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1. Introduction

Modern global grid point models of the atmosphere are not well served by the traditional
horizontal grids based on the latitude and longitude coordinate framework. The character
and stability of the numerical solutions on such a grid are radically and adversely affected
by the excessive east-west resolution of the grid at high latitudes, unless the models invoke
a strong low-pass spatial filter at every time step. These unwelcome features of the latitude-
longitude grid have been acknowledged and understood for many years and, although various
remedial measures have been devised to ameliorate the time step restrictions and other problems
caused by the convergence of meridians at the poles, the results are often less than satisfactory.
With the widespread adoption of massively parallel computation, and the consequent need
to apportion different parts of the horizontal grid to separate communicating processors, new
difficulties associated with the latitude-longitude grids emerge. Near the poles, relatively short
geographical distances can be very many grid units apart, making the practical problem of
subdividing the grid for efficient parallel processing an extremely challenging one. Using a
latitude-longitude grid in which the stored values are progressively thinned in the zonal direction
as one moves to successively higher latitudes (e.g., Gates and Riegel 1962; Kurihara 1965) is a
strategy that successfully addresses the problem of achieving a more homogeneous horizontal
distribution, but at the considerable cost of incurring severe difficulties in performing any
numerical operations normally carried out along meridians.

Many alternative grid geometries have been proposed and investigated for global meteo-
rological applications. A review of many of these alternative geometries and a discussion of
their merits and their drawbacks will be found in Staniforth and Thuburn (2012). The locally
triangular grid of data (locally hexagonal grid cells) that employs a global subdivision based
on the regular icosahedron (twenty equilateral triangular faces with twelve vertices) seems first
to have been proposed for meteorological applications by Sadourny et al. (1968), Williamson
(1968, 1970), and extended to a finite element formulation by Cullen (1974). This class of grids
was revived, with evident success, by Baumgardner and Frederickson (1985) who used this
structure for investigations of mantle convection, and, for meteorological applications, by Ma-
suda and Ohnishi (1986), Heikes and Randall (1995a, 1995b), Thuburn (1997), Giraldo (1997),
Majewski (1998) and Lee et al. (2007). We shall refer to the local geometry of such grids as
‘triangular’, referring to the shape of the basic circuits exhibited by the network of links between
adjacent grid cells (most of which, having six neighbors, are conventionally depicted as hexag-
onal). Also, we implicitly assume henceforth that by ‘triangular grid’ we refer to equilateral
triangles in the decomposition. The triangular grids have the theoretical advantage of possess-
ing a more isotropic resolution than a locally quadrilateral grid, although the indexing of data
points and the implementation of numerical differencing schemes tends to become a little more
involved. The icosahedron is the regular polyhedron or ‘Platonic solid’ (e.g., Coxeter 1973)
sharing with the non-griddable regular dodecahedron the highest possible degree of symmetry.
This leads to a naturally high degree of grid homogeneity and relative lack of distortion, even
with rather simple grid construction techniques.

Among locally quadrilateral grids, the simplest and most symmetrical global geometry that
avoids the problems of the latitude-longitude arrangement is the ‘cubed sphere’ class derived
from some projection of the surface of the cube onto the sphere. An approach of this kind
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was pioneered by Sadourny (1972) and, in the new era of massively parallel computation, has
once again emerged in the work of Ronchi et al. (1996), Rančić et al. (1996) and McGregor
(1996), where the relative ease of partitioning this grid among many processors is fully exploited.
Thomas and Loft (2000) employ the cubic arrangement for their global implementation of a
spectral element model, combining some of the best features of spectral and grid-based methods.
Putman and Lin (2007) employ the cubic sphere framework for their finite volume method,
although the intrinsic regularity of the cubic grid is not directly exploited in the finite volume
context.

Other, less symmetrical geometries also admit a locally quadrilateral gridding. Purser and
Rančić (1997) proposed an octahedral dihedron (that is, a flat two-faced polyhedron) which,
like the cubic arrangement, results in eight ‘corner singularities’. This octagonal geometry
removes singularities from the middle latitudes controlled by the baroclinic instabilities, where
simulation may to some extent be adversely affected by the nature of the singularities, and puts
them all in a quasi-regular pattern around the equator where atmospheric dynamics is mostly
dictated by convection. Note that there is a corresponding dodecagonal (12-sided) dihedron
configuration for the triangular grid.

These various polyhedral mappings of the sphere assume that the global grid consists of
several subgrids that perfectly match each other at the boundaries. One consequence of such
a choice is that the global grid has singular points. Another is that, following any effort made
to equalize the effective grid element areas in these configurations over the entire domain, the
grid necessarily becomes nonorthogonal. In that case, a general curvilinear formulation of the
governing equations becomes unavoidable. Among other issues arising from a nonorthogonal
grid are obstacles impeding the direct adaptation of existing orthogonal-grid numerical models
(e.g., Zhang and Rančić, 2007), and the adoption of a ‘strong conservative form’, which is
generally prefered in contemporary numerical models (e.g., Rančić et al., 2008). A general
(nonorthogonal) curvilinear formulation includes ‘cross terms’ of the metric, whose presence
generally degrades the accuracy of numerical schemes. On a positive note, mappings with
smoothly matched subgrid elements enables one, relatively easily, to achieve global conservation
of various important integral properties. However, if one decides to relax the requirement for
perfect matching of elementary subgrids, then the spectrum of options for mapping of the sphere
vastly increases, but with the price paid being the loss of formal conservation (or at least, an
easy way to achieve it). The technique of overlapped (‘Chimera’, or ‘overset’) grids, pioneered
in Starius (1980), Chesshire and Henshaw (1990), and Henshaw (1994), is successfully used for
integration over complex domains in a variety of problems in computational fluid dynamics. In
atmospheric science, attempts to cover the whole globe with overlapping grids may be found in
Phillips (1957), Browning et al. (1989), Ronchi et al. (1996) and Rančić and Zhang (2006). As
we shall see, the application of the oversetting technique near the polyhedral corner singularities
mitigates the most salient disparities of grid element areas, and, for the square grid types at
least, can be carried out in a way that allows the resulting computational grid to retain the
desirable property of exact orthogonality with all the numerical advantages this implies.

In Section 2 of this note we attempt first to answer the following question:
(i) Which polyhedra lead to potentially useful global grids?
In Section 3 we discuss the topic of ‘symmetry groups’ and answer the questions:
(ii) What symmetries do the different polyhedral grid systems have in common?
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(iii) What are the characteristic merits of each polyhedral grid?
Map distortion tends to be minimized by positioning the vertices mutually as far apart

as possible. Polyhedra with high orders of symmetry tend to succeed in this respect. All
the most symmetrical polyhedra have a unique form; they are the regular solids known from
antiquity. But some of our less symmetrical polyhedral types encompass a continuous range of
shapes generally distinguished by an aspect ratio of two (or, in some instances, three) integer
parameters (possibly with other consistency inequality constraints). An example, is when it is
the ratio of the alternating sides (in appropriate map panel units) that defines the degree of
zonal anisotropy of an octagonal or a dodecagonal dihedron. In such cases we would ask the
additional question, which Section 4 seeks to answer using the theory of ‘Pell’ equations:

(iv) What are the most judicious choices of aspect ratios that imply the most advantageous
(symmetrical?) polyhedra of each type, given a cap on the number of congruent map panels
we are willing to allow?

Once the choice of polyhedral shape has been determined for a given application we are
confronted with the problem of how to map the surface of the polyhedron to the sphere. Con-
forming to all the symmetries possessed by the original polyhedron certainly imposes many
helpful constraints but still leaves a great deal of ambiguity unless we adopt additional guiding
principles. The mathematically most elegant solution is to conformally map the polyhedral
surface to the sphere since the symmetry-preserving solution is unique for all the polyhedra
considered and the result is a mapping that is, in a certain sense, as smooth as it is possible
for the mapping to be. It is especially attractive that the mapping is perfectly smooth across
the interiors of all the polyhedron’s edges. But the mapping of the grid is still problematic
from the stand point of numerical analysis because in the vicinty of every vertex the mapping
suffers from both unbounded curvature and a singularity in the map’s absolute Jacobian or
map factor. In Section 5 we describe a presentation of the conformal mapping equations as the
solution of a variational principle written using a three-dimensional Cartesian representation
of the points of the sphere that facilitates the numerical solution of this problem in a way that
manifestly respects the polyhedral symmetries. We then address the question:

(v) Having chosen a griddable polyhedron is there a systematic way to construct a corre-
sponding continuous mapping from its surface to the sphere that respects the original symme-
tries and provides control over the degree of areal inhomogeneity of the grids implied by this
mapping?

What we propose does indeed provide such a systematic procedure and allows precise control
over the extent to which conformality is sacrificed in order to improve areal homogeneity. The
unavoidable singularities of the continuous mappings are a bane of numerical analysis on the
surface of the sphere. They adversely affect spatially differentiation, interpolation, filtering,
and, in more subtle ways, even the horizontal integration of the gridded variables. For many
such applications it is vitally important that there be no singularity present anywhere within
the portion of the grid where the numerical operators need to be applied. The proposed remedy
is to incorporate incisions that transect each vertex, but without violating the integrity of any
of the map panels that meet there. Adjustment of the geometry on either side of the incision
allows us to completely remove the original angular discontinuity. In Section 6 we treat the
question:

(vi) Given the polyhedral mapping with areal disparities adequately rectified according
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to the principles set out in Section 5, is there a systematic prescription for constructing the
necessary oversets that eliminates the remaining curvature discontinuities associated with the
vertices of the original polyhedron?

In our affirmative response we again formulate generic procedures, expressed in the three-
dimensional Cartesian domain in a way that guarantees that the intended symmetries are
numerically respected.

The concluding discussion of Section 7 reviews the implications of the standardization of
symmetry-preserving polyhedral grids that is the main focus of this note. But we also argue that
the slavish adherence to the rigorous dictates of symmetry at all levels of the grid creation pro-
cess can sometimes detrimentally limit the opportunities available for constructing global grids
with advantageous features. We illustrate this point by showing how one can exploit the theory
of Pell equations discussed in Section 4, together with a generalization of the overset technique
(Starius 1980, Browning et al. 1989) for map regions overlapping three at a time, to enable an
orthogonal and almost-square rectangular gridding to be applied to a smoothly mapped spher-
ical icosahedron! This counter-intuitive configuration certainly violates the strict symmetry
principles as we shift our focus from the global geometry to the local grid geometry, and yet
it enables the minimal-distortion attributes of the icosahedral geometry to be nicely combined
with the convenience and high numerical efficiency enjoyed by conventional rectangular-grid at-
mospheric models, providing a configuration that may prove superior in practice to any of the
more orthodox and symmetry-respecting polyhedral grids whose classification and construction
we have sought to systematize.

The polyhedral grid geometries that we highlight in this note are just a small subset of the
possible types for which the vertices are all equivalent to each other under the operations of
symmetry that characterize the particular gridding. The appendix classifies all the types of
such finite ‘vertex-symmetric’ polyhedral griddings of both square and triangular types, and
provides an illustration of the polygonal ‘development’, or ‘net’, of the simplest exemplar of
each type.

2. Practical griddable polyhedra

We have discussed how the potentially useful quadrilateral and triangular grids on the
sphere which tend to minimize the proportion where the map distortion is large are found to be
associated with convex polyhedra. These polyhedra possess relatively high degrees of symmetry,
inherited by the spherical mapping, and are such that, on the flat surface of each ‘face’, the
mapping of the grid is uniform and forms either a perfect square lattice, or a perfect equilateral
triangular lattice. The vertices of each polyhedron carry equal amounts of angular deficit – the
discrete measure of the surface’s Gaussian curvature. The global tally of this measure over the
surface of any simply-connected polyhedron is necessarily 4π radians, or 720◦. Thus, for the
icosahedral grid and other global triangular grids with singularities of a similar magnitude of
distortion, there are always found to be 12 vertices in the associated convex polyhedron and
an angular deficit of 60◦ at each one. For the cubic grid, and for any other global quadrilateral
grids with singularities of a similar degree of distortion to the cube’s, the vertex count is always
eight and the angular deficit per vertex is 90◦.
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The grid geometries we have discussed do not exhaust the serviceable possibilities; Fig.
1 exhibits twelve symmetric polyhedral types, the first four of which admit a square surface
gridding, while the other eight admit an equilateral triangular surface gridding. Each cartoon of
this figure shows one ‘half-shell’ of the griddable polyhedral surface, displayed cut and flattened
(‘developed’) onto the Euclidean plane, and each subdivided into the respective largest square
or triangular ‘panels’ conditional on vertices of the polyhedron occurring only at vertices (not
edge-interiors) of panels. The boundary of the half shell is a great circle that we might think of
as one double-meridian; the opposite, missing half-shell being, in every case, the exact mirror-
image of the half-shell shown.

To each polyhedron, centered on the Cartesian coordinate origin, is associated a characteris-
tic ‘point group’ of the three-dimensional orthogonal matrix operators – rotations and reflections
– that map the polyhedron, and therefore its associated spherical gridding, into itself. A com-
mon property of all the point groups associated with these griddable polyhedra is (at least)
two planes of reflection symmetry that are themselves mutually orthogonal. One of these we
take as the bisecting plane that cleaves the half-shells of Fig. 1 from their omitted respective
opposites; the other reveals itself in the cartoons as the bilateral symmetry axis extending from
the top (‘North Pole’) to the bottom (‘South Pole’) of each. Thus, the axis of intersection of the
two reflection planes are taken here to define the polar axis in the conventional presentation.
When a third orthogonal reflection plane also exists, the ambiguity is broken (if possible) by
the choice that confers on this polar axis the highest degree of rotational symmetry among the
three choices.

