitive to the 

formulation of convection in GCMs (Lin et al, 2006).  

4. Although there are still many uncertainties in observational estimates of the 

burdens of cloud condensate (both liquid and ice), we believe models still have large 

biases, particularly in convective clouds (see e.g., Rasch and Kristjansson, 1998), and in 

the partitioning between the convective and stratiform components of tropical cloud 

systems (see, e.g. Rasch, et. al., 2006; Hack et. al, 2006). 

5. Global models frequently produce too much convective precipitation, with a 

relatively uniform heating profile in the vertical, instead of associated ‘stratiform 

precipitation’ driven by convection that has heating aloft, and cooling below (Rasch et al, 

2006). These biases produce a far field effect (a teleconnection) that is manifested in 

errors in the Walker Circulation, in the El Nino Southern Oscillation (ENSO) 

phenomena, and in stationary wave patterns far from the original location of the heating 

(e.g. Gill, 1980; Branstator, 1992).  

6. Convection is a process that moves tracers rapidly from the surface to the upper 

troposphere. Numerous comparisons of global models to short and long lived tracers 

suggest that the balance of deep vertical motions associated with weakly entraining 

plumes that penetrate deep into the troposphere, and shallower motions associated with 

stronger lateral entrainment/detrainment events is poorly represented in current 

atmospheric models (Rasch et al., 2000)  
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1.2. Current efforts by others to improve the treatment of 
clouds in large scale models 

Because of the problems described above, the research community has been exploring 

alternate ways of making progress in representing clouds in global models. Among the 

alternate paradigms for treating clouds in global models are the following: 

 

1. Cloud System Resolving Models (CSRMs). These models, first developed in the 

1970s and 1980s (e.g. Krueger, 1988), operate over a limited area (typically continental 

scale or smaller) at finer spatial and temporal time scales than a global model (although 

they still require many simplifications). The spatial and temporal average behavior of 

these models tells us what might be gained if we could resolve many of the phenomena 

that global models must ignore (e.g. higher resolution fluid dynamic motions that can 

resolve some updrafts and downdrafts, convective organization, meso-scale circulations, 

and stratiform and convective components that interact with each other, etc.).  It is 

important to note that CSRMs do not simulate all processes important to cloud systems 

from first principles. There are still many sets of processes (for example microphysical 

and turbulent processes) that are still treated crudely, but they do resolve many more 

phenomena than today’s global model parameterizations.These process parameterizations 

in CSRMs are most often applied locally because the redistribution of mass momentum, 

energy and moisture by the largest convective/cloud motions is resolved on the global 

model grid. 

 

The domain average of solutions from these models driven by observationally based 

estimates of observed meteorological events can be directly compared with the physics 
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from a single column model of a GCM, which has come to be known as a ‘Single 

Column Model’ (SCM). This has proven to be a particularly valuable tool in assessing 

the state of our understanding of cloud processes. A case in point can be found in the 

Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) 

project. This project (see Randall et al, 2003b) was designed to confront CSRMs and 

SCMs with the observationally based estimates of the driving meteorological forcing, as 

well as the behavior and response of cloud processes, and the local environment 

(temperature, moisture, precipitation), to this forcing. GCSS studies have explored the 

behavior of models (and thus our understanding and representation of the atmospheric 

processes) of clouds in a variety of regimes, e.g. convective, polar, and boundary layer 

clouds. 

 

It is an explicit assumption within the GCSS project that CSRMs will provide a more 

accurate representation of the behavior of clouds than SCMs, and that if that is true then 

information can be gleaned from the CSRMs that will help in the development of the next 

generation global model parameterizations. It is reassuring to find that, although not 

uniformly true, that in most regimes this is the case: CSRMs produce better simulations 

of deep tropical maritime convection, and summertime mid-latitude continental 

convection (Randall et al, 2003b; Guichard et al, 2004), and tropical continental 

convection driven by diurnal variations in heat release in the absence of large scale 

forcing (Grabowski, 2006). All situations have been simulated more realistically using 

CSRMs than single column models including parameterized convection. The CSRMs 

also show a realistic transition from no convection, to shallow, to deep convection as the 
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day proceeds, with a peak in precipitation that occurs in late afternoon, which SCMs have 

much more difficulty reproducing. 

2. Recently attempts have been made to develop global models that resolve some 

cloud scale motions (down to horizontal resolutions of about 3km) (Global Cloud 

Resolving Models or GCRMs, e.g. Miura et al, 2005; Satoh et al, 2005). They are 

incredibly expensive to run when compared with the cost of a typical general circulation 

model (see next item), and have generally been used in idealized settings for exploratory 

experiments (in an water covered planet scenario for example)  

3. The term ‘super-parameterization’, also known as a ‘Multiscale Modeling 

Framework’ (MMF), was originally suggested by Grabowski (2001), and subsequently 

developed by a group at Colorado State University (e.g. Khairoutdinov and Randall, 

2001; Randall et al 2003a). This concept refers to the embedding a simplified CSRM into 

each column of a global model. Because of the simplifications, such a model is 

substantially less expensive (by a factor of 103-104) than a GCRM, but it is still 

enormously more costly (102 -103) than models using a conventional convective 

parameterization (Randall et al., 2003a). A typical MMF parameterization might use a 

two-dimensional CSRM with 64 sub-columns within each GCM column, to produce sub-

resolution of about 4km. The simplifications buy a substantial reduction in cost, with a 

consequent compromise in accuracy of physical representation. There are for example, 

significant changes in the storm evolution (e.g. vertical velocities) produced in 2-D 

CSRMs when compared with 3-D formulations, and 2D CSRM simulate too rapid a 

transition from shallow to deep convection, and too much cloud cover (e.g., Grabowski et 
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al., 2006). These artifacts will also be present in MMF formulations. Other compromises 

are discussed more thoroughly in the references. 

 

In this paper we introduce an alternative approach based on neural network (NN) 

technique – a particular case of statistical learning technique (SLT).  This approach 

allows one to develop a NN convection parameterization, which can be used as a 

parameterization in GCM and can effectively take into account major sub-grid effects 

taken into account by other approaches (see above) at a fraction of the computational 

cost.  In Section 2 we introduce our approach, discuss sources of uncertainties in the 

convection parameterization and estimate these uncertainties.  We also describe the NN 

training and perform an initial evaluation of the developed NN parameterization on an 

independent training set.  In Section 3 we introduce the newly developed NN convection 

parameterization into NCAR CAM in a diagnostic mode and perform and analyze the 

results of a climate simulation for the TOGA-COARE 4-month winter period (November 

1992 – February 1993).  Section 4 contains discussion and Section 5 conclusions. 
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2. Formulation of our Approach: Development of NN 

ensemble convection parameterization from CRM data 
 

Our approach is aimed at developing NNs which emulate the behavior of a CSRM run at 

larger scales (closer to GCM scales) in a variety of regimes and initial conditions. The 

resulting emulations can be used as a novel, and computationally viable convection 

parameterizations.  If successful, it will produce a parameterization of similar or better 

quality than the superparameterization or MMF, effectively taking into account subgrid 

(in terms of GCM scales) effects at a fraction of the computational cost.  

 

As we showed in our previous works (e.g., Krasnopolsky 2007a) any parameterization of 

model physics can be emulated using multilayer perceptron NNs.  This NN is an 

analytical approximation that uses a family of functions like: 

∑∑
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=⋅+⋅+=
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ijij
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wherexiandyqare components of the input and output vectors X and Y, respectively, a and 

b are fitting parameters, and ∑
=
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n

i
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1

0 )(φ  is a “neuron”.  The activation function φ  is 

usually a hyperbolic tangent, n and m are the numbers of inputs and outputs respectively, 

and k is the number of neurons in (1).   
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2.1. Design and development of the NN parameterization 
and the training set 

 

 

Fig. 1  Development design of a NN convection parameterization. 

 

Fig. 1 summarizes the process of development of the NN convection parameterization.  

The CRM used in our work is the SAM (System for Atmospheric Modeling)developed 

and provided by M. Khairoutdinov (Khairoutdinov and Randall, 2003). It has been used 

for our CRM simulations. SAM uses TOGA-COARE data (ARM or other observations) 

for initialization and forcing and has the horizontal resolution ρ of about 1 km, 64 or 96 

vertical layers, and time integration step of 5 s. We integrate the CRM over the domain of 

256 x 256km. The development of an NN parameterization is a multi-step process.  These 

steps are:  

1. Simulating CRM data.  The SAM is run for the entire TOGA-COARE period (120 

days in our current experiments) and the high resolution output of the model is 

archived.  
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2. Reducing the resolution of simulated data.  The high resolution CRM simulated data 

are averaged in space and time.  The data are averaged to a reduced horizontal 

resolution of ρ<r ≤ R, where ρ and R are the CRM and GCM resolutions 

correspondingly, and are interpolated/averaged to the number of vertical layers l = L, 

where L is the number of vertical layers in GCM.  

