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ABSTRACT 

     Despite the tremendous progress that has been made in data assimilation (DA) 

methodology, observing systems which reduce observation errors, and model 

improvements which reduce background errors, the analyses produced by the best 

available DA systems are still far from the truth.  Analysis error and error 

covariance are important since they describe the accuracy of the analyses, and 

directed related to the future forecast errors, i.e. the forecast quality. In 

addition, analysis error covariance is critically important in building an 

efficient ensemble forecast system (EFS). 

     Estimating analysis error covariance in an ensemble based Kalman filter DA 

is easier in theory, but it is always challenging in variational DA systems which 

have been in operation at most NWP centers. In this study, we use the Lanczos 

method in the NCEP Gridpoint Statistical Interpolation (GSI) DA system to look 

into other important aspects and properties of this method which were not 

exploited before. We apply this method to estimate the observation impact signals 

(OIS) which are directly related to the analysis error variances. It is found 

that the smallest eigenvalue of the transformed Hessian matrix converges to one 

as the number of minimization iterations increases. When more observations are 

assimilated, the converging speed becomes slower and more eigenvectors are needed 

to retrieve the observation impacts. It is also found that the OIS over data-rich 

regions can be picked up easily by the eigenvectors with dominant eigenvalues.  

     Since only a limited number of eigenvectors can be computed due to 

computational expense, the OIS is severely underestimated, and the analysis error 

variance is consequently overestimated. It is found that the mean OIS values for 

temperature and wind components at typical model levels are increased by about 

1.5 times when the number of eigenvectors is doubled. We have proposed four 

different calibration schemes to compensate for the missing trailing 

eigenvectors. Results show that the method with calibration for smaller number of 

eigenvectors cannot pick up the observation impacts over the regions with less 

observations as well as an “ideal case” with a large number of eigenvectors. But 

proper calibrations do enhance and improve the impact signals over regions with 

more data. 

     When compared with the observation locations, the method generally captures 

the OIS over regions with more observation data, including satellite data over 

the southern oceans. Over the tropics, some observation impacts may be missed due 

to the smaller background errors specified in the GSI, which is not related to 

the method. It is found that a lot more eigenvectors are needed to retrieve 

impact signals that resemble the banded structures from satellite observations, 

particularly over the tropics. Another benefit from the Lanczos method is that 

the dominant eigenvectors can be used in preconditioning the conjugate gradient 

algorithm in the GSI to speed up the convergence. 

 

1.  Introduction  

 
     In recent years, there have been many active research and developments in 

data assimilation (DA) method, such as 4D-Var (Derber 1987; Rabier et al. 2000) 

and ensemble Kalman filters (Bishop et al. 2001; Anderson 2001; Whitaker and 

Hamill 2002, Tippett et al. 2003; Zupanski 2005; Whitaker et al. 2007; Kalnay et 

al. 2007; Szunyogh et al., 2008). More observations, more accurate observing 

systems, and the improved DA systems have played key roles in providing more 

accurate initial conditions for numerical weather prediction (NWP) models. These 

developments have improved the weather forecasts significantly, particularly over 

the short and medium ranges. In addition, there has also been tremendous progress 

in NWP model development, with more accurate physics parameterization schemes and 

increased computing power, which permits the use of higher resolution forecast 

models. In spite of all this progress in observing systems which reduce the 
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observation errors, and in model improvement which reduces the background errors, 

the analyses produced by the best available DA systems are still quite different 

from the true state.  

    Analysis error and error covariance are important for any DA systems since 

they describe the accuracies of the analysis fields generated by the DA systems. 

The analysis fields from DA are supposed to be the best possible estimates of 

nature. They are used as the initial states for NWP weather forecasts. The 

associated error and error covariance are also important because they are related 

to the future forecast error and error covariance as they evolve during the 

forecast time interval. Therefore, analysis error and error covariance directly 

determine the forecast errors and error covariance, i.e. the quality of forecast.     