Figure panels (a)—(d) show the half-shell types for most of the polyhedra admitting square
griddings that enjoy some potential merits when realized as spherical griddings for numerical
weather prediction. Fig. 1(a) shows the development of the basic cube, whose shape is unique
and needs no further specification. The short thick segments transecting each vertex in this and
the other cartoons indicates the loci of the ‘cuts’ in suggested overset versions of the polyhedral
map. For this cubic case, the oversets shown are those that would yield a grid of the ‘Yin-Yang’
variety (Kageyama and Sato 2004, Purser 2004) but an alternative arrangement of oversets gives
the equally attractive ‘barrel grid’ configuration. A less symmetrical generalization of the cube,
maintaining the mutually orthogonal ‘Cartesian’ symmetry planes, would be the square prism,
and an even less symmetrical generalization of that would be the general cuboid. Another way
in a which a given griddable geometry can be generalized is by the choice of orientation of
the grid with respect to the mirror-symmetry planes of the polyhedron. For the cube, square
prism and cuboid, a distinction can be made between the gridding whose lines are parallel
to the edges and the griddings aligned at 45◦ to these edges, even though the same group
of polyhedral symmetries is in effect. But other oblique alignments of the surface gridding
of these polyhedra are also possible; however, these oblique griddings are no longer invariant
to the improper rotational symmetries of the polyhedron. Moreover, in the case of a general
cuboid, not only is the size of the symmetry group thereby halved, but the eight vertices of
this chiral configuration are now no longer equivalent under the smaller group of symmetries
available (disqualifying this configuration from the classification given in the appendix, which
is restricted to a full classifications of only vertex-symmetric polyhedral grid types). We shall
only explicitly consider the simplest of the possible grid orientations in each of the geometries
featured in Fig. 1 but it is important to bear in mind the existence of the alternative orientations
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(a)

Cube

(b)

Octagonal dihedron

(c)

Square dihedron

(d)

Square antiprism

(e)

Icosahedron

(f)

Octahedron

(g)

Dodecagonal dihedron

(h)

Hexagonal dihedron

(i)

Hexagonal prism

(j)

Hexagonal antiprism

(k)

Tetrahedron

(l)

Yin-Yang

Figure 1. Half-shells of twelve mirror-symmetric polyhedra that allow regular griddings of their surfaces by either
square (a—d) or triangular (e—l) grids. Each half-shell is suitably cut to allow it to be developed (without further
distortion) to the plane, and presented so as to exhibit its other mirror-reflection symmetry bilaterally, with the
intersection of the two chosen symmetry planes forming the polar axis. The poles themselves in this standard
presentation are indicated in each figure by small symbols ‘N’ and ‘S’. Thin solid lines are the boundaries of
square or equilateral map-panels, dotted lines are cuts not conforming to these panel boundaries. Short bold
segments mark ‘cuts’ between sets of map panels that allow the otherwise singular vertices of the mapping of
these panels to the sphere to be replaced, via a local stretching of the maps involved, by corner-oversets that
allow the mathematical singularities at these corners to be removed. The lines are doubled to indicate where
they reside within the plane of mirror symmetry. The locations of any axes of period-two gyration not also
within mirror symmetry planes are indicated by the small circles. In each developed half-shell a representative
‘fundamental region’ of the symmetry is shaded in grey.
The polyhedra are as follows: (a) cube (cuts shown for Yin-Yang-style oversets); (b) octagonal dihedron; (c)
square dihedron; (d) square antiprism; (e) icosahedron; (f) regular octahedron; (g) dodecagonal dihedron; (h)
hexagonal dihedron; (i) hexagonal prism; (j) hexagonal antiprism; (k) regular tetrahedron; (l) Yin-Yang (irreg-

ular) octahedron. The full list of vertex-symmetric polyhedral grid types is provided in the appendix.

which might sometimes, for practical reasons, be preferred.
Cartoon (b) shows one of the family of octagonal dihedra where now the exact shape requires

further specification, since the octagon sides parallel and orthogonal to the sides of adjacent
square map panels can be one integer in length, while the alternating sides at 45◦ can be

√
2

times some other integer. Cartoon (c) shows the square dihedron; although it shares the same
symmetries as the octagonal dihedron and, in some respects can be thought of as a degenerate
member of that family, it must be noted that it has only four vertices, so each must carry
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the double dose of a 180◦ angular deficit. This implies that its map singularities must be,
in some sense, twice as strong as those for the other square-griddable polyhedra, so we shall
expect a much more severe degree of map distortion around each of its map singularities.
Cartoon (d) shows one of an infinite family of square ‘antiprisms’; this simplest example is
formed from the gluing together of two large squares (each possessing four map panels since
the large squares themselves are disqualified from being ‘panels’ by having polyhedron vertices
at the midpoints of their sides). But other square antiprisms exist with different aspect ratios
(degrees of oblateness/prolateness) so an exact specification of shape (like the octagons) requires
a pair of integer aspect parameters.

(g)

Dodecagonal dihedron

(a)

Cube

(b)

Octagonal dihedron

(c)

Square dihedron

(d)

Square antiprism

(e)

Icosahedron

(f)

Octahedron

(h)

Hexagonal dihedron

(i)

Hexagonal prism

(j)

Hexagonal antiprism

(k)

Tetrahedron

(l)

Yin-Yang

Figure 2. Conformal mapping grids on the sphere corresponding to the polyhedra shown in Fig. 1. The grids
are depicted as viewed from an oblique angle. Obviously, the schematic grids shown are extremely coarse, but
they do give an idea of the qualitative nature of the singularities and their relative positions on the surface.

The panels (e)—(ℓ) of Fig. 1 all depict the half-shells of the polyhedra that admit equi-
lateral triangular surface gridding. Cartoon (e) shows the regular icosahedron (20 panels), the
most symmetrical configuration of them all, while (f) shows another Platonic form – the regular
octahedron, whose six vertices are each of double strength (angular deficit of 120◦ as opposed
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to the icosahedron’s 60◦ vertex angular deficits). Cartoon (g) shows one of the many possi-
ble dodecagonal dihedra. The shape shown clearly exhibits a remarkably high degree of zonal
isotropy, but at the cost of requiring 180 congruent map panels. In (h) we see the degenerate
version of the dodecagon in the form of the hexagonal dihedron with its six double-strength
singularities, each with a 120◦ angular deficit. Panels (i) and (j) show the simplest representa-
tives of the infinite families of hexagonal prisms and antiprisms, needing respectively 36 and 24
map panels in the particular cases shown. With just four map panels and four triple-strength
vertex singularities, (k) shows the regular tetrahedron. The best overset version of this grid
yields another ‘Yin-Yang’ configuration. Completing this survey, (ℓ) shows the half-shell of a
‘Yin-Yang’ triangular-griddable polyhedron (actually a highly irregular octahedron comprising
four rectangles and four irregular pentagons for faces). This configuration needs 36 map pan-
els. However, the vertices of this polyhedron are of two inequivalent types (disqualifying this
geometry from the catalogue given in the appendix).

The conformal mappings of the coarsely gridded surfaces of the geometries shown in Fig. 1
to the sphere are shown, from an oblique vantage, in Fig. 2.

We have not illustrated square prisms (other than the special case of the cube and the
degenerate case of the square dihedron), the triangular prism, or the triangular antiprism
(except the special case of the octahedron). Although the generic members of these neglected
families seem to possess no special merit for modeling not already possessed in greater measure
by members of the other polyhedra shown in Figs. 1 and 2, we can nevertheless find all of the
vertex-symmetric grid geometries listed in the appendix and we emphasize that each one of
them can be mapped to the sphere in accordance with the principles we set out in the sections
that follow. We will discuss some of the merits of selected grids at the end of the next section,
after we have explored the topic of symmetry and the formalism, Group Theory, employed to
systematize it.

3. Symmetry Groups associated with polyhedra

The griddable polyhedra that are potentially useful for supplying global grid geometries are
each associated with a (maximal) group whose ‘elements’ are orthogonal transformations with
respect to which the polyhedron is invariant. An orthogonal transformation in three dimensions
is either a ‘positive-parity’ chirality-preserving proper rotation about some axis, or the product
of such a rotation with a chirality-reversing inversion through the origin (a ‘negative-parity’
improper rotation). The matrix representation of the former has determinant +1 and that of
the latter has determinant −1.

In order to specify a group unambiguously, it suffices to specify a subset (just two or three
for these polyhedral groups) of the group elements, known as ‘generators’, from which the full
group is recovered by closure under multiplicative combination (remembering, of course, that
group operations are not, in general, commutative). By itself, any polyhedral group element
serves as the generator of a finite cyclic group so, without any loss in generality, we can choose
the representative generator of any cyclic group to be one of its elements whose positive-parity
part corresponds to the smallest nonvanishing rotation angle for that cyclic group. If that
characterizing angle is 2π/N , for positive integer N and the axis is in the direction (gx, gy, gz)
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then we shall specify that generator, G (and hence its corresponding cyclic group), by the
notation:

G≡
{

[gx, gy, gz]+N : if a proper rotation
[gx, gy, gz]−N : if an improper rotation

(3.1)

If the suffix is of the form ‘−N ’ for odd N , then the order of the cyclic group thus indicated is
2N ; in all other cases it is N .

TABLE 1. Polyhedra admitting square griddings, their Symmetry Groups, and significant mer-
its. Normally, grids possess eight vertices of angular deficit 90◦; ∗ denotes the exceptional

grid whose four vertices have angular deficit of 180◦.

Polyhedral global Group Order of Panel Significant

grid instances type group count merits

Cube Oh (⋆432) 48 6 Highest order of symmetry

possible for square gridding

Cubic barrel D4h (⋆224) 16 6 Preserves cube’s

overset grid D4 zonal symmetry

Cubic Yin-Yang D2d (2⋆2) 8 6 Sphere maps to a pair of

overset grid congruent overlapping rectangles

Pellian sequence of D4h (⋆224) 16 2, 14, 82, All singularies or oversets

square*/octagonal . . . , Q2n+1, . . . confined to equator; approximately

dihedra. order-32 symmetry of D8h for large n.

Square antiprism D4d (2⋆4) 16 8 Sphere maps to a pair of

congruent squares

An operation generating a group of order 2 is called an ‘involution’; involutory generators
are therefore those with suffix: −1 (an inversion through the origin for which the ‘axis’ is
redundant); +2 (proper rotation of 180◦); or −2 (reflection in the plane through the origin
perpendicular to the given axis). It is convenient to name the frequently used reflections
associated with the three Cartesian axes:

X ≡ [1, 0, 0]−2, (3.2a)

Y ≡ [0, 1, 0]−2, (3.2b)

Z ≡ [0, 0, 1]−2. (3.2c)

In relating the generators to Fig. 1, we adopt the convention that axis (1, 0, 0)T points out of
the page, (0, 1, 0)T points to the right, and (0, 0, 1)T is directed upwards, i.e., towards to North
Pole. Although the specified generator never depends on the magnitude of the axis vector (only
its direction) we shall nevertheless adopt the convention that the largest component of the axis
is +1.

There are infinitely many ways of presenting a given group of polyhedral symmetries. How-
ever, as already noted, we find that in all the cases of interest to us, there exist at least two (and
sometimes three) mutually-orthogonal reflection planes. Consequently we adopt the systematic
convention that the presentation of the group is such that reflections, X and Y , both belong
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TABLE 2. Polyhedra admitting triangular griddings, their Symmetry Groups, and significant merits. Nor-
mally, triangular grids possess 12 vertices of angular deficit 60◦; ∗ denotes the exceptional grids whose
six vertices have angular deficits of 120◦, while ∗∗ denotes the grid whose four vertices have an angular

deficit of 180◦.

Polyhedral global Group Order of Panel Significant

grid instances type group count merits

Regular icosahedron Ih (⋆532) 120 20 Highest order of symmetry

possible for triangular gridding

Overset icosahedron Th (3⋆2) 24 20

Regular octahedron* Oh (⋆432) 48 8 Permits the ‘zinc-blende’

staggered lattice, among others,

that cannot be achieved

Overset octahedron* Th (3⋆2) 24 8 in icosahedral geometry

Pellian sequence D6h (⋆226) 24 12, 96,180,1344,, All singularities

of hexagonal*/ confined to equator;

dodecagonal . . . , σnSn+1, . . . approximately order-48 symmetry

dihedra σ = 12(24) for odd(even) n. of D12h for large n.

Regular Td (⋆332) 24 4 Domain unfolds into

tetrahedron** a single parallelogram

Hexagonal prism D6h (⋆226) 24 36 Domain conveniently decomposes

into six congruent parallegrams

Hexagonal antiprism D6d (2⋆6) 24 48 Domain decomposes into

a pair of congruent regular hexagons

Irregular octahedral D2d (2⋆2) 8 36 Domain decomposes into

Yin-Yang a pair of congruent irregular hexagons

to the group. In the ambiguous case of three mutually-orthogonal reflection planes, we choose
the orientation which maximizes the rotational symmetry about the polar axis.

Unfortunately there seems to be no single universally-accepted notation for the space-groups
we shall be concerned with. One traditional notation, much used in chemical spectroscopy, is
the ‘Schönflies notation’ (for example, see Sharma 1982), which we shall primarily adopt but,
in parentheses, we also indicate the newer ‘orbifold notation’ proposed originally by Thurston
and developed and popularized in recent years by Conway and colleagues (Conway et al. 2001,
2003, 2008).

We are now ready to define the relevant groups by their generators. Although in many
cases just two generators suffice, we shall try to provide (usually three) involutory generators
(reflections and 180◦ gyrations) where possible since these can often be conveniently identified
directly with the boundary segments (if reflections), or a fixed point on a boundary segment
(if a gyration), of the fundamental region shown shaded in gray in each of the cartoons of Fig.
1. In cases where only one or two useful grid geometries share the group symmetry, we can
provide the vertex, or vertices, that likewise generate the full complement of the polyhedron’s
vertices under the action of the group. All the groups described in this section are achiral (i.e.,
not chiral) since they contain reflections (for example, X and Y ) amongst their symmetries.
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The chiral restriction corresponding to each example is then the subgroup, of half the original
order, comprising only the proper rotations.

(a) Icosahedral group, Ih (⋆532)

The two sufficient generators are:

G1 = X, (3.3a)

G2 = [−1/φ, 1, 1/φ2]−2, (3.3b)

G3 = Y. (3.3c)

where φ is the ‘golden number’, φ= (
√

5 + 1)/2. The order of this group is 120, making it the
largest finite orthogonal group of three dimensional transformations. The 12 vertices of the
icosahedron are generated by the single representative,

V = (1, 0, φ)T, (3.4)

which makes each equilateral triangular face have an edge of length two units.
Polyhedra with relatively high orders of symmetry tend not to fully preserve this symmetry

when the spherically-mapped grid is modified by vertex oversets to remove from the map the
metrical singularities; in the case of the triangular grid covering the regular icosahedron, the
most symmetrical configuration of oversets (Fig. 1(e)) reduces the symmetry to the subgroup
with ‘pyritohedral’ symmetry, to be described next.

The chiral restriction of the icsoahedral group is denoted I (532).

(b) Pyritohedral group, Th (3⋆2)

This group of order 24 is generated by,

G1 = X, (3.5a)

G2 = [1, 1, 1]+3, (3.5b)

and is perhaps most familiarly exhibited by the pattern of gores on the surface of a standard
volleyball ball. This is the only example we consider of a group that cannot be generated purely
by involutions. Its Schönflies designation suggests a connection with the the tetrahedron and,
in fact, the chiral restriction of this group is the chiral tetrahedral group, T (332).