3. Projecting a CRM space of atmospheric states to a GCM space of atmospheric states.  

The subset of variablesis selected from the reduced resolution CRM simulated data 

created at the previous step, and this subset constitutes the NN development dataset.  

Only variables that can be identified with corresponding GCM variables or can be 

calculated from or converted to prognostic or diagnostic variables available in GCM, 

are included in the development set (called “pseudo-observations” in Fig.1; actually 

they are obtained from the averaged CRM/SAM simulated data).  Only these 

variables are used as inputs and outputs of our NN parameterization.  The choice of 

“inputs” and “outputs” for a NN convection parameterization is very critical, and 

influences the following discussion. For example, a simple convective 

parameterization might define “temperature”, “water vapor” and the convergence of 

temperature and water vapor to be “inputs”, and produce Q1C and Q2, the apparent 

heat and moisture tendencies, as the “outputs”. These could also be viewed as the 

inputs and outputs of a CRM, but the outputs Q1C and Q2 clearly depend upon other 

variables (for example, the condensed water in each CRM column) that are not 

necessarily considered to be part of either the inputs or outputs of the NN. These 

variables cannot be included as NN inputs and/or outputs simply because they are not 

available in GCM.  From the point of view of GCM “model reality” these variables 
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are “hidden” variables responsible for sub-grid scale variability.  The 

acknowledgement of this challenge requires development of the concept of 

uncertainty and “stochasticity” discussed in the following section.  The development 

set of “pseudo-observations” implicitly represents a stochastic convection 

parameterization with an uncertainty, which is an inherent feature of such a 

parameterization (see Section 2.2). The dashed lines in Fig. 1 show that, if it is found 

to be desirable, the high resolution CRM simulated data and/or even observed data 

can be added to the development set to enrich sub-grid variability in the development 

data.  

4. CRM vs. GCM mean differences for all variables selected as the NN parameterization 

inputs and outputs have to be determined.  These differences are a result of CAM and 

CRM being two different models with different temporal and spatial scales and 

resolutions, with different dynamics and physics; they have different boundary and 

initial conditions and different forcing.   

5. The developed “pseudo-observations” (averaged SAM simulated data) are separated 

into two sets, one set being used for training and another independent set for 

testing/validation.  Then the NN parameterization is trained using the training set.  

Due to the inherent uncertainty of pseudo-observations, the NN convection 

parameterization is implemented as an ensemble of NNs.  

 

The validation procedure for the NN parameterization consists of two steps.  First, the 

trained NN is applied to the test set and error statistics are calculated.  Second, the tested 

NN parameterization is included into GCM to validate its behavior in the model 
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simulations.  This last step is the most important step of our approach.  The pseudo-

observations used for development of the NN parameterization are not real observations.  

They represent the “virtual reality” of the averaged SAM simulated data.  We use them 

for development of the NN parameterization to be introduced into CAM.  CAM has its 

own “virtual reality”, which may not be in a complete agreement with the averaged SAM 

simulated data and therefore with the NN parameterization trained on pseudo-

observations derived from the averaged SAM simulated data. Thus, special efforts may 

be required to calibrate/synchronize/make consistent the “virtual realities” of CAM and 

average SAM simulated data.  This issue is investigated in Section 2.5. 

 

Let us now follow the steps of the development process formulated above and discuss the 

uncertainties introduced at each of these steps into the final NN parameterization.  First, 

we discuss the first three stages of the development, which are performed prior to the use 

of NN.  These stages lead to creating the development data set of “pseudo-observations” 

that implicitly define the stochastic convection parameterization.  Then this 

parameterization is emulated using an ensemble of NNs.  

 

2.2. Parameterization and its Uncertainties 

 

In this Section we outline the sources of uncertainties, which emerge in the process of the 

data preparation for development of an NN convection parameterization for GCM based 

on the data simulated by a CRM.  We discuss the major properties/sources of the 

uncertainties and show that the uncertainty is an inherent part of the data and, therefore, 
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of the parameterization derived in such a way; and that this parameterization is 

essentially a stochastic parameterization. 

 

The first three steps of the development process formulated in the previous sections 

introduce uncertainties in the training data set or “pseudo-observations”.  The 

uncertainties are introduced at each of these steps and their sources can be traced step by 

step.   

 

First, the CRM may be formally considered as a mapping µ  that defines the relationship 

between two vectors: the input vector (x) and the output vector (y) that are composed of 

CRM variables. At each time step the mapping µ  given vector x produces vector y or, 

 

)(xy µ=                                                                   (2) 

 

Here (x, y) are high resolution SAM variables (produced with spatial resolution of 1 km 

and temporal resolution of 5 s) or SAM simulated data; they are related by SAM and this 

fact is expressed by eq. (2).  The mapping µ  is an exact (or deterministic, or physically 

based) mapping, which means that it is explicitly represented by a complete set ofSAM 

equations, and that one particular y corresponds to each particular x. The first step in our 

developmental process consists of simulating the CRM or applying (2) at each time step 

and continuing with the simulation for a period of time T.  The CRM simulation is 

initialized, and then forced at each time step by large-scale observational data prorated 

per a time step. However, because the CRM physics (like microphysics) is partially 
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parameterized, contains a number of simplifications, and the forcings are approximate, 

CRM is not “perfect” and the CRM simulated data will deviate from the observational 

data.  This difference between the observed reality and the “CRM reality” is the first 

contribution to the uncertainty of pseudo-observations and the NN parameterization 

derived from these data.      

 

The second step in our development process consists of averaging high resolution 

simulated data (x,y) over some area r(ρ <r< R)and over a time interval t (τ < t < T), 

where ρ = 1km and τ= 5sare the CRM resolution and integration time step respectively; R 

and T are the GCM resolution and integration time step respectively. As the result, 

averaged vectors of simulated data x and y  are produced.  Here the bar below the 

symbol means averaging over r and t.   Fig. 2 shows the evolution of the spectrum of 

precipitation rates with respect to changing resolution of the field that we are sampling. It 

demonstrates the sensitivity of precipitation to resolution changes over the r range from 

16 to 256 km.  Fig. 3 shows the evolution of the profile of precipitable moisture ("Rain 

and Snow“) with the maximal profile variability for the same range of r.    

 

By changing r and t, we can regulate the amount of sub-grid information (high frequency 

variability) in pseudo-observations that we want our parameterization (derived from the 

pseudo-observations) to introduce into CAM.  Thus, moving from r = 1 km and t= 5 s 

(high resolution SAM data) to lower resolution and larger t, we will gradually reduce the 

sub-grid signal introduced in CAM.  Determining the optimal values for r and tis one of 

the most important topics that we have not investigatedyet.  However, it can be 
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investigated only through validation of performance of the developed NN convection 

parameterizations in CAM. 

 

Fig.2 Spectra of horizontally averaged data for precipitation rates for different averaging 

areas (r × r) with r = 16, 32, 64, 128, and 256 km. 

 

For Fig. 3 a particular r (e.g., r = 16 km) was selected and a time series (120 days in our 

case) of profiles with 256 (for r = 16 km) profiles for each time step was obtained.  Then 

all but a single profile with the maximum profile variability were removed.  This profile 

is shown in black (for r = 16 km) in Fig. 3.  The same has been done for all other 

considered cases of r (for r = 32 km we have 64 profiles for each time step, etc.).   
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Fig.3 Evolution of the profile of precipitable moisture ("Rain and Snow“) with the 

maximal profile variability in response to the change of averaging areas (r × r) with r = 

16, 32, 64, 128, and 256 km.   

 

 

As expected, both Figs. 2 and 3 clearly show the reduction of high frequency variability 

in averaged simulated data x and y as compared with the original high resolution 

simulated data xand y.  It is important to emphasize that the new variables x and y are 



 21 

stochastic variables that are distributed around their mean values with some probability 

density functions.    

 

Now we assume that there exists a mapping µ  between the averaged simulated data 

x and y , which can be written as, 

εµ += )(xy                                                   (3) 

whereε   is a measure of uncertainty in the mapping introduced by the two previous 

developmental steps.   The uncertainty ε reflects the fact that the mapping (3) is not 

exact.   

 

The mapping µ  is a complex stochastic mapping between two stochastic vector 

variables x and y .  The “stochasticity” of the mapping µ  contributes significantly to the 

uncertainty ε  in (3).  The stochastic mapping (3), for each particular value x , may 

generate many different values y  with different probabilities determined by their joint 

probability density function ρ(x,y).  Also one value of y   can be generated by a 

stochastic mapping from different values of x with different probabilitiesdetermined by 

their jointprobability density function. 