     In addition, analysis error covariance is critically important in building 

an efficient ensemble forecast system (EFS). In the past decade, with the 

advances of new development and implementation of the EFS at some major NWP 

centers (Toth and Kalnay 1993, 1997; Molteni et al. 1996; Houtekamer et al. 

1996), the forecasting capability has been improved to a new level compared with 

the traditional single deterministic forecast. These centers include the National 

Centers for Environmental Prediction (NCEP), the European Centre for Medium-Range 

Weather Forecasting (ECMWF), the Canadian Meteorological Center (CMC), the United 

Kingdom Meteorological Office (UKMO) and the Fleet Numerical Meteorological and 

Oceanography Center (FNMOC).  Different ensemble systems and their performances 

have been evaluated and reviewed by various authors, e.g. Hamill et al. (2000), 

Wei and Toth (2003), Buizza et al. (2005), Bowler (2006), Wei et al. (2006, 

2008), Leutbecher and Palmer (2008) and Park et al. (2008).  

     In ensemble forecasting, a limited number of different numerical forecasts 

are generated to represent the variability of our knowledge about the possible 

evolution of a dynamical system.  A consensus in the scientific community is that 

the initial ensemble perturbations should sample the probability density function 

(PDF) that is represented by the analysis error covariance.  Thus, in an 

operational environment at a NWP center, the analysis error covariance of the DA 

system that produces the initial analysis field for the forecasts should play a 

key role in generating the initial perturbations. So far, the analysis error 

variance/covariance has been used to a certain extent only by a few different 

ensemble methods at NWP centers. A recent description and comparison about how 

analysis error covariance is being used in ensemble initial perturbation 

techniques are given in Tables 1 and 2 in Wei et al. (2008). 

     There have been several efforts on estimating analysis error variance and 

covariance. For example, Buizza et al. (2005) suggested that the spread of 

initial states of three centers (NCEP, ECMWF and CMC) could be considered as a 

crude lower-bound estimate of the analysis error variance. Swanson and Roebber 

(2008) used the NCEP and ECMWF reanalysis data, and suggested that the reanalysis 

difference could be considered as a “shadow” of the analysis error. They found 

that the analysis difference contains certain aspects of the true flow-dependent 

analysis error and has significant impact on the short-time forecast skills in 

downstream regions. Similarly, Langland et al. (2008) looked at the differences 

between the NCEP and FNMOC analyses from January 1 to June 30, 2007. The authors 

found that the difference and root mean of the squared daily differences in 

500hPa temperature are closely related to the distribution of radiosonde 

observations. The large differences between the two analyses were found to be 

associated with the regions with mostly satellite observations.   Park et al. 

(2008) studied the ensemble performance from TIGGE (the THORPEX Interactive Grand 

Global Ensemble) data. They argued that the mean analysis from different centers 

will probably be the best to be used as a reference analysis in comparing the 

performance of an ensemble from each center. The analysis error could be 

estimated from the deviation between that analysis and the mean of centers.  

Bowler et al. (2008) also argued that the mean of analyses from multi-centers is 

generally better than the analysis from any one center. 
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    By using the analysis data from NCEP, ECMWF, UKMO, CMC and FNMOC, Wei et al. 

(2009) introduced a new method for estimating the analysis error variance. The 

method computes the anomaly of each center’s analysis by removing the long term 

mean using a recursive filter. The spread over the average anomaly (SPA) from 

different centers is then computed. These authors found that the time averaged 

distribution of SPA is even more related to the observation network density, 

compared with the spread around the center mean analysis. Furthermore, the 

typical systematic errors that appear in the spread around the center mean over 

high altitude regions are completely removed. The instantaneous values of SPA at 

any cycle for various variables bear a strong resemblance to the elusive analysis 

error variance.  