(c) Octahedral group, Oh (⋆432)

Three generators of this group of order 48 are the reflections:

G1 = =X, (3.6a)

G2 = [1,−1, 0]−2, (3.6b)

G3 = [0, 1,−1]−2. (3.6c)

The six vertices of the regular octahedron itself are generated by this group applied to the
representative vertex,

V = (0, 0,
√

2)T, (3.7)
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where, again, the sides of each triangular panel are each of length two units. The overset variant
of the triangular-gridded octahedron breaks this symmetry; the most symmetrical configura-
tion that includes vertex oversets has invariance with respect to the transformations of the
pyritohedral group.

The cube also conforms to octahedral group symmetry. Its eight vertices are generated by:

V = (1/2, 1/2, 1/2)T, (3.8)

giving square panels of unit sides.
The chiral restriction of the octahedral group is the group denoted O (432).

(d) Tetrahedral group, Td (⋆332)

Three reflections,

G1 = X, (3.9a)

G2 = Y, (3.9b)

G3 = [−1/
√

2,−1/
√

2, 1]−2, (3.9c)

define the tetrahedral group of order 24, which is also a subgroup of the octahedral group and
of the icosahedral group. The four vertices of the tetrahedron itself are generated from

V = (0, 1, 1/
√

2)T. (3.10)

An overset version of the triangular tetrahedral grid would break the tetrahedral symmetry;
the most symmetrical overset configuration would be one with the ‘Yin-Yang’ symmetry, D2d,
as illustrated in Fig. 1(k).

The chiral restriction of the tetrahedral group is denoted T (332).

(e) ‘Yin-Yang’ symmetry group, D2d (2⋆2)

The symmetry group of the various ‘Yin-Yang’ grids (Kageyama and Sato 2004) is exactly
that of the tennis ball; it is an order-eight subgroup of the tetrahedral group generated by a
reflection and a gyration:

G1 = X, (3.11a)

G2 = [1, 1, 0]2. (3.11b)

By analogy with other antiprisms’ symmetry groups (see below), this symmetry might be
thought of as that of the antiprism of a degenerate two-sided polygon or ‘edge’, such as is
generated by a stretching or compression along the Z-axis of the regular tetrahedron defined
in the previous subsection. For the case of the square-griddable Yin-Yang configuration the
parent polyhedron is the cube; it is then just the arrangement of the corner oversets that
‘breaks’ the cubic symmetry to that of the present less symmetrical group. But there are
also triangular-griddable polyhedra with 12 vertices and possessing the Yin-Yang symmetry, of
which the simplest decomposable into a surface made up of equilateral triangles is the highly
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irregular convex polyhedron of four rectangles and four ‘house-shaped’ pentagons, and whose
twelve vertices are generated by the action of the group on the inequivalent pair:

V1 = (
√

3,
√

3, 1)T, (3.12a)

V2 = (
√

3, 0, 2)T. (3.12b)

The surface is covered by 36 fundamental map panels.
Although the order-four chiral restriction of this group plays no part in any of the geometries

we shall subsequently consider, we can state that its Schönflies and orbifold designations are
D2 (222).

(f) Square antiprism group, D4d (2⋆4)

This order-16 group is, like all achiral antiprism groups, generated by a reflection and a
gyration:

G1 = X, (3.13a)

G2 = [
√

2 − 1, 1, 0]2, (3.13b)

(3.13c)

and is the first example of a group to which a nontrivial parameterized family or type of differ-
ently shaped grid geometries belongs. Generally, the surface of the antiprism divides naturally
into a pair of (irregular) interlocking folded octagons, each separately exhibiting the symmetry
of the dihedral planar group, D4, of order eight. The example of a square-antiprism whose
development divides into the smallest number (eight) of congruent square map panels obeying
the vertex rules discussed in Section 1 actually has each ‘octagon’ of four panels forming a
square, since the four vertices that lie at the corners of the northern square region alternate in
longitude with the four vertices that lie at the midpoints of that square region’s sides (which
meet the corners of the corresponding southern square region). The half-shell of this particular
antiprism is illustrated in Fig. 1(d). In order to construct the shape of the convex polyhedron
associated with the generic square-antiprism we could apply the matrix representations of its
group, D4d, to a single representative vertex located at:

V = (1, 0, ζ)T (3.14)

for some shape-defining value, ζ, but in practice it is the shape of a representative sector of
the developed map that is of more interest since the magnitude, ζ, plays no direct part in the
construction of useful mappings to the sphere.

Generally, a member of the family of griddable square-antiprisms is specified uniquely by
the pair, (a, b), of coprime integers, where a denotes the surface (radial) distance from the
pole to a vertex parallel to a panel boundary in units of a panel side, while

√
2b denotes the

corresponding surface distance to a vertex in the direction at 45◦ to the panel sides. The total
number of panels in such a mapping is A= 8ab. The simplest example, illustrated in Fig. 1(d),
is of the specific type (1, 1), with A= 8 as already stated.

The chiral restriction of this group is denoted D4 (224).
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(g) Hexagonal antiprism group, D6d (2⋆6)

Continuing the antiprism pattern, the 24 elements of the group are generated by the two
generators,

G1 = X, (3.15a)

G2 = [2 −
√

3, 1, 0]2. (3.15b)

Again, we are faced with an open-ended family of griddable polyhedra that share this symmetry
group. Generically, the northern and southern regions are dodecagons that each conform to
the planar hexagonal dihedral symmetry group, D6, of order 12. A particular member of the
family is specified uniquely by the positive integer pair, (a, b), with a denoting the radial map
distance, in units of the elementary triangular map panel sides, between the pole and a vertex
along a direction parallel to adjacent panel sides, while

√
3b measures, in the same units, the

distance from the pole to a vertex along the line at 30◦ to the adjacent panel sides. The surface
is covered by A= 24ab equilateral-triangular panels. In the simplest case, with specification
(a, b) = (1, 1) the dodecagons are in the shape of a ‘star of David’, while the next simplest
case, with specification (2, 1), has ‘dodecagons’ consisting of regular hexagons with half of the
dodecagon’s vertices lying at the midpoints of the hexagon’s sides.

The chiral restriction of this group is denoted D4 (224).

(h) Edge prism or rectangular dihedron group, D2h (⋆222)

This order-eight group comprises the symmetries of a cuboid or of an ‘edge prism’ (rectan-
gular dihedron) and is generated by the three Cartesian reflections,

G1 = X, (3.16a)

G2 = Y, (3.16b)

G3 = Z. (3.16c)

Restricting the group to its proper elements results in the subgroup D2 (222).

(i) Square prism group, D4h (⋆224)

Unlike the corresponding antiprism, the prism, in its standard presentation, is a figure
that is symmetrical across the the equatorial plane. The square prism is generated by three
reflections:

G1 = X, (3.17a)

G2 = [1,−1, 0]−2, (3.17b)

G3 = Z. (3.17c)

Although the overset version of the cube that we call the ‘barrel grid’ has the original octahedral
symmetry broken to this lower symmetry of order 16, the family of grids of greater interest
with this symmetry are those associated with the various octagonal dihedra. In these grids,
the vertex singularities lie on the equator but at longitudes of alternating spacing (in contrast,
the antiprism grids have their vertices off the equator but at evenly spaced longitudes). Again,
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the specification of a particular member of this family requires setting a pair of coprime integer
parameters, (a, b), but the interpretation of a and b is different; a will denote the side of the
hemispheric octagon in a direction parallel to square map panels and in units of the side of a map
panel, while

√
2b will denote the alternating sides at 45◦ to the panel sides. For the case where

a is even, this dihedron shape admits an alternative gridding with half the number of panels,
obtained by rotating the panel orientation by 45◦ and replacing (a, b) by the parameter pair
(b, a/2). Geometrical consistency constrains a and b by the inequalities, a≥ 0 and b≥ 0, with at
least one of these parameters strictly positive. When one of them is zero, the dihedron becomes
a square (degenerate ‘octagon’). The simplest true octagon has the parameters, (a, b) = (1, 1).
The total map area, A, measured in map panels, is obtained by the formula:

A= 2a2 + 8ab+ 4b2. (3.18)

The chiral restriction of this group is D4 (224).

(j) Hexagonal prism group,D6h (⋆226)

Here the three generators of this group of order 24 can be chosen to be:

G1 = X, (3.19a)

G2 = [1, −1/
√

3, 0]−2, (3.19b)

G3 = Z. (3.19c)

The dodecagonal dihedra form one family of griddable polyhedra with this symmetry. The
poles must occupy only the corners of equilateral map panels. The shape of each dodecagonal
hemisphere can be specified by the (positive integer) side parallel to panel boundaries, a, and
the alternating oblique sides,

√
3b, in the same length units of panel sides. The smallest proper

dodecagon is specified by parameter pair, (a, b) = (1, 1). The number of equilateral triangular
map panels in the whole surface is:

A= 12(a2 + 4ab+ 3b2). (3.20)

The other family of griddable polyhedra with this symmetry group comprises the hexagonal
prisms themselves, of course. The aspect ratio in this case is specified by any positive integer
pair, (a, b), where a measures the map distance from the pole to one of the vertices in the same
hemisphere, while

√
3b measures the map distance, in the same units, between each vertex and

its opposite-hemisphere counterpart at the same longitude. While for any integer pair, (a, b),
such a prism is always griddable by triangular panels of unit sides, note that when a is evenly
divisible by 3, the surface is also griddable by panels larger (in linear dimensions) by

√
3 and

rotated 30◦ with respect to the former orientation.
The chiral restriction of this group is denoted D6 (226).

(k) Discussion

The group symmetries constrain the set of mappings in various ways. A reflection symmetry
implies the existence of an invariant line (an axis of dihedral mirror symmetry) of the map, the
points of which will always map to the same great circle on the sphere under any continuous
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mapping that respects the symmetry. A proper rotation implies an antipodal pair of fixed points
of the possible mappings, corresponding to the axis of rotation. Every line of intersection of pairs
of reflection-symmetry planes is an axis of proper rotation, and therefore defines an antipodal
pair of fixed points. We have already noted that each of our polyhedra possesses at least two
reflection planes whose intersections have allowed us to fix the poles as invariant points of each
symmetry group. Although the equator is not an invariant line of all the polyhedral mappings,
a closer examination reveals that all our polyhedra possess additional invariant axes of proper
rotation, including at least two that are orthogonally arranged around the equator, defining
four fixed points there. The existence of fixed points of these mappings is what ensures the
uniqueness of the systematic construction of Sections 5 and 6.

We have seen that all of the polyhedra discussed in this section, with the exception of the
triangular-griddable Yin-Yang octahedron of Fig. 1(ℓ), share the property that all their vertices
(and hence the convex polyhedron which forms the convex hull of these vertices) are generated
by a single representative vertex through the action of the group. Another property shared by
these eleven polyhedral types (but, again, not the Yin-Yang octahedron), is that, through each
of these vertices, there passes a plane of reflection symmetry. The oversetting modification of
the area-smoothed grids requires this symmetry to hold; the Yin-Yang octahedron is therefore
excluded from this family of overset grids. There is an alternative oversetting procedure for
modifying the unsmoothed conformal grids which does not require there to be a bilateral sym-
metry axis through each vertex, or require the oversetting incision to respect the symmetry
if it exists; this alternative procedure is designed primarily to preserve the orthogonality of
rectangular grids, but it also provides a way for the triangular-griddable Yin-Yang configura-
tion to acquire its oversets (but without the option of smoothing the grid-areas prior to the
oversetting).

While we seem to have laid out a profusion of possible polyhedral mapping geometries, there
is obviously a question of which geometry is suitable for a given numerical formulation and mod-
eling application. For a general global model where we are interested in accurately modeling
every region equally, the least degree of map distortion is preferable – that is, the geometry
with the highest degree of global symmetry. For a numerical formulation based on the conven-
tional rectangular gridding, the spherical cubic geometry is the obvious choice. For a model
based upon a triangular local grid (including finite volume models with hexagonal grid cells),
without additional numerical restrictions, the icosahedron is then preferred. However, there
are some staggered triangular grid arrangements in the horizontal, as well as three-dimensional
staggerings, which cannot cover the polyhedral surfaces that contain vertices where the angle
deficit is 60◦. An example of an attractive three-dimensional staggered lattice is that of the
‘zinc-blende’ crystal structure which, in the modeling context, consists of a diamond lattice ex-
cept with ‘atoms’ of wind having four ‘atoms’ of mass as tetrahedral neighbors and vice versa.
For these grids to cover the sphere, it is necessary that any vertices have angular deficits of
120◦. In such cases, the regular octahedron provides the most symmetrical global gridding.
There is sometimes a concern that the presence of mapping singularities might cause numerical
difficulties if they occur in the midlatitude baroclinically active zones. In these cases the di-
hedron geometries become attractive: octagonal dihedra for square grids; dodecagonal dihedra
for triangular grids; hexagonal dihedron for the triangular grids with the 120◦ angular deficit
restriction. There are also versions of the antiprism geometries with the symmetries D4d and
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D6d, for square and triangular grids respectively, that can be found with their singularities very
close to the equator; these grids have the advantage over their dihedron counterparts that their
vertices are exactly equally-spaced in longitude. The triangular grid dihedra and antiprisms
also enjoy a higher degree of zonal symmetry than the icosahedron (or octahedron) but, if
high zonal symmetry is deemed especially important, a more uniform global distribution of the
twelve singular points would be found amongst the family of hexagonal prisms.

The square dihedron and the regular tetrahedron share the dubious merit of being the
only geometries we have considered here where the angular deficit is 180◦. But this otherwise
unattractively large angular distortion around each singularity (clearly visible in their depictions
in Figs. 2(c) and (k)) might be of value for some numerical schemes. In the case of the conformal
mappings, these two geometries are the only ones exhibiting integer power-law behavior around
each vertex. The solutions can also both be expressed directly in terms of elliptic functions
(Lee, 1976). Where these two geometries could be advantageous in practice is in comparing,
under equitable conditions of mapping distortions, the relative merits of triangular-grid and
square-grid numerics, since both geometries are continuously griddable by either rectangular
or triangular lattices. The triangular gridding over the square dihedron cannot be exactly
equilateral, just as the rectangular gridding over the tetrahedron cannot be exactly square.
Nevertheless, using the ‘Pell’ rational approximations to

√
3 described in the next section, we

can very closely approximate the intended ideals in both these respects.
Finally, we note that the Yin-Yang configurations enjoy the very convenient property that

the global map splits tidily into two expansive uninterrupted congruent regions (rectangular
in the case of the square-grid cube-based Yin-Yang, elongated hexagonal, in the case of the
triangular-grid Yin-Yang configuration illustrated in Fig. 1(ℓ)).