 

The nехт step of our developmental process is projectingthe CRM space of atmospheric 

states onto the GCM space of atmospheric states.  It starts from a transition from 

averaged CRM variables x and y to a subset of these variables, X' and Y'. Let us write 
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x and y as },{ xXx ′′= and },{ yYy ′′= .  Here we split each vector x and y into two parts.  

The new variables X' and Y'include only variables that can be identified with 

corresponding GCM variables or can be calculated from or converted to prognostic 

or diagnostic variables available in the GCM; all other variables x' and y'are projected 

out (averaged out), i. e., can not and will be not used.  We can rewrite the mapping (3) 

before the projection in the new coordinates as, 

 

εµ +′′′=′ ),,( yxXY                                               (4) 

y' is present in the right hand side of eq. (4) because y'and Y’ are physically related and 

correlated.  Now let us expand the mapping (4) in the Taylor series at xx ′=′  and yy ′=′  

where the upper bar means averaging over x' and y'.   

 

ε
µµ

µµ
µ

++′−′⋅
′∂

′′′∂
+′−′⋅′−′⋅

′∂′∂

′′′∂
+

+′−′⋅
′∂

′′′∂
+′−′⋅

′∂

′′′∂
+′′′=′

′=′

′=′

′=′

′=′

′=′

′=′

′=′

′=′

K
2

2

22

)(
),,(

)()(
),,(

)(
),,(

)(
),,(

),,(

xx
x

yxX
yyxx

yx

yxX

yy
y

yxX
xx

x

yxX
yxXY

yy

xx

yy

xx

yy

xx

yy

xx

(5) 

 

where derivatives in (5) are subsections of the Jacobian (the first order derivatives) and 

the Hessian (the second order derivatives) matrixes of the mapping (4). 

 

Let us denote the projected variable Y after the averaging over x' and y'as, 
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)(),,( XMyxXY =′′′= µ                                           (6) 

 

where the long upper bar means averaging over x' and y'.  Let us now estimate an 

additional uncertainty ε which is introduced by the projection (the upper bar means 

averaging over x' and y'; the lower bar means averaging over r and t).   

 

 The systematic part of this uncertainty can be estimated by combining (5) and (6) and 

averaging over x' and y', 
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Here in (7) α, β, γ, δ, and η are coefficients built from the mapping derivatives; bx'and  by' 

are biases, 
22 , yx ′′ σσ are variances of x' and y'; and  cx'y'is the correlation coefficient 

(covariance matrix) between x' and y'.  If the averaging is performed over the entire 

domain of x' and y' (or over the representative training data set), then the biases bx' and by' 

are equal to zeros. However, the systematic part of the uncertainty (7) also includes all 

higher moments of x' and y', which are not zeros; therefore, thesystematic part of the 

uncertaintyε , which introduced by projecting the CRM space of atmospheric states onto 
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the GCM space of atmospheric states, is, in general, not zero.  The random part of the 

uncertaintyε  can be calculated in a similar way and it is not zero as well. 

 

Taking into account the uncertaintyε , the mapping (6) between the new vectors of 

projected variables X and Y can be written as, 

 

εεε +=++= )()( XMXMY                                                (8) 

 

This new mapping (8) is obtained from the mapping (3) by projecting out all omitted 

CRM variables.  The mapping (8) is also a stochastic one and the new component of the 

uncertainty, the vectorε , is due to the projection of the CRM state space onto the GCM 

state space.  This uncertainty emerges due to an unaccounted variability of omitted 

parametersx' and y'of vectors X andY .  After projecting these vectors onto the GCM 

space, the projected vectors X and Y do not correspond to any particular values of 

omitted parametersx' and y'; these values are uncertain.  Actually, when we learn 

mapping M from data, the projected vectors X and Y correspond to the mean values of 

omitted parameters calculated over the training set.  The vector ε  contains not only 

random but also a systematic component.  Finally, merging ε  and ε  into the vector 

ε we get the mapping (8) that we want to use as a parameterization in GCM.   

 

Thus, mapping (8) is not an exact mapping as is the mapping (2); it is a stochastic 

mapping between two stochastic vector variables X and Y.  Stating this we would like to 
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emphasize that the stochastic elements emerge in this problem before introducing the NN 

emulation technique.  Actually (8) is a stochastic parameterization, which inherently 

contains the uncertaintyε .  The parameterization is implicitly defined by the training set 

(X, Y).  The uncertainty in this case is not a destructive noise; it is an inherent 

informative part of the stochastic parameterization, which contains important 

statistical information about sub-grid scale (in terms of GCM scales) effects.  

Actually, the stochastic parameterization is a family of mappings distributed with a 

distribution function.The range and shape of the distribution function are 

determined by the uncertainty vectorε .  

 

It is noteworthy that the distinction between a deterministic (physically based 

parameterization represented by a closed set of analytical equations or unambiguous 

computer code) and stochastic parameterization is not well defined.  Actually, physically 

based parameterizations usually contain the same sources of uncertainty that have been 

discussed above, such as averaging and projecting some internal or hidden (in terms of 

GSM) variables. Also they include several additional sources of uncertainties: first, they 

contain approximations (that can be done in various ways with different results) and 

second, they include multiple empirical, statistically derived parameters, which introduce 

significant uncertainty in the parameterization because the parameters are derived from 

data with uncertainties.   

 

Thus, rigorously speaking, deterministic/physically based parameterizations should be 

also considered as a family of parameterizations inside the uncertainty corridor (or 
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stochastic parameterizations).  Actually, in a strict sense, any parameterization of physics 

should be considered as a stochastic one; and it is desirable/necessary to take into account 

the aforementioned uncertainties when introducing them in GCM using ensembles or 

some other approaches to obtain better representation of subgrid effects.  However, 

physically based parameterizations used in GCM are usually closed analytical 

expressions.  Theyare usually considered as “exact” parameterizations, at least they are 

not considered as stochastic parameterizations with uncertainty.  Actually such “exact” 

parameterization is a single member of a family of parameterizations representing a 

stochastic parameterization; and this single member is obtained by assuming uncertainty 

to be zero.  Stochastic physics, if used, is introduced as an additional procedure (e.g., 

Palmer and Williams 2008). 

 

2.3. NN Emulation of the Convection Parameterization and 
Estimation of its Uncertainties 

2.3.1. Data 

 

A data set was simulated for the development.  It is limited by the length of observational 

data set needed for driving/forcing SAM simulations.  SAM/CRM using the TOGA-

COARE forcing was ran for 120 days for the 256 x 256 km domain with 1 km resolution 

and 96 vertical layers (0 – 28 km).  Then it wasaveraged at every hour of model 

integration to produce a simulation data set with an effective horizontal resolution of 256 

km and temporal resolution of 1 hour.  Finally, only variables that are available in GCM 

(NCAR CAM) or can be calculated there have been selected. The final data set consists 

of 2,800 records (every hour or hourly mean data).  The simulation dataset was 
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partitioned into two parts: a training set consisting of 2,240 records or 80% of data and a 

test set consistingof 560 records or 20% of data.  Namely, first 2,240 records are included 

in the training set and the last 560 records in the test set. 

 

Fig.4 The autocorrelation function for the hourly precipitation data. 

 

To be sure that the one hour time interval sampling is appropriate and our data are not 

redundant and not strongly correlated, we calculated autocorrelation functions for 

different parameters.  Fig.4 shows the autocorrelation function for the hourly 

precipitation data.  It shows that the data are not significantly correlated, and the data set 

is not significantly redundant.  It also means that our training and test sets are 

independent. 
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These two data sets have been used for the NN training and testing/validation.  As was 

noticed in the previous section, these data implicitly represent a stochastic 

parameterization that inherently contains an uncertaintyε , which is not a useless noise.  

However, from the point of view of a single NN trained using the data, the data (both 

component X and Yof the data) contain a significant level of noise.   

 

Symbolically, the NN emulation of the stochastic parameterization (8) can be written as, 

appNN XMY εε ++= )(                                              (9) 

whereMNN  is a NN emulation of the mapping M (8) and appε  is a NN approximation 

error.  Thus, in the case of the stochastic parameterization, the NN emulation task is 

different from one of emulating a deterministic original parameterization in GCM (e. g. 

Krasnopolsky et al. 2005, 2008a).    

 

In our NN emulation approach applied to a deterministic or “exact” parameterization in 

GCM, the goal is to emulate the parameterization with a universal mapping (NN) as 

accurate as possible (Krasnopolsky et al. 2008a, 2010).  We can do it because, in this 

case, we can produce the simulated data using the given “exact” parameterization (which 

actually is also a mapping) and consider the data as accurate ones (with no noise higher 

than the round off errors).     