    While analysis error covariance in an ensemble based Kalman filter is readily 

available (Bishop et al. 2001; Anderson 2001; Whitaker and Hamill 2002, Tippett 

et al. 2003; Zupanski 2005; Whitaker et al. 2007; Kalnay et al. 2007; Szunyogh et 

al., 2008), it is not straightforward to get in 3D/4D-Var systems which have been 

in operation at most major NWP centers. In the NCEP global EFS, an ensemble 

transform with rescaling (ETR) has been used to generate the initial 

perturbations as described in detail in Wei et al. (2005, 2008). In the ETR 

method, the initial perturbations depend on the accurate analysis error 

covariance which should be provided by the DA system in operation. At NCEP, the 

operational DA system is the Gridpoint Statistical Interpolation (GSI), a three-

dimensional variational analysis (3D-VAR) system (Derber et al. 1991; Parrish and 

Derber 1992; Wu et al. 2002; Derber et al. 2003; Kleist et al. 2009). In the 

variational analysis system, the analysis is found by minimizing the cost 

function, written in terms of the background fields, the observations, and their 

respective error covariance matrices. The analysis error covariance matrix in 

3D/4D-VAR is determined by the background and observation error covariance 

matrices, and it can not be computed directly due to its huge memory demand.  

    Unlike the DA systems at NCEP and ECMWF, which are formulated in the model 

space, the Naval Research Laboratory Atmospheric Variational Data Assimilation 

System (NAVDAS) system at the US Naval Research Laboratory (NRL) is formulated on 

the observation space (Daley and Barker 2001; Xu et al. 2005). Daley and Barker 

(2001) proposed a local approximation in their NAVDAS to take advantage of the 

block-diagonal pre-conditioner and Cholesky decomposition of the diagonal blocks. 

The method produces an estimate of the analysis error variance at any location 

based on the observations and background within the observation prism in which 

the location is contained. It has been implemented successfully at FNMOC and NRL, 

and it generates the analysis error variance estimate from the NAVDAS for both 

global and regional ensemble forecast systems at FNMOC (McLay et al. 2007, 2008; 

Reynolds et al. 2008; McLay and Reynolds 2009; Bishop et al. 2009). Similar to 

the NCEP global EFS, the initial perturbations at FNMOC are generated by using 

the ET method.  

     For the 3D/4D-VAR systems in model space which have been implemented at most 

NWP centers, Fisher and Courtier (1995) proposed three approximate methods to 

estimate the analysis error variance. The most promising among them is the 

Lanczos method which was implemented in the ECMWF DA system.  This method 

produces the analysis error variance estimates by computing the leading 

eigenvectors of the Hessian matrix. It takes advantage of the close link between 

the Lanczos method and the conjugate gradient method used in the minimization 

procedure. The authors carried out experiments using a simple univariate 3d-Var 

on a cyclic one-dimensional domain with 256 equally-spaced grid points. Some 

testing was also done in ECMWF 3D-Var system with 52 eigenvectors included.  

    The Lanczos method is already used in the NCEP Real-Time Mesoscale Analysis 

(RTMA) to estimate the analysis errors (Pondeca and Manikin 2009). The RTMA runs 

the GSI in 2D-Var mode to analyze near-surface observations over the continental 

USA and domains in Alaska, Hawaii, Puerto Rico and Guam (Pondeca and Manikin 

2009; Manikin and Pondeca 2009). In the RTMA application, only the observations 
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near the surface are assimilated and only some of the surface variables are 

estimated, such as temperature, dew point, surface humidity at 2 meters, in 

addition to the 10-meter wind etc. In comparison to the application to the global 

3D-Var GSI which is presented in this study, another advantage in the RTMA is 

that the analysis variables in the regional GSI are directly temperature and wind 

components, thus the analysis errors of these variables can be estimated 

directly, while the analysis variables in the global GSI are the stream function, 

unbalanced velocity potential etc, which makes the estimates of variances of wind 

components complicated. Furthermore, the RTMA is focusing on small regions, this 

avoids the pole problem during the transformations between different variables. 