4. Pell systems

In number theory, equations in integers:

Q2 − kP 2 = ±1, (4.1)

where positive k is not a squared number, are said to be of ‘Pellian’ form. For each such k
there are always infinitely many possible solutions and they are connected by a characteristic
recurrence that depends upon the k, allowing each Q/P to approximate

√
k with diminishing

error as the magnitudes of Q and P increase. The cases, k = 2 and k = 3, have particular
geometrical significance owing to the fact that half-sides of regular octagons subtend angles at
their centers of 22.5◦ with tan(22.5◦) =

√
2 − 1 while half-sides of regular dodecagons subtend

angles at their centers of 15◦ with tan(15◦) = 2 −
√

3.
Rational approximations to a square-root of an integer can be extracted from the successive

‘convergents’ of the continued fraction expansion of that square-root. The continued fraction,

f = q0 +
1

q1 + 1
q2

,

is written as:
f = [q0; q1, q2],
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for example. For the expansion corresponding to the square-root of an integer, the sequence of
qi becomes cyclic. The Pell solutions Qk and Pk can all be found, at the same cyclic intervals,
as the numerators and denominators of convergents of such truncated approximations.

For the case, k = 2, the sequence of pairs (Qn, Pn) are found to solve

Q2
n − 2P 2

n = (−1)n, (4.2)

where (Q0, P0) = (1, 0), (Q1, P1) = (1, 1) and both Qn and Pn obey the recurrence,

ψn+1 = 2ψn + ψn−1. (4.3)

The relevant continued fraction expansion for
√

2 is just,

√
2 = [1; 2, 2, 2, . . .]. (4.4)

TABLE 3. Pell sequences Qn and Pn associated with Q2 − 2P 2 = ±1, to-
gether with the corresponding continued fraction approximation to

1/
√

2

n Qn Pn continued fraction n Qn Pn continued fraction

0 1 0 0

1
= [0; ] 4 17 12 12

17
= [0; 1, 2, 2, 2]

1 1 1 1

1
= [0; 1] 5 41 29 29

41
= [0; 1, 2, 2, 2, 2]

2 3 2 2

3
= [0; 1; 2] 6 99 70 70

99
= [0; 1, 2, 2, 2, 2, 2]

3 7 5 5

7
= [0; 1, 2, 2] 7 239 169 169

239
= [0; 1, 2, 2, 2, 2, 2, 2]

[1,0]

[1,1]

[3,2]

[1,1]

[3,2]

[7,5]

(a) (b)

Figure 3. Two sequences of progressively more regular octagons associated with the Pellian sequences.

In Fig. 3 we see two ways of forming progressively more regular octagons on a square grid
by employing the numbers from the two sequences associated with this Pell system. On the
left, what we shall refer to as ‘Type 1 octagons’ have sides parallel and oblique to the panel
sides, of an =Qn and bn =

√
2Pn units respectively. The corresponding area of the dihedral
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surface of each such ‘Pell octagon’ is An = 2Q2n+1 square panel units. The indexing convention
here is chosen so that the case (a0, b0) in this sequence is the degenerate ‘square dihedron’. The
vertices are equidistant from the center but do not occur at regular angular intervals.

On the right is shown an alternative sequence of progressively more regular ‘Type 2 octagons’
drawn on the grid of panel boundaries. This time the vertices are not exactly equidistant from
the center but they do at least occur at regular angular intervals of 45◦. These vertices on the
grid’s principal axes occur at distances Qn+1 from the center, while the others are at distances√

2Pn+1 in grid-panel units. The indexing convention is chosen, again, to make the degenerate
case correspond to n= 0. The implied octagonal dihedra each have an area of 4P2n+2 square
units. A tabulation of the first few Pn and Qn and the corresponding continued fraction
approximations to 1/

√
2 is presented in Table 3.

For the case, k = 3, the sequence of pairs, (Cn, Sn), are found to solve

C2
n − 3S2

n = 1, (4.5)

where (C0, S0) = (1, 0), (C1, S1) = (2, 1), and both Cn and Sn obey the recurrence,

ψn+1 = 4ψn − ψn−1. (4.6)

The relevant continued fraction expansion for
√

3 is,

√
3 = [1; 1, 2, 1, 2, . . .], (4.7)

with period-2 repeats. The tabulation of Cn and Sn, alternating with a related sequence-
pair, Tn and Dn (for half-odd-integer n) is given in Table 4 together with the corresponding
continued fraction expansion in the approximation to 1/

√
3. The justification for the inclusion,

and half-integer indexing, of the quantities Tn and Dn in Table 4 comes from observing that if
we formally define the ‘interpolated’ quantities,

Cn+1/2 =
Tn+1/2√

2
, (4.8a)

Sn+1/2 =
Dn+1/2√

2
, (4.8b)

then, for both full-integer and half-integer indices, n, we would find that the following Pell-like
recursions are satisfied:

Cn+1/2 =
√

2Cn − Cn−1/2, (4.9a)

Sn+1/2 =
√

2Sn − Sn−1/2, (4.9b)

and that now

C2
n − 3S2

n = (−1)2n, n=
1

2
, 1,

3

2
, . . . , (4.10)

which immediately gives us a larger range of ratios approximating
√

3 to choose from.
Figure 4 shows the two styles of Pell-based dodecagons analogous to the Type 1 and Type

2 octagons we showed in Fig. 3, except that now we find that the sequences derived from the
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TABLE 4. Pell sequences Cn and Sn obeying C2 − 3S2 = 1,
the related sequences, Tn and Dn obeying T 2 − 3D2 = −2,
and the corresponding continued fraction approximation

to 1/
√

3.

n Cn Sn Tn Dn continued fraction

0 1 0 0

1
= [0; ]

1

2
1 1 1

1
= [0; 1]

1 2 1 1

2
= [0; 1, 1]

3

2
5 3 3

5
= [0; 1, 1, 2]

2 7 4 4

7
= [0; 1, 1, 2, 1]

5

2
19 11 11

19
= [0; 1, 1, 2, 1, 2]

3 26 15 15

26
= [0; 1, 1, 2, 1, 2, 1]

7

2
71 41 41

71
= [0; 1, 1, 2, 1, 2, 1, 2]

4 97 56 56

97
= [0; 1, 1, 2, 1, 2, 1, 2, 1]

9

2
265 153 153

265
= [0; 1, 1, 2, 1, 2, 1, 2, 1, 2]

5 362 209 209

362
= [0; 1, 1, 2, 1, 2, 1, 2, 1, 2, 1]

11

2
989 571 571

989
= [0; 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]

C and S sequences (shown in red) interleave with those derived from the T and D sequences
(shown in blue). The integer aspect parameters (a, b) are interpreted, as before, as the lengths
of alternating sides of the Type-1 polygon parallel and oblique to the panel alignment. In
the present case, the panels are equilateral triangles whose sides define the ‘unit’ of distance.
By this measure, the Type-1 dodecagon’s sides are respectively a, and

√
3b, units parallel and

oblique to panel sides. Again, for the Type-2 polygon series, a measures radial map distance
from the polygon’s center to the vertices in the direction parallel to panels sides,

√
3b measures

distance to those in the oblique directions. It is convenient to index the Pellian dodecagons of
Type 1, starting from n= 0 (the hexagonal case), so that their aspect parameters are:

(an, bn) =

{

(Cn/2, Sn/2) : n even

(Tn/2, Dn/2) : n odd,
(4.11)

and the areas (in map panels) of the corresponding dodecagonal dihedra then become:

An =

{

12Sn+1 : n even
24Sn+1 : n odd.

(4.12)

For Type 2 dodecagons illustrated in panel (b), it is more convenient to begin the indexing
of the Pellian cases from n= 1 since, in this family there are no degenerate polygons. Thus,
the indexed parameter pairs, (an, bn) are defined:

(an, bn) =

{

(Tn/2, Dn/2) : n odd

(Cn/2, Sn/2) : n even
(4.13)

and the areas (in map panels) for the corresponding hexagonal antiprisms are:

An =

{

24Sn : n odd
12Sn : n even.

(4.14)
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[1,0]

[2,1]

[7,4]

[1,1]

[5,3]

[2,1]

[7,4]

[1,1]

[5,3]

(a)

(b)

Figure 4. Two sequences of progressively more regular dodecagons associated with the Pellian sequences.

By choosing members of these Pellian families for the dihedra and for the antiprisms, we
ensure that the polygonal half-domains, in each case, are as near to being regular polygons as
is possible for the given allowance of map panels. The other family of polyhedra whose aspect
parameters might advantageously be taken from the Pell pairs, (Cn, Sn) or (Tn, Dn), are the
hexagonal prisms; in this case, the choice of a Pell pair for the parameters (a, b) ensures that
the side faces of the prism are as close as possible to being square, if this is deemed desirable.

5. Continuous symmetrical polyhedral mappings to the sphere

Of all the continuous polyhedral mappings from the surface of the given polyhedron to the
surface of the sphere performed in such a way that the polyhedron’s symmetries are preserved,
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the conformal mapping is distinguished by being, in some sense the ‘smoothest’ mapping pos-
sible. Without the constraint of symmetry the conformal mapping solutions for any particular
polygon form a six-real-parameter continuous family related to one another through Möbius
transformations. A Möbius transformation is most easily described by its action on a point
of the sphere represented by that point’s polar stereographic image, z, in the complex plane,
where z = 0 denotes the pole antipodal to the projection center and the unit circle, |z| = 1,
is the image of the equator. Then the general Möbius transformation from one point on the
sphere, represented by z, to another, represented by z′, takes the form:

z′ =
az + b

cz + d
, (5.1)

where ad− bc 6= 0. Since a change of the complex parameters, a′ = wa, b′ =wb, c′ = wc, d′ = wd
for any complex scaling factor, w, leaves the transformation unchanged, the (real) dimensional-
ity of this kind of transformation is six (not eight). Transformations of this kind were proposed
by Schmidt (1977) as a way to provide enhanced resolution in a single region of interest, but
preserving the global model structure. For spectral models this is a particularly useful device
and is used by MeteoFrance’s Arpège model (Courtier and Geleyn 1988). If the images of any
three distinct points undergoing a Möbius transformation are given, then the Möbius transfor-
mation itself is uniquely specified. As we stated in Section 3, all of our griddable polyhedra
possess at least six fixed points (the two poles plus at least four points spaced 90◦ apart around
the equator), which is more than enough to guarantee that the symmetrical conformal mapping
from each surface to the sphere is unique.

The symmetrical conformal mapping solution provides the basis of all the grid constructions
we shall consider.

(a) Constructing a symmetrical conformal mapping

The defining equations of a conformal mapping are the Cauchy-Riemann (C-R) equations.
Although they are most familiarly written in the context of planar maps, we can adapt them to
the case of a mapping between two-dimensional Cartesian ‘map coordinates’, x = (x, y), and the
three-dimensional Earth-centered Cartesian position vector, X, for the spherical Earth of unit
radius. In association with the normalization constraint, the spherical C-R equations become:

X·X = 1, (5.2a)

∂X

∂x
=

∂X

∂y
×X, (5.2b)

but in this form they are numerically inconvenient to apply. It is more convenient to reformulate
these equations as an equivalent variational principle. We do this by minimizing the integral of
the dot-product of the residual vector of (5.2b) with itself, subject to the constraint of (5.2a).
This constrained minimum occurs when, and only when, the residual becomes the null vector
everywhere. Thus, we first expand (using the normalization condition and its derivative):

L(x) =

(

∂X

∂x
− ∂X

∂y
×X

)

·
(

∂X

∂x
− ∂X

∂y
×X

)

=
∂X

∂x
·∂X
∂x

+
∂X

∂y
·∂X
∂y

− 2

(

∂X

∂x
×∂X
∂y

)

·X. (5.3)
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We notice that,

∆(x, y) =

(

∂X

∂x
×∂X
∂y

)

·X, (5.4)

is just the mapping Jacobian, dA/da, where dA denotes the infinitesimal element of solid angle,
or area of on unit sphere, while da= dx dy denotes the element of map-domain area. Thus,

∫

∆(x)da= A = 4π, (5.5)

regardless of the mapping solution, X(x), provided it covers the unit sphere as a single-valued
continuous vector function. Therefore this term can be omitted from the variational integral
without changing the solution. Thus, introducing a Lagrangian multiplier scalar function, Λ(x)
associated with the constraint, (5.2a), we can write

2L = 2A +

∫

L(x) + (X·X− 1)Λ(x) da

=

∫

∂X

∂x
·∂X
∂x

+
∂X

∂y
·∂X
∂y

+ (X·X − 1)Λ(x) da. (5.6)

This variational principle was asserted by Purser and Rančić (1998) for the general conformal
solution, and generalized through the inclusion of additional terms designed to reduce the
areal disparities of the implied grid cells. (Since we are adopting an alternative mechanism for
achieving a qualitatively similar result in the next subsection, we shall be not concerned with
that generalization here. Other variational methods for general computational grid generation
problems are described in Thompson et al., 1985.)

The Euler-Lagrange equations resulting from stationary variations δL = 0 associated with
arbitrary variations of Λ(x, y) and X(x, y) respectively give us the conformal mapping con-
ditions equivalent to (5.2a) and (5.2b), but now in the much more convenient form of the
self-adjoint vector elliptic system:

∂2
X

∂x2
+
∂2

X

∂y2
= XΛ. (5.7)

constrained by (5.2a).
The solution of the conformal mapping need not be carried out explicitly for the entire

polyhedron – just a representative connected ‘minimal fundamental region’ which, through the
action of the symmetry group, generates congruent images covering the entire sphere. For
example, for the cube or the square dihedron, the minimal fundamental region is the 45◦

right-angle triangle forming one octant of a square face, bounded by three of the polyhedron’s
reflection-symmetry planes.

The multigrid method provides probably the most suitable practical method of solving the
conformal mapping problem for generic polyhedral geometries. Rančić et al. (1996), and Purser
and Rančić (1997), provide alternative extremely accurate Fourier-transform-based methods for
the cube and octahedral dihedron geometries, which can also be adapted to other polyhedra.
But since we shall be needing to use a similar multigrid structure in order to tackle the problem
of achieving more equitable mapping Jacobians, it is natural to use this versatile approach for
all stages of the grid construction.
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The idea underlying the multigrid method is to remove the residual errors, at a given scale,
in the interim solution to the elliptic problem on a grid whose scale of resolution is comparable
to that of the targetted residual; the remaining residual, which is recalculated, is then projected
onto a coarser grid and the process continued recursively. At the coarsest scale, the residual is
removed completely and rapidly, either by iterations or by direct solution, since the problem
size at this scale is small enough. The corrections are then progressively interpolated back down
to finer scales and the cycle of relaxation iterations is carried out again to achieve a further
level of error reduction, and so on until convergence is achieved. The situation is depicted
schematically in Fig. 5.

x

y

Figure 5. Schematic depiction of the telescoping multigrid structure around map singularity marked by the
asterisk. Involutory symmetries that have the singularity as a fixed point imply that it is generally not necessary
to completely surround the singularity with grid points; in this depiction one corner of one panel of a square grid

is depicted, as might be seen in the cubic or square-dihedron geometries.