 

In the current work, the situation is completely different.  We do not have an expression 

(or computer code) for the mapping (8) that we want to emulate with NN (9).  We 

can only assume that it exists and, in this case, it is a stochastic mapping, which is 
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embedded into “pseudo-observations”.  We cannot simulate “pseudo-observation” 

that we use for NN training directly.  We derive them using a rather complex data 

processing   ((x, y) => ( x , y ) => (X',Y') => (X,Y)) from the data (x, y) simulated by a very 

different exact mapping (SAM) (2).  Here we cannot assume that “pseudo-observations” 

are accurate.  The uncertainty and stochasticity are the essential conceptual features 

of our approach here.  Without accepting and understanding these features we 

cannot properly interpret our results and use NN in CAM.  

 

The case of emulating a stochastic parameterization, which we consider here, is much 

closer to the task of solving a forward or inverse problem in satellite remote sensing, i.e. 

to the task of emulating a satellite retrieval algorithm using noisy empirical data 

(Krasnopolsky 2008b).  This important difference should be taken into account when the 

NN approximation is trained, the approximation error statistics are analyzed and 

interpreted, and the NN architecture is selected.  For example, in the case of training, 

the usually used criterion of minimum of the root mean square error should be 

substituted by the requirement that the root mean square error should not exceed 

the uncertainty ε or, 

 

2

1

2)]([
1

ε<−∑
=

N

i

iNNi XMY
N                                         (10) 

 

All NNs that satisfy the condition (10) are equally valid emulations of the stochastic 

parameterization (8).  Actually, each of these NNs emulates a member of the family of 
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mappings that together represent the stochastic parameterization (8).  Therefore, all NNs 

satisfying (10) together – the entire ensemble of NNs – represent the stochastic 

parameterization (8).  It is clear now that any estimate of the magnitude of ε  is of a 

paramount importance for our approach.  We will attempt to derive such an estimate in 

the next sections. 

2.3.2. NN architectures,NN trainingand validation 

Selecting an emulating NN architecture includes two different aspects and types of 

decisions: (i) the selection of inputs and outputs and their numbers (n and m in (1)), 

which, as we have already mentioned, are determined by the availability of the variables 

in the GCM, and (ii) the selection of the number of hidden neurons (kin (1)) in the 

emulating NN, which is determined by many factors (the length of the training set, the 

level of noise in the data, the characteristics of conversions of the training and test errors, 

etc.).  

Table 1 Different NN architectures (combinations of inputs and outputs) investigated in 

the paper.  Tabs is temperature, QV is atmospheric moisture - vapor mixing ratio, W – 

vertical velocity, U and V are horizontal components of the wind vector, RelH is the 

relative humidity, Rad – the radiative heating/cooling rates, Q1C – the “apparent heat 

source”, Q2 – the “apparent moist sink”, Prec – precipitation rates, and CLD –cloudiness.  

Numbers in the table show the dimensionality of the corresponding input and output 

parameters. In:Out stand for inputs and outputs and show their corresponding numbers.  

 

NN Inputs NN Outputs NN  

Architecture 

In:Out 
Tabs QV W U V RelH Rad Q1C Q2 PREC CLD 

{2} – 47:40 26 21 - - - - - 21 18 1 - 

{3} – 47:59 26 21 - - - - - 21 18 1 19 

{4} – 87:66 26 15 - 23 23 - - 26 19 1 20 

{5} – 58:66 26 15 17 - - - - 26 19 1 20 

{6} – 81:66 26 15 17 - - 23 - 26 19 1 20 

{7} – 66:66 26 - 17 - - 23 - 26 19 1 20 

{9} – 84:66 26 15 17 - - - 26 26 19 1 20 

{11} – 36:55 18 18 - - - - - 18 18 1 18 
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Table 1 shows several different (in terms of inputs and outputs) architectures that we 

have experimented with here.  The major inputsfor different NN architectures are the 

vertical profiles of the following model prognostic and diagnostic fields:  Tabs - 

temperature, QV - water vapor, RelH – relative humidity, U and V – horizontal wind 

components, W - vertical velocity, and Rad – radiation heating/cooling rates.  The major 

outputsfor all NN architectures (except for the NN architecture {2}), are the vertical 

profiles (or vectors) of the following model prognostic and diagnostic fields: Q1C (the 

“apparent heat source”), Q2 (the “apparent moist sink”), PREC (precipitation rates, a 

scalar),and CLD (cloudiness).  Notice that only for the NN architecture {2} the CLD 

vertical profile was not used as output.       

 

Numbers in Table 1 show how many vertical levels of the corresponding profile have 

been included as inputs in the NN.  Many profiles have zeros, or small constants, or very 

small values that are almost constant (their standard deviationsare very small) for the 

entire data set.  Zeros and constants should not be included in inputs or outputs because 

(1) they carry no information about input/output functional dependence and (2) if not 

removed they introduce additional noise in training.  As for small values that are almost 

constant, these small signals may be in some cases not a noise but very important signals; 

however, taking into account the level of uncertainty in the problem, information that 

these small signals may provide is well below the level of uncertainty and is practically 

useless.  Moreover, some of these variables were included in training and no 

improvement was observed.  If they are important, they should be normalized differently 

or weighted.  
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Next, the number of hidden neurons (HID) has to be selected.  NNs with this number of 

hidden neurons will be used in comparisons of different architectures.  We selected 

several architectures, varied HID, trained a corresponding NN, and tested it.  Figs. 5 and 

6 show results of these experiments for two output parameters, Q1C and PREC.  The 

figures show NN errors on training and test sets for HID changing from 1 to 20 for 

architecture {3} (see Table 1).   

 

It is important to understand that a NN training (a least square minimization) attempts to 

minimize the total )( appεε +  that is the approximation error and the uncertainty (noise).  

Because of very different statistical properties of these components, they can be 

approximately separated and roughly estimated using detailed information about the 

training and test statistics.   This issue is discussed in more detail below. 

 

Fig. 5 NN approximation error on training (blue) and test (red) sets for Q1C. 
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Fig. 6 Same as in Fig. 5 but for precipitation. 

Figs. 5 and 6 demonstrate a classic situation that is usually observed when NN is trained 

using the data with a significant level of noise.  The training error, after a sharp initial 

drop, decreases very slowly. The test error, after an initial drop, stabilizes and then 

increases.  The interpretation of this behavior is well known.  After the initial 

improvement of the approximation of the data due to an increasing flexibility of an 

approximating NN, a short interval of stability is reached (at HID ~ 3 to 7) when NN fits 

the signal but filters out the noise.  Here the training error keeps decreasing; however, the 

test error is almost constant.  Then with the increase of the flexibility of the 

approximating NN, it starts fitting the noise (the overfitting occurs). The training error 

keeps slowly decreasing; however, the test error quickly increases.  Table 2 shows the 

number of fitting parameters (NN weights) in NNs with different HID, which were used 

for plotting figures 5 and 6.  Taking into account that the training set contains 2240 

records, it is not surprising that clearly pronounced overfitting is observed at HID > 10.  
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Table 2.  The number of fitting parameters (NN weights) at different values of HID = k 

(see (1)). 

HID 1 2 5 10 15 20 

NC 166 273 594 1129 1667 2199 

 

The above results are presented for the NN architecture {3} (see Table 1); however, other 

architecture produce similar results.  Thus, we can conclude that, for a particular 

simulation (data set) used, HID = 5 would be a good approximation for the number of 

hidden neurons in emulating NN.  This value is inside of the interval of stability of the 

test error when the NN emulation fits the mapping (8) but does not fit the noise in the 

data.  For that reason, comparisons of different architectures presented in the following 

subsection are performed for HID = 5.  