     In this paper, we use the Lanczos method in the NCEP global 3D-Var GSI DA 

system to study some of its aspects and properties which were not exploited in 

Fisher and Courtier (1995) and Pondeca and Manikin (2009). The properties in 

question are very important not only in understanding the method but also in 

practical applications. In particular, we apply this method to estimate the 

observation impact signals (OIS) which are the square-root of the difference 

between the background and analysis error variances. In this method, only a small 

number of eigenvectors can be computed due to the computational expenses. Thus 

the error reduction is severely underestimated, and the analysis error variance 

is overestimated. In our study, we propose and compare four different calibration 

schemes to compensate for the missing trailing singular vectors. Without proper 

calibrations, the observation impacts computed using this method may be far away 

from reality. In addition, we study the sensitivity of the OIS to the number of 

observations employed in the GSI system. Also studied in this paper are the 

correlations between the observation locations and the OIS for different 

variables in an operational environment.  

     Section 2 provides a brief description and formulation of the analysis error 

variance and OIS.  The dominant eigenvectors and eigenvalues of the transformed 

Hessian matrix are analyzed in detail in Section 3.  Section 4 presents four 

different calibration schemes and their results, while the correlations between 

the observations and the OIS are exploited in section 5. Finally, discussion and 

conclusions are given in Section 6.  

 

2.  Introduction of basic formulation. 

     The NCEP GSI DA system is a unified global/regional three-dimensional 

variational DA system (Derber et al. 1991; Parrish and Derber 1992; Wu et al. 

2002; Derber et al. 2003; Kleist et al. 2009). The cost function in the GSI to be 

minimized can be expressed as:  

               )()(
2

1

2

1
)( 0

1

0

1
yHxRyHxxBxx −−+= −− TT

J                         (1) 

where ba xxx −=  is the analysis increment, B  is the background error covariance 

matrix, bHxyy −=0  is the innovation vector, R  is the observation error 

covariance matrix,  H  is the linearized observation operator and bx  is the 

background state field. It is well known that the analysis increment x  can be 
solved through the minimization of equation (1) (Daley and Barker 2001), i.e. 

            )]([)( 1

b

TT

ba xHyRHBHBHxxx −+=−= −
                           (2) 

Let A  be the analysis error covariance of ax  with respect to the truth. Then in 

the incremental 3D-Var, A  can be described as:  

            HBRHBHBHBA 1)( −+−= TT
                                      (3) 

where 
1)( −+ RHBHBH TT
 in equations (2) and (3) is commonly called the Kalman 

gain matrix. Fisher and Courtier (1995) proposed three approximate methods to 

estimate analysis error variance in 3D/4D-VAR framework. The most promising 
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method among these three is the Lanczos method which uses the linkage between the 

Lanczos algorithm and conjugate gradient minimization which is widely used in 

3D/4D-Var system. The Lanczos method uses the relationship between the Hessian 

matrix and the analysis error covariance. Thus a limited number of dominant 

eigenvectors can be estimated and used to approximate the second right term in 

equation (3). This method was implemented in the ECMWF 4D-Var system to estimate 

the analysis error covariance (Fisher 2007, personal communications).  

    Since different preconditioning strategies are used in ECMWF and NCEP DA 

systems, the equations and derivations of the analysis error covariance are 

different. In the GSI, let 

                       xBz 1−=                                               (4)  

The gradient of cost function with respect to x  is   
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and the Hessian matrix  M  can be written as 
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Eq. (5) is equivalent to  
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The gradient with respect to z  is  
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The preconditioned conjugate gradient method used to minimize the cost function 

defined in eq. (1) in GSI can be expressed as (Derber and Rosati 1989) 
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where kα  is the step size,  kd   and ke  are the search directions in x  and z , 

and the conjugate factor is  
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kg  and kh  can be normalized such that 
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It can be shown that the two sets form a bi-orthogonal system such that 
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After numerous mathematical derivations and by using the relations in eq.s (5)-