In a case such as we have in these polyhedral mapping constructions, we have the additional
problem of the coordinate singularities to consider. Here also, the multigrid framework provides
a natural solution by allowing a succession of progressively finer nested grids to ‘telescope’
towards the singularity without being required to cover the whole of the solution domain. Thus,
if solving for the X(x, y) of the fundamental region of the cube, the telescoping portions of the
sequence cover progressively smaller triangular regions converging on the corner singularity.
The numerical finite-difference elliptic operator need only be applied to the outer 75%, where
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the solution is expected to be relatively smooth, whenever there is known to be a finer-resolving
grid-sequence that can take care of the innermost 25% at this stage. In this way, the problem of
accurately approximating the elliptic operator in the neighborhood of the singularity is deferred
until the telescoping grid has become sufficiently fine that the known asymptotic power law form
of the solution, adjusted only by an estimated constant scaling factor, can be substituted in
place of the problematic numerical finite-difference evaluation in the corner region of the finest
grid.

(b) A smooth generalization of the conformal maps that homogenizes the Jacobian

We use each polyhderon’s conformal solution as the starting point for a parameterized con-
tinuous spectrum of more homogeneous mappings with the same symmetry. The parameter,
τ , ranges between zero at the conformal extreme of this spectrum, to unity at the other ex-
treme where the mapping Jacobian, ∆(x, τ), becomes perfectly uniform. We envisage this τ
to be a time-like parameter and, according to this view, the ‘flow’ of mapping image vectors,
X(x, τ), is characterized by an irrotational divergent ‘velocity’, V(x, τ) = ∂X(x, τ)/∂τ , which
can therefore be identified with the gradient of an appropriate velocity potential, χ(x, τ).

In order to be sure of avoiding complications that can arise should the total map-area,

a=

∫

da=

∫ ∫

dx dy (5.8)

not be dimensionless, it is convenient to rescale and nondimensionalize this Jacobian,

∆̂(x, τ) =
a

4π
∆(x, τ), (5.9)

which must satisfy,
∫

∆̂(x, τ) da= a, (5.10)

for all τ , and tend continuously to ∆̂(x, 1) = 1 as τ → 1. Then

D(x, τ) =
∂

∂τ
ln ∆̂(x, τ), (5.11)

provides a natural kinematic definition of the ‘divergence’ which must itself satisfy the integral
consistency condition:

∫

∆̂(x, τ)D(x, τ) da= 0. (5.12)

The simplest consistent prescription for this divergence,

D(x, τ) =D′(τ) − ln ∆̂(x, 0), (5.13)

can be integrated as an ordinary differential equation for each separate x to show that,

∆̂(x, τ) = F (τ)
(

∆̂(x, 0)
)1−τ

, (5.14)
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does indeed evolve continuously towards unity at τ = 1. The normalizing factor needed to
maintain (5.10) is given by:

F (τ) =
a

∫

(

∆̂(x, 0)
)1−τ

da
, (5.15)

and is related to D′(τ) of (5.13) through

D′(τ) =
d ln(F (τ))

dτ
=

∫

ln[∆̂(x, 0)]∆̂(x, τ) da

a
. (5.16)

Note that
F (0) = F (1) = 1. (5.17)

The Poisson equation that connects our known divergence field, D(x, τ), to its corresponding
velocity potential, χ(x, τ), needs to be expressed in map coordinates. This is most easily
done by adopting full tensor notation (e.g., Kreysig 1991, Synge and Schild 1949) with upper
indices denoting contravariant components, lower indices denoting covariant components, and
an implied summation running over any paired upper and lower indices in any term. For the
present, we need only be concerned with the X-space covariant metric tensor, Gab, on the unit
sphere, where its components can be taken to form an identity matrix, Gab = δab in order to
yield the correct infinitesimal distance, ds, on the surface,

ds2 =GabdX
a dXb. (5.18)

(Although the components perpendicular to the surface seem already redundant, they do no
harm and it will actually be convenient to further generalize this metric off the sphere in Section
6 when we use geodesics to construct the oversets of the various grids.) The Jacobian operator
connecting the coordinate systems is:

Ja
i =

∂Xa

∂xi
, (5.19)

where now superscripts are to be interpreted as components, x1 ≡ x and x2 ≡ y, not exponents.
The x-space covariant metric tensor, gij , while not so trivial, is still easily obtained from the
Jacobian operator:

gij =GabJ
a
iJ

b
j, (5.20)

which inverts to give the contravariant representation of the metric, gij . These map-space
metrics are functions of both x and τ , of course. Thus, in x-coordinates, the contravariant
velocity vector is given from the as-yet unknown velocity potential via:

vi(x, τ) = gij(x, τ)
∂χ(x, τ)

∂xj
. (5.21)

The scalar mapping Jacobian, ∆, is equivalently the square-root of the determinant of the
representation gij . It, or else its rescaled counterpart, ∆̂, is needed to express the divergence of
the velocity in consistent tensorial form. Thus, by writing,

D(x, τ) =
1

∆̂(x, τ)

∂

∂xi
∆̂(x, τ)vi, (5.22)
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and substituting (5.21) we obtain the self-adjoint elliptic equation for χ that we need to solve
at each τ in order to advance the integration of the map-migration flow field. For clarity, we
omit the explicit dependence upon x and τ in the following equation, but note that every factor
of it does have this dependency:

1

∆̂

∂

∂xi
∆̂gij ∂χ

∂xj
=D. (5.23)

From the vi given by (5.21) we immediately obtain:

∂Xa

∂τ
≡ V a = Ja

iv
i, (5.24)

which allows us to advance the numerical integration of X towards a more homogeneous map-
ping.

At no point does the evolution prescribed above deviate from the symmetries of the original
polyhedron. By stopping at some predetermined vaue of τ we have precise control over the
degree of residual Jacobian-inhomogeneity we are prepared to tolerate. As with the conformal
mapping construction, we can fully exploit the symmetry by solving the equations only with a
gridded fundamental region much smaller than the entire spherical domain, and we can use the
multigrid approach, including the telescoping of ever-finer grids surrounding the singularity,
to minimize the spatial truncation error. The truncation error in τ can be reduced by an
appropriate combination of small numerical steps, ∆τ , and the adoption of a high-order ‘time’-
integration scheme.

One very important and distinguishing feature of the new approach to systematically ho-
mogenizing the mapping Jacobian in this way is that, like the starting conformal solution, the
finite-τ members of the family preserve a tractable asymptotic scaling of the solution around the
singularities. The dominant part of this scaling can be characterized exactly in power-law terms
dependent (apart from trivial scaling) only upon the angular deficit of the original polyhedron.
This does not seem to be a property shared by the variational area-smoothing procedures pro-
posed by Purser and Rančić (1998) and by Tomita et al. (2002). However, it is numerically
advantageous as it means that this accurate asymptotic solution can be substituted for an un-
reliable and inaccurate finite-difference evaluation in the immediate vicinity of the singularity
at the finest level of the telescoping multigrid solvers, both in the construction of the original
conformal mapping solution, and in any stage of the finite-τ generalization of it. The accuracy
of those respective solutions is never compromised by having the elliptic operators’ differencing
stencils intersecting the singularity. This is because, at any level of the telescoping multigrid
hierarchy, if there is a grid point where the vertex interferes with the elliptic operator’s stencil
centered on that grid point, the solution-relaxation there is only used to accelerate the residual
reduction deriving either from a finer-grid diagnostic (where the grid point at the same loca-
tion is out of range of direct interference), or from the extremely accurate asymptotic solution
directly (only when the point is very close to the singularity). Metaphorically, the asymptotic
solution around the singularity serves as the ‘keystone’ guaranteeing the integrity of the multi-
grid solution at every interdependent member of the telescoping sequence of grids. Recognizing
its importance, we devote the following subsection to an analysis of this asymptotic behavior.

(c) Asymptotic scaling near a vertex
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At τ = 1 a configuration is obtained that satisfies the desideratum of areal uniformity ex-
actly since, at this time, ∆(x, 1) is constant and the mapping is of the perfectly equal-area
type. But each intermediate τ is also associated to a particular grid configuration which, while
still possessing singular behavior at each vertex, has a scaling about this vertex which is char-
acteristic of the parameter τ and of the initial scaling (at τ = 0). The process is begun from the
conformal solution, whose scaling is already predictable according to the angle-deficit at this
vertex. If the angle deficit in radians is 2πγ, then the scaling of the true radial distance R(r, 0)
from the singularity with respect to the conformal map’s radial distance, r = (x2 + y2)1/2, takes
the form:

R(r, 0) ≈K(0)rp(0), (5.25)

for some constant, K(0), that must be obtained by examination of the particular conformal
mapping solution, and the positive exponent, p(0), that depends purely on the angular deficit
by:

p(0) =
1

1 − γ
. (5.26)

For example, for a cube with angle deficit γ = 1/4 the scaling near the vertex for the conformal
case is:

R(r, 0) ∝ r4/3, (5.27)

while for the icosahedron, with γ = 1/6 it is:

R(r, 0) ∝ r6/5. (5.28)

At intermediate stages of the migration process, the progressively weakening singularity, seen at
a distance close enough to the singularity for the anisotropic effects of the divergent advecting
field to be negligible, scales like:

R(r, τ) ≈K(τ)rp(τ), (5.29)

for some scaling coefficient, K, and some exponent, p, which both depend only upon τ . Factor-
ing in the angular deficit for the map domain around the singularity at r = 0 we deduce that
the Jacobian, ∆, in this vicinity behaves asymptotically for r→ 0:

∆(r, τ) ≈ 1

1 − γ

R

r

∂R

∂r
= p(0)p(τ)K2(τ)r(2p(τ)−2), (5.30)

and its logarithm:

ln ∆(r, τ) ≈ ln(p(0)p(τ)) + lnK2(τ) + (2p(τ) − 2) ln r. (5.31)

Recalling the kinematic definition of divergence, (5.11), we obtain:

D(r, τ) ≈ d

dτ

(

ln(p(0)p(τ)) + lnK2(τ)
)

+ 2
dp(τ)

dτ
ln r, (5.32)

which must match the asymptotic form of the prescription, (5.13). Using (5.16) this may be
expressed:

D(r, τ) ≈ d ln F (τ)

dτ
+ ln

(

4π

a

)

− ln p2(0) − lnK2(0) − 2γ

1 − γ
ln r. (5.33)
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Matching coefficients for the dominant term, ln r, we find:

dp(τ)

dτ
= − γ

1 − γ
, (5.34)

which, with (5.26), implies:

p(τ) =
1 − τγ

1 − γ
. (5.35)

Matching the remaining terms independent of r:

d

dτ

(

lnK2(τ) + ln(p(0)p(τ)) − ln F (τ)
)

= − ln p2(0) − lnK2(0) + ln

(

4π

a

)

. (5.36)

Thus,

lnK2(τ) + ln(p(0)p(τ)) − ln F (τ) = C + τ

[

− ln p2(0) − lnK2(0) + ln

(

4π

a

)]

, (5.37)

where the integration constant, C, is isolated by setting τ = 0:

C = ln p2(0) + lnK2(0), (5.38)

whence,

K2(τ) =
p(0)

p(τ)
F (τ)K2(0)

(

4π

ap2(0)K2(0)

)τ

. (5.39)

For the uniform-Jacobian solution,

K2(1) =
4πp(0)

a
=

4π(1 − γ)

a
. (5.40)

If, for example, numerical methods are perfected for the spherical cube geometry associated
with some values of τ , the same methods should work well on any of the spherical ‘octagons’
(Purser and Rančić, 1998) constructed with the same parameter τ , since the angle deficits, and
hence the scalings near the singularities of the conformal cube and octagons, are identical.

The time-dependent migrating velocity field, V, may or may not vanish at each vertex
depending upon whether the symmetry group implies the vertex to be a fixed point. The vertices
of only Figs. 1(a), (c), (e), (f), and (k), have this property. In the other cases illustrated, the
velocity may translate the vertex itself. Nevertheless, if we redefine the V locally to represent
velocity relative to that of the vertex, then the scaling of this relative velocity sufficiently close to
the vertex will tend to be dominated by the singular portion of the purely radial component. In
order to study the scaling of this advecting ‘migration flow’, whose azimuthally-averaged radial
component will be denoted V , we shall need to express the approximate divergence operator
applied to this velocity near r = 0:

D ≈ 1

R

∂

∂R
RV ≈ 1

pKr(2p−1)

∂

∂r
rpV. (5.41)
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But we know from (5.16) and (5.33) that the asymptotic form of the divergence at r→ 0 has
the dominant term:

D(r, τ) ≈− 2γ

1 − γ
ln r, (5.42)

Integration gives V (r, τ) directly:

V (r, τ) ≈− γ

1 − γ
K(τ)rp(τ) ln r, (5.43)

or briefly:

V ≈− ṗ
p
R ln (R/K) , (5.44)

where,

ṗ≡ dp

dτ
. (5.45)

We relate this asymptotic approximation, V , to the radial gradient of a velocity potential
χ, which is approximately a function of r or of R locally:

V ≈ ∂χ

∂R
≈ 1

pKr(p−1)

∂χ

∂r
. (5.46)

Since we know from Section 3 that all vertices are equivalent with respect to the symmetries
of the polyhedron’s group (except for the polyhedron of Fig.1(ℓ) to which it is inappropriate
to apply this area-homogenization in any case), it is consistent to adopt the convention that χ
vanishes at each vertex. Again, by a direct integration we find that:

χ(r, τ) ≈−
(

γ

1 − γ

)

K2(τ)r2p(τ)

2
ln r, (5.47)

or briefly:

χ≈− ṗ
p

R2

2
ln (R/K) . (5.48)

With the assumption that the telescoping multigrid’s innermost and finest grid domain fits, in its
entirety, within a tiny radius of the singularity where the asymptotic solutions for both X(x, τ)
(deduced from R(r, τ) assuming local isotropy) and χ are extremely accurate approximations,
we substitute them as alternatives to finite difference-derived solutions. Thus, we avoid ever
having to rely on the accuracy of such finite differences anywhere near the coordinate singularity
in both the elliptic system for the conformal solution and, where applicable, in the evolving
series of solutions for χ(τ).