 

2.4. Comparison of different NN architecturesand 
interpretation of NN training and test results 

Table 3 presents comparison of different NN architectures defined in Table 1.  NNs 

presented in the table were trained using the training set (Tr) and tested using an 

independent test set (Ts); both sets are described above in Section 2.3.1.  For each NN 

and for each NN output variable, three statistics were calculated (bias, RMSE, and 

correlation coefficient) by comparison of NN generated output variables with the 

corresponding ones in the training or test set.  
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Table 3 Accuracy statistics for NNs with different architectures on training (Tr) and 

independent test (Ts) sets. CC is the correlation coefficient. HID = 5.  For each variable 

and for each statistic the best are shown in red and the second best in green 

NN Outputs 

Q1C(K/day) Q2 (K/day) Prec(mm/day) CLD (fractions) 
Data  

Set 

NN  

Arch. 
Bias RMSE CC Bias RMSE CC Bias RMSE CC Bias RMSE CC 

{2} 3. 10-3 2.8 0.76 3. 10-3 3.8 0.67 2. 10-2 5.6 0.87 - - - 

{3} 1. 10-3 2.8 0.75 2. 10-2 4.0 0.63 1. 10-2 6.0 0.85 1. 10-4 0.07 0.91 

{4} 2. 10-3 2.4 0.78 2. 10-2 3.7 0.66 1. 10-2 5.7 0.86 2. 10-6 0.07 0.92 

{5} 1. 10-3 2.3 0.81 2. 10-3 3.7 0.68 4. 10-3 5.2 0.89 1. 10-4 0.07 0.92 

{6} 2. 10-3 2.3 0.80 1. 10-3 3.8 0.66 2. 10-2 5.3 0.88 3. 10-5 0.07 0.91 

{7} 4. 10-4 2.3 0.80 1. 10-3 3.8 0.64 1. 10-3 5.3 0.88 6. 10-5 0.08 0.89 

{9} 2. 10-4 2.3 0.81 3. 10-4 3.7 0.67 7. 10-3 5.2 0.89 5. 10-5 0.06 0.93 

Tr 

 

 

{11} 1. 10-3 3.1 0.73 4. 10-3 4.0 0.64 2. 10-2 5.8 0.86 1. 10-4 0.07 0.90 

{2} -0.3 3.6 0.61 -0.6 4.9 0.46 -2.8 8.8 0.68 - - - 

{3} -0.1 3.5 0.62 0.02 4.7 0.49 -1.1 8.5 0.68 0.03 0.11 0.81 

{4} -0.6 3.5 0.62 -0.8 5.0 0.44 -5.1 10.6 0.66 0.01 0.11 0.81 

{5} -0.5 3.0 0.70 -0.6 4.5 0.53 -4.0 8.8 0.73 0.00 0.09 0.86 

{6} -0.1 2.9 0.71 -0.1 3.9 0.52 -1.8 7.8 0.74 0.01 0.08 0.87 

{7} -0.3 2.9 0.70 -0.1 3.9 0.51 -2.6 8.0 0.74 0.01 0.08 0.88 

{9} -0.4 2.9 0.73 -0.5 4.3 0.58 -3.3 7.9 0.77 0.00 0.07 0.92 

Ts 

 

{11} -0.7 3.8 0.65 -0.8 4.7 0.51 -4.1 8.6 0.76 0.01 0.10 0.84 

 

 

All NNs presented in Table 3 have the number of hidden neurons HID = 5.  It means that 

they all are inside the stability interval where NN fits well enough the signal in the 

training set and is not significantly responsive to noise in the data (see figs. 5 and 6).  The 

training errors (Tr) for all output parameters are significantly less sensitive to the 

selection of the NN architecture and to the selection of HID inside the interval of stability 

(see figs. 5 and 6) than the test errors (Ts).  Thus, the training errors can be considered 

as a rough estimate of the noise in the data that is the inherent uncertainty of the 

stochastic parameterization (8).  
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Following this assumption, the errors on the test set should be considered as a 

combination of the uncertainty (an estimate for it is provided by the training error) 

and an approximation error.  For example, for Q1C, for the architecture {6} the 

training error is 2.3 K/day and the test error is 2.9 K/day.  Thus, assuming that the 

uncertainty and the approximation error are independent, i.e., that in (9), 

222)( appapp εεεε +=+  

in the test error of 2.9 K/day, only 1.8 K/day can be attributed to the NN approximation 

error, and the residual 2.3 K/day should be attributed to the uncertainty, ε, of the 

stochastic mapping (8).  If we perform such a correction for all statistics presented in 

Table 3, we find that, as in the aforementioned example, after the separation of the 

uncertainty (the training error) the NN approximation errors on the test set, in most of the 

cases, do not exceed significantly the uncertainty.  In our case of NN emulation of a 

stochastic parameterization, the major criterion for evaluation of the NN emulation (10) 

(see the end of Section 2.3.1) is the similarity of the approximation error and the 

uncertainty.  Thus, in accordance with this criterion, all NNs presented in Table 3 can be 

considered as equally valid emulations of the parameterization (4).  These NNs can be 

considered together as an NN ensemble emulation of the stochastic parameterization 

(8). 
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Fig. 7 NN simulations of precipitation on the test set. The legend describes different 

curves presented in the figure; the number in parentheses indicates the NN architectures 

described in Table 1.  

Figs. 7 to 11 illustrate performance of NNs with different architectures on the 

independent test set.  Fig. 7 demonstrates predictions of precipitation time series 

produced by different NNs in comparison with “pseudo-observations”.  These NNs 

produce an envelope (with a rather measurable spread) which on average gives a very 

good prediction of precipitation on the test set.  The spread of the envelope shows that 

there is still a measurable difference between NNs with different architectures and some 

of the members of the envelope (e.g. {9}) give results that are closer to the “pseudo-

observations”.  The magnitude of the spread reflects the uncertainty of the 

parameterization (8).  It is noteworthy that the outliers in this precipitation plot are 

produced by NNs that donot use the large-scale vertical velocity as their input.  It 

suggests that these neural net architectures are less valid than the ones that use W as an 

input. 

 

Figures 8, 11, and 12 depict profile statistics for three other outputs of the NN 

parameterization: Q1C, Q2, and CLD.  As in the case of precipitations, different NNs 

create envelopes with significant spreads for the mean, standard deviation, and RMSE 

profiles.  For the standard deviation, the envelope is shifted with respect to the “pseudo-

observation” profile.   The variability of the NN standard deviations is less than that of 

“pseudo-observations” because the uncertainty of the parameterization (8) (its noise) is 

present in the data; however, each particular NN filters out a part of this noise.  It is 

noteworthy that the RMSE profile includes both the uncertainty of the parameterization 

and the NN approximation error.   
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Fig. 8 Q1C (the apparent heat source from convection) statistics on the test set produced 

by different NNs:  mean Q1C profiles (the upper left panel), profiles of Q1C standard 

deviations (the upper right panel) and RMSE profile(the bottom panel). The legend 

describes different curves presented in the figure; the number in parentheses indicates the 

NN architecture described in Table 1. 
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Fig. 9Hovmöller diagrams for Q1C profile time series: SAM “Data” – the upper panel, 

NN {9} – the lower panel. 

 

 
 

 

Fig. 10 Same as in Fig. 9 but for Q2 profile time series. 
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Fig. 11 Same as in Fig. 8 but for Q2. 
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Fig. 12 Same as in Fig. 8 but for CLD 
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In general, the results show that the statistical structure of “pseudo-observations” and 

therefore of the parameterization (8) is well represented by envelopes created by different 

NNs.  The spread of these envelopes reflects the magnitude of the uncertainty in the 

parameterization (8).  The differences between the members of the ensemble inside the 

envelope are small as compared with the uncertainty; however, these differences are 

significant.  They give estimates of the differences between members of the family of 

parameterizations determined by (8) and implicitly available in “pseudo-observations”.  

 

It is noteworthy that in Fig. 11, Q2 for NN{2}does not look physically correct in the 

upper left panel, namely it is positive in the lower 4 layers. However, NN{3}, which has 

the same inputs and an additional output – CLD profile, provides a much better 

physically meaningful Q2.  This example illustrates the fact that, in the case of NN 

approximation, additional output may introduces additional information as well as 

additional inputs (Krasnopolsky 2007a).    

Figs. 9, 10, and 13 shows the Hovmöller diagrams for the time series of Q1C, Q2 and 

cloudiness (CLD) profiles for a single member of the NN ensemble.  The upper panels 

show “pseudo-observation” and the lower panels show the time series of profiles 

generated by NN with the architecture {9}.  The patterns generated by NN are a bit 

smoothed, diffused; they are less sharp than the “observed” ones but well recognizable.  

NN represents the sequence of patterns well and without significant shifts.  
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Fig. 13 Same as in Fig. 9 but for CLD profile time series. 

 

We can conclude that Ts errors calculated on the independent test set, which are 

presented in Table 3 and in figures 7 to 13 cannot be considered as an estimate of the NN 

accuracy only; they contain a contribution of the parameterization uncertainty ε  and 

should be adjusted as in the example above (see the discussion after Table 3). Another 

conclusion is that the errors on the test set are more sensitive to the NN architecture; 

however, the variations of errors for different NN architectures (the spread of the 

envelope created by different NNs) represent the level of noise in the data or the 

uncertainty of the stochastic parameterization (8).  It means that, in the context of the 

current application (development of NN emulation for a stochastic convection 
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parameterization (8)), selecting the best architecture for emulating NN followed by the 

subsequent use of this “optimal” NN parameterization in GCM, is not the best approach.  