(12), it can be shown that the final analysis error covariance matrix can be 

expressed as  
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For more details about the derivations, see Pondeca et al. (2010).  Let 
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C  is the analysis error covariance reduction from the background due to the 

observations, K  is the number of gradients in x  and z , and it is  the actual 

number of inner iterations in the GSI, kλ  and kv  are the dominant eigenvalues 

and eigenvectors of a KxK  tri-diagonal matrix kT  consisting of different 

coefficients as 
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Finally )(kρ  is the calibration factor we introduce in this paper to compensate 

for the loss of trailing eigenvectors. Since we can only compute the dominant 

eigenvalues and their corresponding eigenvectors of the matrix in eq.s (13) and 

(14), many less dominant eigenvectors are ignored. The error reduction of C  and 

analysis error covariance A  would be underestimated and overestimated 

respectively without introducing the calibration factor )(kρ .  In the NCEP RTMA, 

only observations near the surface are assimilated and surface variables are 

estimated (Pondeca and Manikin 2009). In our case, the system is applied to 

estimate the analysis errors for any model variables at any levels.  It can be 

shown that kλ  and k

n

kk vQe =  are the dominant eigenvalues and eigenvectors of the 

transformed Hessian matrix. 

 

3. Eigenvalues and eigenvectors 

    The diagonal part of C  in equation (14) represents the reduction of error 

variance due to observations in DA.  The following experiments are carried out 

with GSI at T62L64 resolution. The number of dominant eigenvectors K  computed 

depends on the number of inner loops in the GSI minimization.  The values of K  

that we have tested are 116   ,100    ,60    ,30=K . The observations and background 

fields are for the 00Z cycle on April 10, 2007. The observations that we chose 

were based on the data used in the NCEP operational GSI. There were a total of 

60=ndat  data sets which covered conventional, aircraft, GPS observations as 

well as radiances from different satellites.  All the operational data were used 

in our experiments. To study the sensitivity of error reductions to the 

observations, we also experimented with only conventional observations. In this 

case, 6=ndat . This includes surface pressure, temperature, specific humidity, 

winds, sea-surface temperature, and precipitable water from Rawinsonde. The 

conventional data also contain the satellite derived winds such as those below 

850mb from satellites JMA IR and EUMETSAT.   

    Fig. 1 shows the eigenvalue distribution as a function of the eigenvalue 

number for different numbers of observation data sets. Shown in the left panels 
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are the eigenvalue distributions with 6 observation data sets for   

116   ,100    ,60    ,30=K  respectively. On the right hand panels, the same eigenvalue 

distributions are displayed for the 60 observation data sets. Since all the 

eigenvalues kλ  are larger than one and 0.0      ]))([( >T

k

n

kk

n

kdiag vQvQ , it follows 

that the diagonal elements of C  are always positive, which means  

                          )(     )( BA diagdiag <   

   This indicates that the analysis error variance is always less than the 

background error variance due to the observations assimilated. From equation 

(14), it is easy to see that the larger the eigenvalue, the greater the 

observation impact (and more reduction of error variance). Thus, more dominant 

eigenvectors with larger eigenvalues have greater impacts than the trailing 

eigenvectors with smaller eigenvalues.  As the trailing eigenvalue is converging 

to one, the contribution to error reduction from the eigenvector is approaching 

to zero and the impact is negligible.  The smallest eigenvalues for 6=ndat  

shown on the left panel of Fig. 1 for 116   ,100    ,60    ,30=K  are displayed in 

Fig.2a, while the smallest eigenvalues for 60=ndat  are displayed in Fig.2b. The 

minimum eigenvalues in both cases should approach one (shown in dotted lines) as 

K  increases. It is clear that the convergence of the eigenvalue with increasing 

number of inner loops in the GSI is much slower in the case with more observation 

data than in the case with smaller amount of observation data. Thus, one 

conclusion from this result is that the more observations we have, the larger the 

number of eigenvectors should be included in order to minimize the loss of 

information from those observations. When only 6  observation data sets are used 

as in Figs. 1a-1d, the eigenvalues decrease faster than when there are more 

observations as in Figs. 1e-1h.  In fact, when all the observations are used with 