6. Overset modifications of the smoothed grids

This section considers the problem of removing the remaining numerical defects associated
with the grid singularities. A procedure is proposed here, valid for all but one of the grids
we have considered, that preserves the perfect continuity and smoothness of these grids across
at least those central portions of the edges between the square or triangular map panels that

30



are not in the immediate vicinity of the original map singularies. But we recognize that, near
the singularities themselves, the only successful remedy involves some judicious grid surgery,
followed by a local stretching applied at both sides of each incision, in order to restore to
each piece a more natural corner angle. Each incision always runs out from the vertex along
a pair of edges between map panels and, collectively, the orientations of these cuts is chosen
to maximize the order of the group of orthogonal symmetries of the configuration as it is
modified by such cuts. The choice is clearly not always unique, but examples conforming to this
principle are depicted in Fig. 1 by the bold segments radiating from each of the angle-deficient
vertices that are visible on these half-shells. The configuration of cuts is also assumed to remain
mirror-symmetric about the plane dividing the half-shell from its complement. The two actual
(geographical) vertex angles formed by these angled cuts sum to 360◦, requiring either that
both are 180◦there, or that one of them exceeds this amount. The natural grid angles, however,
never exceed 180◦and are never both this amount either. The remaining singular feature of the
smoothed grids is their pronounced and unbounded curvature around these offending vertices;
it is this feature that is remedied by a stretching of the two locally separated sides of the grid
into an overlapping configuration, restoring angles on each side that have their natural locally
convex shape.

-1.0 -0.5  0 0.5 1.0

-1.0

-0.5

0

0.5

1.0

Figure 6. A portion of the conformal cubic grid showing a disc within which the grid will be divided into two
discontinuous pieces and reconstructed to remove the central singularity.
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For some of the grids shown in Fig. 1 the overall symmetry is not altered by the introduction
of these incisions and the overlapping that follows. But, for the highly symmetric polyhedra of
panels (a) (the cube), (e) (the icosahedron), (f) (the regular octahedron), and (k) (the regular
tetrahedron), the inclusion of cuts necessarily results in a lowering of their symmetries. The
symmetry characteristics of these original and modified polyhedral grids are summarized in
Tables 1 and 2. It is also noteworthy that, for all the configurations with angle-deficits of
γ = 2/6, i.e., those of Fig. 1(f) and (h), the set of cuts could just as consistently have been
chosen in the orthogonal sense to that depicted, without changing the symmetry characteristics
at all. Another interesting example is the modified cube. In the modified configuration shown in
Fig. 1a, the ‘Yin-Yang’ grid is obtained. An alternative would be the ‘barrel grid’ with two polar
domains and an intervening cylindrical domain, which is essentially the same topology as the
three-grid configuration of grids used in the present global Grid-point Statistical Interpolation
(GSI) by which NCEP performs its operational assimilations (e.g., Wu et al. 2002).

Regardless of the angle deficit, γ, or the global symmetries about a given vertex, the incisions
that straddle the vertex will always have a unique transverse axis of local mirror symmetry in
the map space there. In the cases where the angle deficits are of either types 2/4 or 2/6, the
incisions are made to share equally the angle deficits (relative to a half-circle) between the two
sides of the cut; in the other cases the cuts separate an odd number (one or three) of panel
corners on one side from an even number (two) on the other. We shall assume grid configurations
in which the grid lines run parallel (in map space) to the edges of the map panels. When two
map panels meet at the cut, the symmetric bisector through the corner is their common edge
and lines parallel to it in grid space are therefore members of the family of curves that define
one of the two horizontal grid coordinates.

If we consider the horizontal metric geometry in which Cartesian distance in map coordinates
defines the effective metric (and an implied space that is therefore Euclidean except at the
isolated vertex singularities), then all the grid lines can be thought of as geodesics of this
particular geometry. This is an intrinsic property of the metric space and remains true even
though the metric may be expressed, in tensorial form, in geographical coordinates, or any other
smoothly transformed coordinate set. As is well known from standard differential geometry
(e.g., Kreysig 1991, Synge and Schild 1949) a geodesic may be extended through space by
integrating the second-order equation:

d2Xa

dt2
= −Γa

bc

dXb

dt

dXc

dt
, (6.1)

where t is a parameter of the geodesic ‘trajectory’ and,

Γa
bc =GadΓd bc, (6.2)

with

Γd bc =
1

2

(

∂Gdc

∂Xb
+
∂Gdb

∂Xc
− ∂Gbc

∂Xd

)

, (6.3)

and contravariant tensor, Gad, being the matrix inverse of Gab. Γd bc and Γa
bc are coordinate-

dependent non-tensors known as the Christoffel symbols of the first kind, and second kind,
respectively.
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The minor problem we have to address is that this prescription for the geodesic requires
the metric tensor to be differentiated with respect to all three coordinate directions, whereas
the metric defined in Section 5 assumes only that the metric tensor exists on the unit sphere.
However, taking

R2 = X·X, (6.4)

we can generalize the metric used in (5.18), without altering its trivial prescription over the
unit sphere, so that it exists for any finite X:

Gab =
δab

R2
. (6.5)

If we were to transform to spherical polar coordinates such that,

X1 = R cos φ cos θ, (6.6a)

X2 = R cos φ sin θ, (6.6b)

X3 = R sin φ, (6.6c)

then the Riemannian infinitesimal metric distance, ds, would be found to be:

ds2 = (cos2 φ dθ2 + dφ2) +

(

dR2

R2

)

. (6.7)

The angle variables appear only in the first parentheses and the radial variable appears only
in the second. This full separability implies that t-parameterized geodesics that are initially
tangent to a sphere, dR/dt = 0, are confined for all t to the same sphere. Moreover, by the
invariance of the metric to rotations, these tangential geodesics are necessarily great circles.
We can write the components of the Christoffel symbol implied by this choice of metric:

Γa
bc =

1

R2

{

δbcX
a − δa

c δbb′X
b′ − δa

b δcc′X
c′
}

(6.8)

We also need to construct another metric, Ĝab, such that the straight lines of the developed
map, when transformed to their mapping images on the unit sphere, are geodesics with respect
to this metric. We start by formally augmenting the map coordinates to three dimensions:

x≡ (x1, x2, x3)T ≡ (x, y, z)T, (6.9)

where z = 0 corresponds to the unit sphere, for which the transformation to X is already
assumed known, and where now:

X(x, y, z) = X(x, y, 0) exp(z) (6.10)

so that z = ln(R). The Jacobian operator, J = ∂X/∂x, now has a full 3 × 3 matrix representa-
tion which we can express in terms of its columns in the style:

J =

[

∂X

∂x
,
∂X

∂y
,
∂X

∂z

]

=

[

∂X

∂x
,
∂X

∂y
,X

]

(6.11)

33



with determinant,

∆ = |J| =
(

∂X

∂x
×∂X
∂y

)

·X (6.12)

and an inverse,
∂x

∂X
≡ H = J

−1 =

[

1

∆

∂X

∂y
×X,− 1

∆

∂X

∂x
×X,

1

R2
X

]T

. (6.13)

In x-space, a metric tensor satisfying our requirements is simply:

ĝij = δij , (6.14)

which therefore transforms to X-space as the covariant metric:

Ĝab =H i
aH

j
bδij , (6.15)

or the contravariant metric:
Ĝab = Ja

iJ
b
jδ

ij . (6.16)

Since, in x-space, a geodesic of this metric must satisfy d2
x/dt2 = 0, we can deduce that, in

X-space, it obeys:

d2Xa

dt2
= Ja

ij

dxi

dt

dxj

dt

= Ja
ijH

i
bH

j
c

dXb

dt

dXc

dt
, (6.17)

where

Jd
ij =

∂2Xd

∂xi ∂xj
, (6.18)

and hence that the X-space Christoffel symbol of the second kind is:

Γ̂a
bc = −Ja

ijH
i
bH

j
c. (6.19)

We will seek to smooth and stretch the grid on either side of an incision at each vertex by
reconstructing the mapping of a special family of ‘straight’ map lines, within a small radius of
each vertex, as ‘trajectories’ that obey a modification of the geodesic equation that involves
blending the two Christoffel symbols, Γ and Γ̂. In order to do this smoothly and consistently,
we need to introduce a blending ‘weight’ function.

For 0 ≤ λ≤ 1, let rλ define the radius of a disc in map space, such that the diameter,
2rλ is λ times the smallest distance between any pair of map singularities. (The largest non-
overlapping discs centered at each vertex correspond to λ= 1.) Define a smooth weighting
function, w(r/rλ), of the map-distance, r, to the nearest vertex with the properties:

(i) w(ρ) = 0 when ρ= 0 and w(ρ) = 1 when ρ≥ 1;
(ii) w(ρ) is analytic in the open interval, ρ ∈ (0, 1);
(iii) At least the first few derivatives vanish at ρ= 0 and at ρ= 1.
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While the various polynomial ‘incomplete Beta functions’ qualify as candidates, this option
would involve an arbitrary choice from this family of distributions and, at some degree, the
derivatives then cease to remain continuous. If instead we define,

w(ρ) =
1

K

∫ ρ

0
exp

(

− 1

ρ′(1 − ρ′)

)

dρ′ (6.20)

where K is the normalizing constant, then we shall have fulfilled the above condition (iii) for all
degrees of derivatives. The normalizing constant is easily computed by numerical quadrature,
but formally evaluates to the Whittaker function (Wang and Guo, 1989):

K =
1

2
e−2√πW

−
1

2
,− 1

2

(4)

≈ 0.0070298584066096523924127, (6.21)

where the latter is defined

W
−1/2,−1/2(4) =

1√
π

∫

∞

1/2

1

e4t(t− 1/2)1/2(t+ 1/2)3/2
dt. (6.22)

Now consider the behavior of trajectories on the unit sphere near a vertex map point that
we shall make the origin, 0, of our x-coordinates. We suppose that the trajectories obey the
modified geodesic equation,

d2Xa

dt2
= −Γ̃a

bc

dXb

dt

dXc

dt
, (6.23)

where,

Γ̃a
bc = Γa

bc + w(r/rλ)
(

Γ̂a
bc − Γa

bc

)

. (6.24)

Tangency to the unit sphere is preserved by this modification. Outside the ‘intervention disc’
the trajectories are the X-space images of the straight lines of the map. But inside the disc, the
curvature of the trajectories is diluted, especially very close to the center where, in the limit,
|x| → 0, the trajectories ‘straighten out’ effectively to segments of great circles. For finite λ the
curvature of such trajectories remains bounded.

Apart from the exceptional polyhedron of Fig. 1(ℓ) the existence of a symmetry plane
through each polyhedron vertex defines a bilateral symmetry axis of the map through 0 and
this is either aligned with the map-space coordinate grid or is a diagonal of the grid. For the
polyhedral configurations with angular deficit γ = 1/4 or γ = 1/6, the axis is parallel to the
grid on one side of the singularity, and diagonally oblique to it on the opposite side. In either
case, we shall refer to the two families of straight lines of the map parallel to each branch of the
symmetry axis, as ‘meridians’. The modification of the trajectories allows us to redefine the
meridians by integrating them via (6.23) inward and partially through the disc of intervention
from both directions. The two families of meridians remain unperturbed from their respective
original course outside the intervention disc, but each family now passes smoothly over the
original singularity, 0, without member meridians crossing one another until they have passed
a safe distance beyond the singularity (whereupon they intersect in a configuration of caustics).

The map panel corners that meet one side of the nominal dividing incision can collective
have a total angle (in map space) at the vertex of either 180◦, 120◦, 90◦ or just 60◦. The case
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Figure 7. An example of meridians (in red) integrated from the right towards the left through the disc of
intervention, and 45◦ rhumb lines (in blue) intersecting these meridians. Although singularities eventually occur
as the meridians are integrated, they occur in caustics far enough beyond the original singularity to be considered

outside the eventual finite difference grid.

(‘case-1’) where this angle is 180◦ is special since it is the only case in which the incoming edge
segments (two square corners or three triangle corners) of this piece should merge smoothly as
one continuous curve. The other examples, which we refer to collectively as ‘case 2’, have these
edge segments coming together at the vertex and crossing each other transversally when this
piece of the map is extrapolated. We treat case 1 first as follows.

(a) Case 1

The new meridians redefine the coordinate grid lines labeled by, say, ‘y’. The transverse
family of grid lines, i.e., those of constant ‘x’, that become (in map space) parallel to the overset
incision, are constructed by a different procedure, since it is necessary not only that they be
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smooth near 0, but that they properly match up with the old grid lines on both sides of the
symmetry axis outside the intervention disc. In this case we use the following modification of
the idea of ‘rhumb lines’.

A rhumb line, or ‘loxodrome’ is a curve passing though a family of nonintersecting meridians
at a constant angle of intersection. Let us suppose that the coordinate grid we are modifying
is that of a conformal mapping where the original Cartesian grid lines in x-space formed an
orthogonal curvilinear gridding in X-space. We would obviously want to preserve this orthogo-
nality for a rectangular gridding of the map, even in the intervention disc, so the use of rhumb
lines with orthogonal intersections would accomplish this. The construction of a rhumb line
by integration would seem to be an asymmetrical process (we have to start from one side or
another) but the existence of bilateral symmetry guarantees that the lines transverse to the
meridians continue to respect this symmetry and join up properly outside the intervention disc.

Now suppose that the mapping we are generalizing with oversets is one that is not confor-
mal, but rather one of the type, with nonvanishing τ , described in Section 5. In this case, the
transverse intersections in the unmodified x-coordinate grid involve variable angles of intersec-
tion in X-space and are not strictly describable as rhumb lines. In this case, for each modified
x-labeled rhumb line, we construct a quantity we call the ‘obliquity’, q, defined as the cosine of
the angle of intersection. In the unmodified gridding, this obliquity is recorded, for each (x, y)
in the vicinity of the singularity as

q(x) =

∂X

∂x ·∂X

∂y
∣

∣

∣

∂X

∂x

∣

∣

∣

∣

∣

∣

∂X

∂y

∣

∣

∣

. (6.25)

Except in the conformal case (where it vanishes) q(x) is not a smooth function of x at the
singularity. But if we construct,

q̂(x) = w(|x|/rλ)q(x), (6.26)

then q̂(x) is certainly smooth, and continues to respect the mapping symmetries. Since, in the
case we are presently treating, the family of meridians are destined to become the isolines of
the new coordinates, ŷ, but their ‘time-like’ parameter, t, is not generally the corresponding
final x̂ coordinate, we shall conveniently refer to locations on this family of meridians using the
temporary mapping coordinates, x̃≡ (x̃, ỹ), where ỹ = ŷ corresponds to the original coordinate,
y, before the trajectory is modified in (and beyond) the intervention disc, x̃ corresponds to the
original coordinate x, before the onset of intervention and where the synonym, x̃= t, makes
for notational consistency. The new family of coordinate lines transverse to the meridians of
constant ŷ will each be labeled by their unique x̂ matching the original x outside the region
of influence of the intervention disc, and they will be generated as pseudo-rhumb lines that, at
each location (x̂, ŷ) of the new coordinate-pair, have a cosine of intersection with the meridians
given by q̂(x, y). The construction of such pseudo-rhumb lines is as follows.