All NNs presented here (as well as other NNs with the same architecture and the same 

number of neurons but with different initializations, which we will describe below) can 

be considered as equally valid emulations of the parameterization (8).  They should be 

rather considered as members of a particular NN ensemblerealization of the 

stochastic parameterization (8) represented by a particular data set.  Thus, every 

single NN emulation can be considered as a particular realization of this stochastic 

parameterization.  The NN ensemble parameterization can be used in GCM in 

several different modes (Krasnopolsky 2007b, Krasnopolsky et al. 2008c). 

 

We considered above an NN ensemble created by NNs with various architectures.  For 

validation in CAM we excluded the stratospheric levels and used only the tropospheric 

levels.  The TOGA-COARE observations, used for driving SAM, are mostly available for 

the tropospheric domain, i.e., for the 18 lower levels of CAM. For this reason the 

architecture {11} (and its ensemble with different initializations), which is similar to the 

simple architecture 3 but containing only the 18 tropospheric levels, has been trained and 

used for our experimentation with CAM below (see Section 3).  

 

For testing in NCAR CAM we created an ensemble of ten NNs with the architecture {11} 

(36 inputs and 55 outputs) with 5 hidden neurons in each, which represents the stochastic 

parameterization (8) as well.  All input and major output variables for the architecture are 

directly available in CAM for using and comparison.  The coefficients (weights) of these 



 45 

NNs have been initialized with different set of small random numbers before the training.  

As a result, all these NNs have different weights because the training process converged 

to different local minima.  For these NNs, the errors on training and test sets are similar 

to those shown in Table 3.  They also demonstrate the spread similar to that of for NNs 

with different architecture shown in Table 3.  There exist different methods of creating 

NN ensembles (Krasnopolsky 2007b) which could be applied also in this but we have 

chosen a simplest approach.  

2.5. Evaluation of CAM vs. SAM differences 

In the previous sections we introduced an ensemble of NNs that represented the 

stochastic convection parameterization (8).  These NNs have been derived from the data 

generated by SAM forced by TOGA-CORE data.  We cannot expect that these 

NNsderived using SAM simulations, would generate output variables similar to those of 

CAM.  These two models create two different “virtual realities” with different temporal 

and spatial scales and resolutions, with different representations of dynamics and physics; 

they have different boundary and initial conditions and different forcing. To illustrate and 

estimate the differences between CAM and averaged SAM simulated data, we ran CAM 

during the same 120 days TOGA-CORE period and used CAM time series of the 

convection parameterization inputs and outputs (T, QV, CLD, PREC, etc.) to compare 

the results with the “pseudo-observations” (averaged SAM data) and estimate CAM vs. 

SAM differences.   

 

We first made the comparison of the CAM and averaged SAM “virtual realities” in terms 

of T and QV (the convection parameterization inputs).  The significant differences 
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between CAM and averaged SAM simulated data and derived from them convection 

parameterization inputs and outputs presented below are not surprising because the 

models’ formulations are different, especially for the stratospheric domain, and SAM is 

driven by observational meteorological data whereas CAM is simulated in a free mode, 

with only SST forcing.  

 

Table 4  Bulk statistics for temperature and moisture variables, T and QV, in CAM and in 

SAM  

  Mean 
Standard 

Deviation 
Min Max 

CAM 240.6 36.8. 180.7 301.3 T in K 

 SAM 240.4 35.5 190.5 301.2 

CAM 3.51 5.58 4. 10
-4

 19.34 
QV in g/kg 

SAM 3.86 6.08 0. 20.66 

 

Table 4 shows bulk statistics for two time series of profiles of the T and QV in CAM and 

in averaged SAM simulated data.  The bulk statistics are very close for both series with 

the exception of minimal temperature, which is 10 K cooler in CAM than in the averaged 

SAM data.  However, if we look closer at the data profiles, we will find out that the 

models’ data differ even more significantly.  Fig. 14 shows mean temperature profiles for 

CAM (dashed) and averaged SAM (solid) data.  There is a significant temperature 

differences for the upper 10 layers (above 100 hPa, i.e., throughout the tropical 

stratosphere); also the variability of the temperature is vertically distributed very 

differently in the two models.   
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Fig. 14  Mean temperature profiles for averaged SAM (solid) and CAM (dashed) data. 

 

Fig. 15 shows mean moisture (QV) profiles for CAM (dashed) and averaged SAM 

simulated (solid) data.  There are significant moisture differences at the lower layers; also 

the variability of the moisture is distributed differently in two models.  Fig. 16, which 

depicts the Hovmöller diagrams for QV for the CAM and averaged SAM profile time 

series.  It shows that the patterns are quite different for CAM and SAM (shown in the 

lower and upper panels, respectively) and also desynchronized in time (what is not 

surprising due to the fact that the models are driven by different forcing).  

 

Finally, Fig 17 reveals significant systematic differences for T and QV profiles between 

the two models.  Consistently with Figs. 14, 15 and 16, T differences are large, up to 10-

12 K by magnitude, for the stratospheric domain, and QV differences are large, up to 3 

g/kg by magnitude, for the lower tropospheric domain. 
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The differences in the stratosphere result from the CRM's forcingsthat do not represent 

stratospheric processes.  The GCM contains a Brewer-Dobson circulation which induces 

a dynamical cooling that balances the radiative heating in the tropical tropopause layer 

(between about 14 and 19 km).  The forcings for the CRM do not include this, so that the 

tropopause sinks and the TTL (Tropical Troposphere Layer) warms so that increased 

radiation to space will balance the energy budget.   

 

The large differences in the stratospheric domain should not affect the NN convection 

parameterization, which works mostly in the tropospheric domain. This is a justification 

for using the NN architecture {11} (using only the tropospheric levels; see Table 1) for 

experimentation with CAM below.  

 

From the bulk statistic presented in Table 4 and from Figs.14 –17 we can conclude that 

the CAM simulated and average SAM simulated data (our “pseudo-observations”) 

are located in areas/domains in T – QV space that have similar extents (although 

min T is shifted by 10 K); however, the shapes of the areas/domains are different.   
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Fig. 15  Mean moisture (qv) profiles for averaged SAM simulated (solid) and CAM 

simulated (dashed) data.  

 

 

 Fig. 16 Hovmöller diagram for the moisture (QV) profile time series in averaged SAM 

simulated (the upper panel) and in CAM simulated data (the lower panel).  
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Fig. 17. Differences (CAM simulated – averaged SAM simulated profiles) for T (the left 

panel) and QV (the right panel). 

 

One interpretation of the SAM-CAM differences shown in Fig. 17are that the CRM has 

more shallow and mid-level convection than the GCM.  This would lead to a drier layer 

close to the surface.  A second interpretation could just be that the model drifts dry at low 

levels during the run.   

 

In a similar way we investigated the differences between CAM simulated and averaged 

SAM simulated data for other variables considered as prospective inputs and outputs for 

convection parameterizations.  For example, we evaluated CAM vs. averaged SAM 

differences for the cloudiness (CLD) and precipitation (PREC) that are outputs of the 

convection parameterization.  The bulk statistics shown in Table 5 demonstrate that CAM 

and the averaged SAM data are different; there are differences for both CLD and PREC 
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and variability of these parameters are different.  For PREC even the extent of the range 

is different.  It means that domains for CAM and the averaged SAM data are shifted  

and their shapes are different. 

 

Table 5  Bulk statistics for CLD and PREC in CAM simulated and averaged SAM 

simulated data. 

  Mean 
Standard 

Deviation 
Min Max 

CAM 6.41 7.23. 0. 43.5 PREC in 

mm/day SAM 9.22 11.24 0. 80.8 

CAM 0.159 0.256 0. 1.00 CLD in 

fraction SAM 0.072 0.154 0. 1.00 

 

The mean CRM precipitation is largely determined by the forcings.  That would be the 

origin of the mean differences shown in Table 5. 

 

Fig. 18.Averaged SAM vs. CAM differences’ profile for CLD. 
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Fig. 18 shows significant systematic differences for CLD mean profiles between the two 

models.   

 

In this section we estimated the differences between simulated CAM variables and the 

corresponding averaged SAM simulated variables.  These differences have been 

estimated as profiles for 3D variables (e.g., T, QV, CLD) or as a number for 2D variables 

(e.g., PREC) over the one TOGA-COARElocation for the four-months period (November 

1992 – February 1993) of available data (the TOGA-COAREwinter, NDJF).   

It is noteworthy that the aforementioned differences can be, in principle, used for 

parameterization calibration aimed at a potential reduction of errors in CAM simulations.  

Further comments on this issue will be made in the following sections. 