60=ndat ,  the eigenvalues decrease at a uniform pace with increasing number of 

inner loops. The maximum eigenvalue is very similar in all cases with different 

values of K ,   

    As an example of eigenvector structure, we plotted in Figs. 3 and 4 the top 

five normalized eigenvectors ( k

n

k vQ ) for temperature t  and zonal wind component 

u  for  116   ,100    ,60    ,30=K  at 500hPa. The number of data sets is 6=ndat .  

From left to right, fig. 3 shows the top eigenvectors of t  with different values 

of K , while the top 5 eigenvectors of t  with the same value of K  are shown 

from the top to the bottom respectively. On the top panel, the 1st eigenvector 

for t  has a similar dipole structure over the North America (NA) for 60    ,30=K , 

while for 116   ,100=K , their structures are also  similar, but different from 

when 60    ,30=K . This is also true for the other dominant eigenvectors 5  4,   3,  ,2  

shown in the following rows. When 30=K ,  eigenvectors 3  2,  ,1  have high values 

over the NA, but in slightly shifted positions, while eigenvectors  5   ,4  have 

larger values over the European region. All of these reflect the fact that there 

are relatively more conventional data coverage in NA and European regions. When 

60=K , the top 5 eigenvectors in column 2  show similar structures as when 

30=K  in column 1. When the number of inner loops K  is increased to 100 and 

116 as shown in columns 4  and 5, the larger amplitudes of the top 5 
eigenvectors are mostly over the NA area. This is consistent with the 

conventional observations at this level which will be shown later in the paper. 

    Fig. 4 shows the same as fig. 3, but for u . Overall, the top 5 eigenvectors 

of u  also demonstrate the larger presence of conventional observations over the 
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NA. Like the eigenvectors of t , eigenvectors 4  and 5 shows the largest 

amplitudes over the European region when 60    ,30=K .   

    Next, we look at the overall observation impacts due to observations in the 

GSI. To see the sensitivity of error reduction to the number of observations, we 

have computed the error reduction using two different numbers of observation data 

sets: 6=ndat  and 60=ndat . From equation (13), the analysis error variances 

depend on the background error variances which are static and pre-defined in most 

3D/4D-Var DA systems. In the NCEP GSI, they are pre-computed using the NMC method 

(Parrish and Derber 1992). The diagonal components of C  are the direct impacts 

from the observations assimilated by the DA. Therefore, unless we have sensible 

situation-dependent background error variances, it is more meaningful to look at 

the diagonal components of C  (instead of A ) in order to assess the direct 

impacts from the observations. In the following, we will show the square root of 

error variance reduction, i.e. )(Cdiag  (referred to as observation impact 

signal or OIS in the following) for different variables at different levels.   

First, let’s look at the OIS without calibration, i.e. 0.1)( =kρ  in equation 

(14). From the left to the right, Fig. 5 shows the OIS for 1000500500 q    ,    t,u  (the 

subscripts indicate the level in hPa) with different number of inner loops 

116   ,100    ,60    ,30=K  respectively. The results show that the OIS for all 

variables increase as the number of eigenvectors increases. Rows 1 to 3 shows 

the OIS for 1000500500 q    ,    t,u  with 6=ndat ,  while rows 4  to 6  show the OIS for 

same variables but for 60=ndat . The top two panels show that as K  increases, 

the impacts of observations for 500500     t,u  increase, particularly over the 

conventional data-rich regions such as NA. For cases with smaller numbers of 

eigenvectors ( 60   ,30=K ), the observation impacts over Europe, Asia and areas 

near Australia are less clear. The impact signals are much more pronounced for 

116   ,100 =K .  Panels in row 3 show the OIS for relative humidity near the 

surface 1000q . Again, as more eigenvectors are included,  stronger impact signals 

are observed in NA, Europe, Asia and areas near Australia, where there are more 

observations. The observation locations will be shown later in Figs. 8-11.    