Let X(x̃) denote the location of the meridian labeled ỹ where t along the trajectory attained
the value x̃. It is easy to show that the direction of the pseudo-rhumb lines must be given by

V =
∂X

∂x̃
q̂ + X×∂X

∂x̃
(1 − q̂2)1/2. (6.27)
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Therefore, we integrate the pseudo-rhumb trajectory according to:

∂X(x̂)

∂ŷ
= Vp, (6.28)

and seek the p such that, fixing x̂,
dỹ

dŷ
= 1. (6.29)

The value of p that satisfies this condition can be shown to be

p=
X×∂X

∂x̃ ·∂X

∂ỹ

X×∂X

∂x̃ ·V
. (6.30)

Finally, the symmetry of the geometrical configuration about the axis, ŷ = ỹ = y = 0 is pre-
served, which guarantees that the pseudo-rhumb lines traversing the meridians deviated by the
disc of intervention emerge smoothly coincident with the original mapping’s corresponding lines
of constant x.

(b) Case 2

In this case, the meridians are defined exactly as before, except they are not themselves
destined to become straight lines of the final map. Instead they are employed merely to provide
the orientation of two families of pseudo-rhumb lines – one family being parallel to the edge of
this piece of the map on one side of the vertex and the other family the mirror image of the first.
Also, since the ‘ideal’ angle of map intersection with the meridians is, in this case, no longer a
right angle, we must generalize the formula for the prescribed obliquity of these intersections:

q̂(x) = q0 + w(|x|/rλ)(q(x) − q0), (6.31)

where the ‘ideal obliquity’ of the map is q0 = ±1/2, ±
√

2/2, ±
√

3/2, as this incision-bounded
map piece subtends, 120◦, 90◦, or 60◦, respectively, at the vertex, the sign being determined by
the side of the symmetry axis from which the incoming pseudo-rhumb lines are coming. In this
case, the symmetric pair of families of pseudo-rhumb lines do include the newly modified grid
lines associated with this side of the overset. For the square-griddable polyhedra, this construc-
tion continues to ensure that the modification of the conformal version of each grid preserves
the orthogonality of the intersections of these new coordinate lines, although the aspect ratios
of the grid cells are not generally unity – the overset grids are rectangular-orthogonal but not
square-orthogonal, in other words.

(c) Special oversets modifying conformal grids

In Section 5 we discussed the universal characteristic scaling of the various vertex singu-
larities at their different stages of migration labeled by τ , where the scaling pertained to the
immediate neighborhood of each vertex. But we can imagine that, for each such grid, there
is another ‘ideal’ plane mapping in which the scaling about the image of the vertex becomes
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Figure 8. A corner of the reconstructed, formerly conformal, grid showing the symmetrical pair of 45◦ rhumb
lines whose guiding ‘meridians’ have now been removed. The grid that remains is clearly still orthogonal but
the grid cells are manifestly not ‘square’ in their proportions within the disc of intervention. The original panel
boundary (which formerly met the singularity) is modified to the inner heavy blue angled line; the outer heavy

blue angled line depicts a possible boundary of the extended grid with the additional margin.

perfect out to any finite radius. In this mapping the distortion of the grid map becomes rota-
tionally symmetric and the radius, R in this ideal plane scales with map-radius r like (5.29),
except without any error of approximation at finite r:

R=Krp. (6.32)

If α is the azimuth (about the vertex) in map space, so that Cartesian map coordinates here are
given by (x, y) = (r cos α, r sin α), and if β is the azimuth in the ideal plane, so that Cartesian
coordinates there are given by, (X, Y ) ≡ (X1, X2) = (R cos β, R sin β), then we also have the
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correspondence, independent of the migration stage τ :

β = qα. (6.33)

Just from these exact scaling rules, it is possible now to construct the effective metric tensors, the
Christoffel symbols analytically (with a constant scale factor) and thus, to perfectly reconstruct
the images of all the grid lines in the ideal plane as geodesic trajectories. The singular behavior
of the grid in the vicinity of the vertex is now seen to be a direct consequence of the unboundedly
large components of Γi

jk there. Note also that, implicitly, we have defined a unique mapping
between the ideal plane and the finite neighborhood of the vertex’s image on the sphere, since
the mapping to the sphere for the chosen grid topology and τ values was established to be
essentially unique by the migration procedure described in the previous section.
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Figure 9. The overset configuration showing both pieces of the modified conformal cubic grid now overlapping
within the disc of intervention.
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Thus one is tempted to forgo the three-dimensional constructions of meridians and pseudo-
rhumb lines in favor of the alternative corresponding construction in this ideal planar repre-
sentation of the vertex neighborhood. In the case of the conformal mappings there should be
no problem with this approach but it unfortunately fails to guarantee a strictly smooth recon-
struction of the mapping in the case of the migrated-grid solution (positive tau) in the overset
regions because the anisotropic components of the map-migration field of Section 5 produce a
singularity which does not purely comprise the power-law scaling of this idealization (although
it is certainly the dominant component). However, these is no objection to using this approach
in the case of the conformal maps. In that case, the idealized solution for the conformal map
is conveniently obtained by letting r in (6.32) be a complex number representation of the map
point, R the corresponding complex number represention of the point on the earth to which it
maps, where the coordinate origin of both spaces is the vertex. Since ĝij remains the trivial
metric in r-space, the parameterized geodesics obey d2r/dt2 = 0, which translates to,

d2R

dt2
= γ

1

R

dR

dt

dR

dt
, (6.34)

for the angular deficit parameter, γ, and hence, the role of the Christoffel symbol, Γ̂, is here
played by the complex function,

Γ̂ = − γ

R
. (6.35)

In place of the ‘great circle’ geodesics of the metric Gab we have, in this idealization, straight
lines in R-space, and so we can take the effective Christoffel symbol, Γ, of this metric to vanish.

Having constructed the geometry of the overset portions of the grid in this idealized complex-
number framework, it is straightforward to embed it back into the spherical domain with the
scaling of the disc of intervention chosen by λ as before. But now we are not dependent upon
the existence of an axis of bilateral symmetry passing through the original mapping singularity,
so this construction can be applied to modify with oversets the conformal version of the Yin-
Yang mapping associated the polyhedron of Fig 1. We are also able to use the complex variable
method to align the axis of an overset of any one of the other polyhedral mappings so that this
axis does not coincide with a symmetry plane of the polyhedron itself.

An interesting and potentially valuable application of this new freedom is to the construction
of an overset modification of the conformal isocahedron gridded, not with the obvious triangular
subdivision of the faces, but with an oblique and approximately square grid whose ∆x and ∆y
grid increments are taken to form one of the ratios suggested by the Pell sequences described
in Section 4. Figure 10 shows the developed map of such a grid geometry, with the oblique
alignment chosen to keep the equator close to one of the continuous grid lines, and with the
Pell ratio 4 : 7 chosen to approximate 1 :

√
3. The oversets in this case appear in four copies of

a pattern that radiate from a coincident trio of map grid points in the interior (but not at the
center) of one of the icosahedron’s triangular faces, extending directly in the three directions
to the three nearest surrounding vertices, and then slightly beyond in the usual way. Within
the intervention discs, the oversets are constructed by the complex variable method, but now
suitably rotated about each vertex to align with the rectangular grid, rather than any axis of
polyhedral symmetry. Also, in this special case, the reconstruction of the grid lines as pairs
of crossing rhumb lines (on the ‘case 2’ side of the overset cut) the two families of rhumb
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line are no longer symmetrical – they cut the meridians at two different angles. Nevertheless,
these angles are such that the rhumb lines of one family continue to cut those of the other
at right angles, thereby preserving the orthogonality of the rectanguler grid. Immediately
around the triple junction of the nominal oversets, the three involved grid pieces are perfectly
smooth conformal mappings that, in map space, are just 120◦ rotations of each other. The only
additional complication, and it is only a minor one, is that this configuration implies is that
the interpolation and merging of solutions here must involve a three-way blending of solutions.

Figure 10. An example of the use of the solutions of the Pell equation, C2 − 3S2 = 1 to construct a quasi-square
rectangular gridding of the regular icoshedron mapped to the surface of the Earth. The mapping combines the
advantage of minimal distortion (owing to the adoption of the icosahedral geometry) and numerical convenience
associated with the rectangular lattice. The Pell solution allows the two Cartesian resolutions to be approximately

equal (for the C = 7, S = 4 Pell solution shown here, the disparity is only about 1%).

7. Discussion and conclusion
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We have described a set of twelve polyhedral types that appear to allow useful square or
triangular griddings, and we have introduced a set of standardized techniques by which the
grids associated with these geometries can be forged into practical computational lattices on
the surface of the sphere. The process can be summarized as follows:

(i) The selection of the suitable polyhedron (which may include the specification either of
two integer aspect parameters, (a, b) or of an equivalent ‘Pell index’, in the case where the
specific polyhedron belongs to a family of a given type);

(ii) The construction of the conformal spherical mapping respecting the polyhedron’s sym-
metries;

(iii) The optional ‘map migration’ to smooth out the inequities of the Jacobian of the
mapping, applied to the degree prescribed by the nonnegative real parameter τ ≤ 1;

(iv) The optional ‘oversetting’ procedure to remove the mapping singularities associated
with the polyhedral vertices, with the fraction of the segment between neighboring vertices
lying within the disc of intervention being parameterized by the nonnegative real λ≤ 1.

We have provided an outline of the telescoping multigrid structure we need in performing
the stages (ii) and (iii) above, and which can help with the accurate resolution of mapping
details near the singularities when they are removed in stage (iv).

The methods proposed are standard across all sufficiently symmetrical and griddable poly-
hedra. Because they are defined with mathematical precision by discrete symmetry and aspect
indices, and just two continuously-adjustable real parameters (the area-smoothing parameter,
τ , and the optional overset size parameter, λ), it is possible to carry out the mappings, ‘on
demand’ using a single generic computational procedure that applies to all of the geometries
depicted in Fig. 1(a)–(k), whose vertices each lie on a plane of dihedral symmetry of the polyhe-
dron. Although the options are more restricted in the less symmetrical example exhibited by the
polyhedron of Fig. 1(ℓ), even here it is possible to construct the unique symmetry-preserving
conformal grid (τ = 0, λ= 0), or an orthogonal overset grid variant of it (λ > 0) according to
the procedure set out in section 6c.

When the overset option is exercised (λ > 0) and the vertex singularies are removed from
the computational grid, there is a need to carry out interpolations and blending of solutions
in the regions of overlaps. Our overset construction differs from others that have been de-
scribed (Phillips 1957, Starius 1980, Browning et al. 1989, Kageyama and Sato 2004) in that,
for a λ < 1 where the discs of intervention certainly do not touch, there remains between the
neighboring vertices edge mid-sections across which the grid remains perfectly smooth and con-
tinuous. Obviously, this implies the computational advantage that these is no need for mutual
interpolation and blending between grid solutions here, reducing the amount of computation
in a model needed at each time step. But it also means that, in a model whose numerics enjoy
certain inherent conservation principles by virtue of the construction of the finite difference
formulation, the places where this conservation is formally lost through the overset solution
reconciliations are relatively small and isolated regions. Then a form of ‘constraint restoration’,
applied only, and separately, within each disc of intervention might be more effective than its
more usual, scatter-shot, global application (e.g., Priestley 1993).

The oversetting methods described here are strictly local modifications to the grid, confined
within a specified disc surrounding each vertex. In the cases where the map migration stage
(partially of fully equalizing the absolute map Jacobians) is omitted, we have shown that it is
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possible to ensure that, even in the overset regions where the grid is modified, the modification
can be made to preserve perfect orthogonality for rectangular grids. The question that comes to
mind is: can another oversetting procedure produce grids that remain, not just orthogonal, but
fully conformal? This is formally possible by exploiting the concept of a ‘Riemann surface’ of
complex analytic function theory to produce a suitable overlap at points arrived at by paths from
a common origin that pass on opposite sides of one of a pair of ‘branch points’ approximately
straddling the location of the original vertex. For the geometries of sufficient symmetry, the
pursuit of the fully conformal solution to the oversetting problem should prove numerically
advantageous, as it allows almost any regional grid point model, whether employing a square
or a triangular grid, to be globally generalized with virtually no change whatsoever needed in
its core numerics. Unlike the solutions described here, such fully conformal oversets involve
adjustments to the unadorned conformal mapping grid that can no longer be confined within
the bounds of finite-radius vertex-centered discs – a fully conformal solution is necessarily global
and can, in principle, be reconstructed (by analytic continuation) in its entirety from even the
smallest finite fragment of it. A description of the special generation procedures entailed is
beyond the scope of this note but will be comprehensively described in a sequel.

A variant of the same special procedure of section 6c applied in a non-standard way to the
conformal icosahedron even allows a rectangular (but almost square) and perfectly orthogonal
smooth overset grid to be constructed within the global icosahedral framework (Fig. 10). The
proportions of the rectangular grid involve the Pell theory of section 4 in order to ensure
that the grid conforming to the equilateral triangular panels closely approximates a square
grid. Although the resulting oversets are more extensive than those of the other geometries we
have considered, this example shows that the admirable mapping efficiency and low distortion
possessed by the icosahedral geometry can, in principle, also be enjoyed by a model framed
within the more conventional orthogonal rectangular grid paradigm.

By standardizing the specification and construction of these global grids we facilitate the
fair intercomparison of methods as applied to them. The sequel, Part II (Rančić and Purser,
2012) will exhibit some of these intercomparisons in grid geometries constructed in accordance
with the prescriptions we have laid out in this article.
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Appendix A

The vertex-symmetric finite griddings of the sphere
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The finite polyhedral gridding of the sphere require at least three vertices (since an angular
deficit of 2π implied by a two-vertex map leads to a logarithmic singularity in the conformal
map, and therefore an infinite extent of at least one map coordinate). If we stipulate that the
vertices of the mapping are to be symmetric with respect to the group of symmetries, the list of
the basic types of such mappings and their characterizing symmetry groups is easily tabulated.