 

3. Validation of NN Convection Parameterization in NCAR 

CAM 

The NN stochastic convection parameterization described in the previous sections is 

implemented as the ensemble of NNs with the architecture {11},which are trained on the 

averaged SAM simulated data (“pseudo-observations”).  In this section, we introduce the 

NN stochastic parameterization into CAM.  Here our goal is to verify whether the NN 

ensemble, emulatingthe stochastic convection parameterization (8),provides 

meaningful/realistic outputs when using CAM inputs.  We performed the validation of 

our stochastic NN convection parameterization in the following experiment.  
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Over the large Tropical Pacific region (with the area size of 120° x30° and the following 

coordinates: 150° E <lon<115° W; 15° S <lat< 15° N) we performed the parallel runs 

with the standard CAM and with the diagnostic CAM-NN run (see below) for the 

TOGA-COARE winter (November 1992 – February 1993, NDJF), the 4-month period 

for which our NN convection had been actually trained.  

 

For a simple initial testing and validation of the NN stochastic convection 

parameterization (8) in CAM, we introduced a diagnostic mode of integration.  For the 

diagnostic mode, a standard CAM run is performed but at every grid-point/profile and at 

each time step the NN ensemble is calculated using the CAM inputs and producing NN 

ensemble outputs without any feedback into the continuing CAM integration.  Hereafter 

this diagnostic run is called CAM-NN.    

 

For the diagnostic mode of integration, every time the NN convection parameterization is 

applied, all ten NNs (the NN {11} ensemble members) are evaluated and averages of 

their outputs are calculated and used as NN ensemble convection parameterization 

outputs. 

 

This CAM-NNrun using the diagnostic mode is instrumental in the sense that it allows us 

to produce an initial validation of the developed NN stochastic convection 

parameterizations. Testing NN parameterizations in a prognostic mode (i.e., feeding back 

the outputs of the NN convection parameterization into a CAM run) will be done at a 
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later stage of our development, when “pseudo-observations” will be generated by 

CRM/SAM driven by CAM simulated data (see discussion in Sections 4 and 5).   

 

3.1Validation of NN convection parameterization using NCAR 
CAM for the TOGA-COARE location and period (winter of 1992-
93, NDJF)  

 

At the first step of our validation, the outputs generated by the ensemble of ten NNs {11} 

have been compared with CAM data for one grid point at the TOGA-CORE location (- 2° 

S, 155° E) duringthe TOGA-COARE winter, November 1992 - February 1993.  Thus, the 

CAM data were collocated in space and time with the averaged SAM simulated data.   

For CAM-NN we used the CAM generated T and QV as inputs for the ensemble of NN 

{11}trained on the averaged SAM simulated data.   

 

 

Fig. 19.  Precipitation (PREC, in mm/day) time series for CAM (black solid) and CAM-

NN (the NN ensemble mean) (red dashed). 

 

Fig. 19 shows PREC time series produced by the original CAM and the NN ensemble 

mean within CAM-NN.  As it was discussed above (see sections 2.4 and 2.5), the time 

series are not synchronized; however, the scope, the mean, and the frequencies of the 

time series are quite similar and look reasonable.  
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Table 6 Bulk statistics for CLD and PREC outputs for SAM, CAM and CAM-NN 

  Mean 
Standard 

Deviation 
Min Max 

SAM 9.22 11.24 0. 80.8 

CAM-NN 8.50 8.14 0. 63.6 
PREC in 

mm/day 
CAM 6.41 7.23. 0. 43.5 

SAM 0.072 0.154 0. 1.00 

CAM-NN 0.104 0.240 0. 1.00 
CLD in 

fraction 
CAM 0.159 0.256 0. 1.00 

 

Table 6 shows bulk statistics for CLD and PREC variables for CAM, CAM-NN, and 

SAM. The CAM-NN statistics is rather close to the statistics of SAM and deviate from 

that of CAM.    

 

Let us stress that we cannot expect full similarity here between CAM-NN and CAM 

statistics, profiles, and time series.  The CAM-NN results are generated by our NN 

convection parameterization derived from CRM/SAM cloud physics, which is different 

from the cloud physics implemented in CAM 

 

In the next section, we will discuss an extension of our diagnostic tests beyond the 

TOGA-COARE location, and will analyze the results of the performed parallel CAM and 

CAM-NN simulations over a large Tropical Pacific region.    
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3.2Validation of NN convection parameterization forparallel CAM 
and CAM-NN climate simulations for the TOGA-COARE winter 
overa Tropical Pacific region 

 

As described above, the developed stochastic NN convection parameterization has been 

introduced into CAM-NN and run in the aforementioned diagnostic mode, for which 

CAM inputs have been used for calculating NN convection outputs. In this section, we 

will compare the parallel CAM-NN and CAM simulations for the 4-months TOGA-

COARE period (November 1992 to February 1993) and validate them against the NCEP 

reanalysis over a large Tropical Pacific region.  

 

Although the NNconvection parameterization has been developed for theTOGA-COARE 

location (marked by a star in the middle panels of Figs. 20 and 21), we decided to apply 

the NN convection in the CAM-NNrun for the entire large Tropical Pacific region (with 

the area size of 120° x30° and the following coordinates: 150° E <lon<115° W; 15° S 

<lat< 15° N). The stochastic NN convectionparameterization was applied at every grid 

point and each time step throughout the entire TOGA-COARE winter simulation for the 

diagnostic CAM-NN run. This is a very tough/hard test for the NNgeneralization ability.  

 

The total cloudiness (CLD) and precipitation (PREC) produced in these parallel 

climatesimulations for the Tropical Pacific region for the TOGA-COARE period are 

shown in Figs. 20 and 21.   



 57 

 

 
Fig. 20 The TOGA-COARE winter mean total cloudiness (CLDTOT, in fractions) 

distribution for the CAM (the upper panel) and NN11 Ensemble or CAM-NN (the middle 

panel) runs over the Tropical Pacific region (with the area size of 120° x30° and the 

following coordinates: 150° E <lon<115° W; 15° S <lat< 15° N).  The lower panel shows 

the corresponding NCEP reanalysis CLDTOT distribution. The TOGA-CORE location, 

for which the NN convection has been trained, is shown by a star in the middle panel. 

The contour interval is 0.5. 

 

The patterns of CLD distributions for the CAM and CAM-NN runs (the upper and middle 

panels) are closer to each other than to the CLD pattern of the NCEP reanalysis (the 

bottom panel). The CLD magnitudes for the CAM-NN run are overall smaller than for 

theCAM run. Compared to the NCEP reanalysis, the CLD magnitudes for the CAM run 

are overall overestimated whereas for the CAM-NN run they are mostly underestimated.  
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Fig. 21  Same as for Fig. 20 but for total precipitation (PREC, in mm/day). The contour 

interval is 2 mm/day.   

 

Precipitation patterns for the CAM and CAM-NN runs are overall similar to each other 

and both are smoother than the precipitation pattern for the NCEP reanalysis. The PREC 

magnitudes for the CAM-NN run are overall larger than for theCAM run. Compared to 

the NCEP reanalysis, the PREC magnitudes for the CAM-NN run show an overestimated 

minimum around the Equator and 150º W and in the areas north of the Equator whereas 

for the CAM run the PREC magnitudes are underestimated at the Equator east of the 

aforementioned minimum and in the areas south of the Equator.  
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The major result is that the regional PREC and CLD distributions presented for the 

parallel CAM and CAM-NN TOGA-COARE runs show a general pattern consistency 

and similarity between the CAM-NN and CAM runs and also with the NCEP reanalysis 

used for validation. The magnitudes for the parallel runs show some systematic 

differences though. 

 

It is not surprising that there are some differences between the parallel runs and the 

NCEP reanalysis.  When analyzing the results we have to keep in mind that the region is 

a sparse data area so that the NCEP reanalysis there is significantly (NCEP) model 

dependent.  However, the existing sparse conventional data and satellite data altogether 

provide valuable information so that the NCEP reanalysis can be definitely used for 

validation of climate simulations.  

 

We would like to emphasize that at this initial stage of our development of the stochastic 

NN convection parameterizations, it seems reasonable to compare the CAM and CAM-

NN runs in terms of their general consistency between themselves and with the NCEP 

reanalysis.  A detailed climatological analysis of regional and global simulations for all 

seasons will be done at the next stage of our development.  It will be based on using 

SAM simulations driven by CAM simulated data forcing for developing stochastic NN 

convection parameterizations for CAM. 

Discussion of results presented in this section exemplifies the uncertainty of cloud and 

precipitation simulations for both parallel CAM and CAM-NN runs. It also underlines the 
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complexity of analysis and validation of climate model simulations and the limitations of 

data/information for the tropics that can be reliably used for validation.  

 

In our view, the initial results obtained for the CAM-NN simulation for the TOGA-

COARE winter are overall positive and encouraging. They support the validity/soundness 

of the NN approach for developing stochastic NN convection parameterizations for 

climate models. Evidently, a significant future effort is needed for practical 

implementation NN convection parameterizations into climate models.  