We shall split the list into those polyhedral geometries that admit square grids, and those
that admit equilateral triangular grids on their surfaces. The group of symmetries is required
not only to map the polyhedron into itself, but must also map the inscribed grid into itself. For
some polyhedra, such as the cube, the square gridding in which the lines of the grid run parallel
to the edges of the cube can be distinguished as a separate type from the gridding where the
lines runs at 45◦ to the edges, although the symmetry group in both cases is the same (the full
octahedral group of order 48). The former type will be referred to by its two-character code
‘cu’ and is most simply exemplified by a configuration with six map panels; the latter will be
referred to here by its code, ‘ce’ and has, as its simplest exemplar, the configuration with 12
map panels. However, there are also many ways to grid the cube’s surface where the grid lines
form other oblique angles to the edges, and the pattern is then endowed with a chirality that
prevents reflections from belonging to the group of symmetries; the group in this case is the
chiral octahedral group of order 24. The code we use to refer to this class of chiral cubic grid
geometries is ‘cc’ and we note that the simplest member is a configuration with 30 map panels
and with the edges pointing along directions such as vector (2, 1) in map coordinates. There
are other geometries, such as the class of octagonal dihedra ( code ‘oc’), where rotating the grid
by 45◦ and shrinking it by a (linear) factor of

√
2 does not lead to a grid geometry of a new

type. In Table 5 we list all the square-griddable polyhedral geometries and their two-character
type codes, and signify the existence of a distinguishable class of grids at 45◦ from the smallest
(in panel count) configuration by an ‘orientability code’ (O.C.) checked as an ‘X’ or ‘XX’ when
the rotated form is indeed a separate and distinguishable type, and where the ‘XX’ signifies
that, amongst the rotated types are configurations that do not have the simpler (unrotated)
counterpart with half as many panels.

The group is indicated in each case by its Schönflies and orbifold signatures, Ng being the
order of the group. The vertex type, V , is just the angular deficit measured here in right angles.
Nmin is the size (in panels) of the simplest examplar of each geometry, there being two entries
(just as there are two abbreviation codes) wherever an ‘X’ or ‘XX’ appears in the O.C. column.

The achiral cubes (cu and cc) may be regarded as special, and more symmetric, cases of
the square prism types (sp and sr). The prism analogue of the chiral cube (cc) belongs to a
class of configurations, the square screw (‘ss’), that also include generalizations of the square
antiprism (‘sa’) to the cases where the ‘twist’ between the opposing square faces is not simply
45◦. As we further reduce the symmetry, and therefore generalize, the square prism, we find
the griddings associated with a general cuboid, or rectangular-section prism, or ‘alternating
sides quadrilateral’ prism, to use a terminology that has a direct analogue when we consider
the triangular griddings. This polyhedral shape has griddings with lines parallel (code ‘ap’) and
45◦ oblique (code ‘ar’) to edges. The antiprisms of rectangular ends, types ‘aa’ and ‘an’, now
involve a 90◦ twist between these ends and, with the orientation code of ‘XX’, provides the first
exhibit where the type ‘an’, whose grid lines are 45◦ to the edges of the end rectangles, includes
members whose polyhedra cannot be gridded in the style of the type ‘aa’, where grid lines are
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TABLE 5. The finite vertex-symmetric square-griddable polyhedra
and their symmetries. Each distinct type of grid symmetry is assigned
its own unique two-character abbreviation, or ‘code’. For some poly-
hedra, such as the cube, there exist two possible grid orientations,
45◦ apart, such that both preserve the full symmetry of the poly-
hedron, and yet both are distinguishable grid types with respect to
that symmetry. The orientability code, ‘O.C.’ is marked ‘X’ when the
two orientations do indeed constitute distinguishable symmetry types;
marked ‘XX’ when the second type comprises some members that are
not simply derivable from a member of the first type by a ×2 diagonal
subdivision of its grid-panels; left unmarked when the diagonal ori-
entation is already included in the existing classification (as is the
case for antiprisms and for all chiral types). The group is defined by
the Schöflies and orbifold signatures, its order being Ng. The ver-
tex type, V , denotes the number of right-angles (i.e., units of 90◦) of
angular deficit of each vertex. Nmin denotes the size, in square map
panels, of the smallest exemplar of each type; when of orientability
type X or XX, the second number is size of the smallest exemplar of

the second orientation.
Code Polyhedron type O.C. Group Ng V Nmin

cu ce cube X Oh ⋆432 48 1 6 12

cc chiral cube O 432 24 1 30

sp sr square prism X D4h ⋆224 16 1 10 20

oc octagonal dihedron D4h ⋆224 16 1 14

sa square antiprism D4d 2⋆4 16 1 8

ss square screw D4 224 8 1 18

ap ar alt-quad prism X D2h ⋆222 8 1 22 44

aa an alt-quad antiprism XX D2d 2⋆2 8 1 22 26

sh se square dihedron X D4h ⋆224 16 2 2 4

sc chiral square dihedron D4 224 8 2 10

ep er edge prism X D2h ⋆222 8 2 4 8

ea en edge antiprism XX D2d 2⋆2 8 2 8 6

es edge screw D2 222 4 2 12

parallel to the edges of the end rectangles. This exhausts the possible types of vertex-symmetric
polyhedral gridding with 90◦ of angular deficit at each of eight vertices. Fig. 11 illustrates the
‘nets’ or developments of the polyhedra of the simplest exemplars of each of the aforementioned
types colored in conformance with the symmetries of each type. The number in brackets beside
each type code gives the number of panels in the exemplar shown. The polyhedron vertices are
marked by the black partial discs.

There also exist geometries with four vertices at which the angular deficit is 180◦. The
square dihedron with the two achiral orientations (codes ‘sh’ and ‘se’) or chiral orientations
(code ‘sc’) are the simplest examples. A prism whose section is just an edge (codes ‘ep’ and
‘er’) generalizes this dihedron to one of rectangular form (thereby lowering the symmetry of
these achiral forms). But we can equally consider what we might refer to as the ‘edge antiprism’
(actually a tetrahedron, codes ‘ea’ and ‘en’) where the ‘ea’ form has grid lines parallel to the
end edges. The 45◦ rotated form, ‘en’ is a second example with the orientation code ‘XX’.
Finally, with a general oblique ‘twist’ between end edges we obtain an even less symmetrical
chiral tetrahedron, referred to here as an ‘edge screw’ (code ‘es’) with an order-four group. The
illustrations of surface developments of these four-vertex polyhedra are shown in Fig. 12.
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A similar tabulation of the triangular-griddable vertex-symmetric polyhedra is provided in
Table 6.

TABLE 6. The finite vertex-symmetric equilateral triangular-griddable
polyhedra and their symmetries. The tabulation is as in Table 5 except
the vertex type, V measures the angular deficit in units of 60◦ and the
orientability code signifies the presence (or not) of grids of distinguishable

symmetries when the grid is reoriented by an angle of 30◦.
Code Polyhedron type O.C. Group Ng V Nmin

ih ie icosahedron X Ih ⋆532 120 1 20 60

ic chiral icosahedron I 532 60 1 140

hp hr hexagonal prism XX D6h ⋆226 24 1 36 60

ha hn hexagonal antiprism XX D6d 2⋆6 24 1 24 48

hs hexagonal screw D6 226 12 1 72

do dodecagonal dihedron D6h ⋆226 24 1 96

tt tr truncated tetrahedron X Td ⋆332 24 1 28 84

tb bevelled tetrahedron Td ⋆332 24 1 40

oi octa-icosahedron Th 3⋆2 24 1 92

ti tetra-icosahedron T 332 12 1 44

ap ar alt-hex prism XX D3h ⋆223 12 1 62 114

aa an alt-hex antiprism XX D3d 2⋆3 12 1 44 132

oh oe octahedron X Oh ⋆432 48 2 8 24

oc chiral octahedron O 432 24 2 56

hh he hexagonal dihedron X D6h ⋆226 24 2 12 36

hc chiral hexagonal dihedron D6 226 12 2 84

dp dr triangular prism XX D3h ⋆223 12 2 14 18

da dn triangular antiprism XX D3d 2⋆3 12 2 20 36

ds triangular screw D3 223 6 2 20

ah ae alt-hex dihedron X D3h ⋆223 12 2 26 78

th te tetrahedron X Th ⋆332 24 3 4 12

tc chiral tetrahedron T 332 12 3 28

ep edge prism D2h ⋆222 8 3 8

ea en edge antiprism XX D2d 2⋆2 8 3 12 20

es edge screw D2 222 4 3 24

dh de triangular dihedron X D3h ⋆223 12 4 2 6

dc chiral triangular dihedron D3 223 6 4 14

The achiral rotated grid types, such as for the icosahedron (types ‘ih’ and ‘ie’) now involve
a relative rotation of 30◦, and such a rotation allows one gridding to be replaced by another
when the linear size of the grid spacing is reduced by a linear factor of

√
3. Thus the simplest

icosahedron of the rotated type, ‘ie’, has 60 map panels compared to the basic icosahedron
of type ‘ih’ which has 20. There are also chiral versions of the icosahedron (code ‘ic’) and
the obliquity needed to produce the simplest type of this and several other chiral polyhedral
geometries involves a seven-fold increase in the number of map panels over the basic form – 140
panels in this case, as the development net illustrates in Fig. 13. There are many analogues
to the square-griddable polyhedra where we replace ‘square’ by (regular) ‘hexagon’. The twist
between the ends of the hexagonal antiprism (codes ‘ha’ and ‘hn’) amounts to the expected
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30◦, and the more general (and less symmetric) hexagonal screw (‘hs’) involves either another
amount of end-twist or an orientation of the grid whose obliquity with respect to the end-edges
is not some multilple of 30◦. The dodecagonal dihedron (code ‘do’) is obviously analogous to the
square-griddable octagonal dihedron. But there are a few additional geometries that have no
square-griddable analogues. The achiral polyhedron comprising four triangles and four hexagons
(that are not necessarily regular, but must then be of the ‘alternating sides’ type), obtained by
truncating the corners of a regular tetrahedron is griddable with grid lines parallel to edges of
the triangles (type ‘tt’) or at 30◦ to these edges (type ‘tr’). The symmetry group is that of the
full achiral tetrahedron. If the edges of the tetrahedron are bevelled, another polyhedron (code
‘tb’) admitting a triangular gridding is formed, but now with two sets of four triangles mediated
by six rectangles. The grid lines are either parallel to the edges of one set or the other of these
triangular faces so the single type suffices. The ‘octa-icosahedron’ (‘oi’) is an achiral irregular
icosahedron also with two sets of four equilateral triangular faces, but now these are mediated
by 12 isosceles triangles in a configuration whose symmetry is that of the pyritohedral group,
so that the two sets of equilateral triangles become mirror-images of each other. (The regular
icosahedron can be regarded as a special case of this geometry where the isosceles triangles are
also equilateral.) A chiral generalized icosahedron with (chiral) tetrahedral symmetry is what we
call the ‘tetra-icosahedron’ (code ‘ti’). Two sets of four equilateral triangles are now mediated
by 12 congruent scalene triangles. The alternating-sides hexagon (abbreviated ‘alt-hex’ in the
table) is an end shape associated with both prisms (types ‘ap’ and ‘ar’) and antiprisms (types
‘aa’ and ‘an’). The simplest exemplars of all these 60◦-deficit polyhedra are illustrated in Fig.
13.

With 120◦ deficits, we have 13 other triangular-griddable types. The regular octahedron
exsists in its two achiral types, ‘oh’ and ‘oe’, as well as its chiral type, ‘oc’. Likewise, the (regular)
hexagonal dihedron has its two achiral types ‘hh’ and ‘he’, as well as its less symmetrical
chiral type, ‘hc’. Both the triangular prisms and antiprisms have the orientability codes ‘XX’
signifying that the forms (‘dr’ and ‘dn’) where the grid is oblique to the edges of the end
triangles include members where the polyhedron is not griddable by a simpler form (type ‘dp’
or ‘da’) with grid lines parallel to the end-edges. Polyhedra whose opposing equilateral ‘ends’
are mediated by two distinctly different-shaped families of three triangles are reffered to as
‘triangular screws’ (code ‘ds’) and form a chiral type whose group is only of order six. Finally
for these 120◦-deficit shapes, there is an achiral dihedron type of the ‘alt-hex’ shape (codes ‘ah’
and ‘ae’) with the two possible grid orientations. These polyhedra are exemplified in Fig. 14.

Seven distinct gridding types exist with four vertices (angular deficit of 180◦), beginning
with the two orientations of the achiral tetrahedral types (‘th’ and ‘te’) and the chiral form
(‘tc’). The edge prism (‘ep’) exists, but now in only one type of orientation, but the edge
antiprism (irregular, but achiral tetrahedron) exists in two achiral grid orientations (‘ea’ and
‘en’). The chiral generalization, the ‘edge screw’ of type ‘es’ has, as in the square-griddable
case, the lowest symmetry (order four). These are illustrated in Fig. 15.

To complete the set of possible griddable polyhedra, we must include the triangular dihedron
in its two achiral grid orientations (codes ‘dh’ and ‘de’) and its chiral form, ‘dc’. The simplest
exemplars of these polyhedral griddings are illustrated in the form of their development nets
in Fig. 16. The angular deficit of 240◦ at each vertex makes a geometry of this type rather
unattractive for any kind of numerical work on the sphere, of course.
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cu[6] ce[12] cc[30]

sp[10] sr[20] oc[14]

sa[8] ss[18] ap[22]

ar[44] aa[22] an[26]

Figure 11. Developments, or ‘nets’ of the complete surfaces of the polyhedra that correspond to the simplest
exemplars of each type of vertex-symmetric square-griddable polyhedron with vertex angular deficit of one right-

angle. The labels codes are those used in the classification of Table 5.
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sh[2] se[4]

sc[10] ep[4]

er[8] ea[8]

en[6] es[12]

Figure 12. Like Fig. 11 but with the nets corresponding to simplest exemplars of square-griddable polyhedra
with vertex angular deficits of two right angles.

53



ih[20] ie[60] ic[140] hp[36]

hr[60] ha[24] hn[48] hs[20]

hb[96] tt[28] tr[84] tb[40]

oi[92] ti[44] ap[62] ar[114]

aa[44] an[132]

Figure 13. Developments, or ‘nets’ of the complete surfaces of the polyhedra that correspond to the simplest
exemplars of each type of vertex-symmetric triangular-griddable polyhedron with vertex angular deficit of 60◦.

The labels codes are those used in the classification of Table 6.
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oh[8] oe[24] oc[56] hh[12]

he[36] hc[84] dp[14] dr[18]

da[20] dn[36] ds[20] ah[26]

ae[78]

Figure 14. Like Fig. 13, but showing developments of polyhedra with vertex angular deficit of 120◦.
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th[4] te[12] tc[28]

ep[8] ea[12] en[20]

es[24]

Figure 15. Like Fig. 13, but showing developments of polyhedra with vertex angular deficit of 180◦.

dh[2] de[6] dc[14]

Figure 16. Like Fig. 13, but showing developments of polyhedra with vertex angular deficit of 240◦.
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