4. Discussion 

In our view, the results presented above in Sections 2 and 3 demonstrate a realistic 

potential of the presented NN ensemble approach for developing stochastic NN 

convection parameterizations.  Our first attempt in this direction led to meaningful results 

despite the fact that for our development we used a limited amount of data available over 

a small area in the Tropical Pacific Ocean (TOGA-COARE) during a limited four month 

period (the TOGA-CORE winter).  We obtained encouraging and physically meaningful 

results for cloudiness and precipitation not only over this particular TOGA-COARE 

location and period but also over the extended Tropical Pacific Ocean region.   

 

A careful analysis of results presented in Sections 2 and 3 reveals two major challenges 

that our approach faces, both related to “pseudo-observations” (averaged CRM/SAM 

simulated data) used for NN training:  

1. Data for initialization and forcing CRM are available only over a few sites (mostly 

TOGA-COARE and ARM); thus, data simulated by CRM initialized and driven by 
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observations are not representative enough in terms of different global geographical 

locations and different weather conditions. 

2. There exist significant differences between the averaged data simulated by CRM 

initialized and driven by observed data (these “pseudo-observations” have been used 

for training the NN ensemble) and CAM simulated data.  

 

The logical way of dealing with these challenges would be to use for creating “pseudo-

observations” the CRM/SAM simulations initialized and driven by CAM simulated data 

forcing.  We consider it to be a major effort of our future developments. Such a setup has 

several important advantages, which will allow us to meet aforementioned challenges.  

Specifically, it may allow us to: 

1. Use many grid points in the global CAM domain to run CRM/SAM, which will 

extend the geographical and temporal representativeness of the “pseudo-observation” 

training set, to create a “global” training set for improving performance of our NN 

convection parameterization in different locations under diverse weather conditions 

for all seasons.  “Pseudo-observations” generated in such a manner are synchronized 

with CAM simulations in time. 

2. Decrease or hopefully practically eliminate the systematic differences between 

averaged CRM/SAM simulated data and CAM simulations.   

 

As a result we will be able to develop the NN convection parameterization that is more 

consistent with other CAM components.  Achieving such a consistency is important for 
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including the NN convection parameterizations in a prognostic mode for CAM-NN 

simulations.     

5. Conclusions 

In this paper we introduce a novel approach to development of NN convection 

parameterizations based on applying the NN ensemble technique.  This approach has 

been conceptually developed and formulated.  Several very important notions are 

introduced which constitute the conceptual skeleton of the approach:  

1. Pseudo-observations are the result of averaging and projecting of high dimensional 

and high resolution CRM data onto the GCM space of atmospheric states.  Pseudo-

observations contain uncertainty which is a result of averaging and projection of 

original CRM/SAM simulated. 

2. Stochastic mapping/parameterization that is implicitly defined by pseudo-

observations with uncertainties 

3. NN ensemble emulation that is an adequate tool for emulating stochastic 

mappings/parameterizations. 

This approach is used for development of a NN ensemble stochastic convection 

parameterization for climate models.  This fast parameterization is built based on data 

from CRM simulations initialized and forced/driven with TOGA-COARE data.  The 

CRM/SAM (Khairoutdinov and Randall, 2003) provided by M. Khairoutdinov, has been 

used for CRM simulations.  SAM simulated data were averaged and projected onto the 

GCM space of atmospheric states to implicitly define a stochastic convection 

parameterization.  Next, these data (“pseudo-observations”) were used to emulate the 

stochastic convection parameterizationusing an ensemble of neural networks (NN) 
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defined by different choices of input and output variables and different initializations.  An 

ensemble of NNs has been trained and tested.  The inherent uncertainty of the stochastic 

convection parameterization derived from “pseudo-observations”has been estimated.   

 

The comparison of two parallel CAM and CAM-NN climate simulation: for the 4-month 

TOGA-COARE period revealed significant systematic differences over the TOGA-

COARE location between CAM and the averaged SAM simulated variables and between 

their domains.  These systematic differences are much larger in the stratosphere. 

 

An ensemble of NNs trained on averaged SAM simulated data has been introduced into 

CAM.  It produced physically meaningful NN ensemble outputs, which demonstrates the 

robustness of the NN approach.  It led to producing realistic climate distributions of 

cloudiness and precipitation for the TOGA-COARE period for the Tropical Pacific 

Ocean region (and to some degree, for the Tropical Indian Ocean region). These results 

have been obtained for the CAM simulation run in a diagnostic mode using the NN 

convection parameterization trained over one TOGA-COAR location.  Basically, we have 

shown that climate simulations for CAM and CAM-NN for the TOGA-COARE period, 

and the NCAR reanalysis are quite similar.  Specifically, the CAM-NN simulation for the 

TOGA-COARE period is physically meaningful.  In our opinion, these results 

demonstrate a realistic potential of the NN ensemble approach for developing stochastic 

NN convection parameterizations for climate and NWP models.   
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It is noteworthy that we should not expect a full similarity between CAM-NN and CAM 

simulated fields and statistics.  The CAM-NN results are generated by our NN convection 

parameterization derived from CRM/SAM cloud physics, which is different from the 

cloud physics implemented in CAM.   

 

The existing approaches discussed in Section 1.2 require very large increases in the 

computational cost of current models.  Their advantage is transparency, but we believe 

the computational cost is so high that it makes them impractical for most problems with 

present day computers.  We believe that an ensemble of NNs, trained on the output from 

more realistic and comprehensive representations of convective processes over a variety 

of regimes could serve as a practical convective parameterization for global and regional 

models.  The NN ensemble can be used in global models in several different ways 

(Krasnopolsky et al. 2008c).  The results presented here suggest that the NN ensembles 

are able to accurately represent the behavior of a realistic model of convection and are 

robust enough to generate physically meaningful results when introduced into a global 

model.  We expect that they will be able to produce a useful parameterization for a 

variety of application in weather and climate science. The NN convection 

parameterization provides an opportunity to capture many aspects of the more realistic 

representation at a fraction of the cost of the alternatives.  

Our future plans include: 

1. running SAM simulations initialized and forced by CAM simulated data (the most 

significant step of our future development) to: 

- drive SAM with forcing from a broader range of regimes. 
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- cover longer time periods, more geographic locations, and more diverse weather 

conditions  

2. performing longer and more representative, in terms of geographic locations, 

simulations using a MMF, or later GCRM framework.Archiving results from SAM 

simulations in a global framework to provide a more varied/diverse set of model 

output to be used as NN training dataset. 

3. testing the NN convection parameterization trained using these new data in CAM 

through performing parallel CAM  CAM-NN runs, the later in both diagnostic and 

prognostic modes. 

 

There are also some consequences to the approach. We are aware of the following issues:  

1. We will have abstracted the physical description of the processes driving the system 

by another conceptual layer. A simple example of this situation can be seen when 

considering the possible influence of aerosol/cloud interactions. Unless we train the 

NN using aerosol distribution as ‘inputs’, and vary those inputs during the training 

process, we cannot build a parameterization that is sensitive to those processes. Note 

that many convective parameterizations today are also unable to handle these 

processes. We must of course have trained the NN parameterization on the ‘right’ 

inputs, and have sampled the phenomena of interest over the whole range of 

parameter space that the NN is expected to perform realistically over. The NN 

parameterization also needs to predict situations where no convection will occur, and 

adapt to different convective regimes (like shallow and deep maritime convection, 

mid-latitude frontal convection, continent mid-latitude summertime convection, 
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continental deep convection). The parameterization must be able to seamlessly 

transition from one regime to another, or at the very least recognize where it should 

not be operating. Several solutions for this problem have been proposed and 

discussed by Krasnopolsky (2007a, b), and we will further explore them. Again, most 

current parameterizations have this same constraint.  

2. It may be difficult to interpret the model response to variations in the important 

processes. For example it may be difficult to attribute increased precipitation to a 

particular process (e.g. a change in accretion processes in rain or snow falling from 

anvils) because those processes are not explicitly available within the 

parameterization to monitor. It should be possible to design an NN to output this 

information. 

3.  Probably, the NN convection parameterization might be best-suited as a drop-in 

replacement for only the deep convection parameterization (or perhaps the deep and 

shallow convection parameterizations). This is based in part on a comment that 

Martin Miller of ECMWF made once that coarse-resolution superparameterization (or 

MMF) might be best-suited as a replacement for the deep convection scheme in a 

GCM, rather than as a replacement for all of the turbulence/cloud schemes.   

4. The NN parameterization has one distinct advantage over superparameterization: it 

can use high-resolution, three-dimensional cloud-resolving simulations for its training 

set.  Superparameterization is constrained to use low-resolution (1km or 4km, 

typically) simulations that are often two-dimensional.   
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