    Panels in rows 4 to 6 show the OIS values for the same variables as the top 3 

rows, but with 60=ndat . The above conclusions for 6=ndat  still hold when many 

more observations are included in the analysis. In this case, there are a lot 

more observations in the Southern Hemisphere (SH) that impact the OIS for three 

variables. In the tropic oceans, there are many moisture observations in the 

lower atmosphere, thus also resulting in very strong OIS.  

 

4. Calibration of observation impacts  

    Results shown in Fig. 5 are the values of OIS for some variables at specific 

levels without calibration, i.e. 0.1)( =kρ . As demonstrated in the above section, 

the OIS is underestimated due to the missing trailing eigenvectors. However, to 

what extent the OIS is underestimated is not clear from Fig. 5. To gain a 

quantitative assessment of underestimation, we have computed the mean OIS values 

of q     t,,u  for 116   ,100    ,60    ,30=K  at three typical model levels, namely 1=L  

(lowest level, about 1000mb), 25=L  (about 500mb) and 64=L  (highest model 

level, about 0.27mb). For each of variables at each level, we calculate the 

ratios of the mean OIS values with 116   ,100    ,60    ,30=K  to the mean OIS value 

with 30=K . These ratios are shown as a function of the number of loops in Fig. 
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6.  The left panels of Figs. 6a-6c show these ratios for  q     t,,u  respectively 

with 6=ndat ,  while Figs. 6d-6f show the same, but with 60=ndat .  

    With the smaller number of observations ( 6=ndat ), Fig. 6a and 6b show that 

the mean OIS values of u  and t  at all three levels for 116   ,100    ,60=K  are 

about 2.2  2.0,  ,5.1  times larger than the mean OIS values for 30=K  respectively. 

This is equivalent to about 1.5 times increase of mean OIS when K  is doubled. 

These ratios for q  are even larger, especially at highest model level ( 64=L ) 

where values reach over 5.4  for 116   ,100=K  as shown in Fig. 6c.  This means 

that the OIS for q  is even more severely underestimated compared with the other 

two variables when only a limited number of eigenvectors are included.  

     When more observations are assimilated with 60=ndat , as shown in Figs. 6d, 

6e and 6f, the conclusions are similar, except that the ratio for u  at the top 

model level are much larger than for the other two levels (Fig. 6d).  In 

addition, the ratio for q  at the top model level is also much larger than at 

other two levels (Fig. 6f), but not as large as in the case of 6=ndat  (Fig. 

6c). All these results clearly show that the mean OIS values for all variables at 

these three typical model levels increase as the number of loops K  increases in 

these two cases with two very different observation data sets.  The maximum value 

of K  that we have used is 116, which is too small in both cases. The results 
show no sign of converging at all even with smaller amount of conventional 

observations ( 6=ndat ).  Since the minimization algorithm in GSI has its own 

built-in convergence criterion, it will stop once this criterion is satisfied. 

Therefore we could not test much larger K  as we wished. Of course it is 

computationally prohibitive if K  is too large in an operational system. To 

account for the impacts from the missing eigenvectors, calibration is inevitable. 

    The calibration schemes we have tested are termed C4   C3,    C2,   ,1C , and are 

defined as follows: 
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   In schemes 1C  and C2 , the calibration factors are functions of the 

eigenvalues. The formulation is such that they decay with the number of 

eigenvectors. Less weights are given to the less dominant eigenvectors, 

reflecting the fact that the trailing eigenvectors contribute less to the OIS in 

equation (14). Unlike these two schemes, the calibration factors defined in 

schemes 3C  and C4  increase as a function of k . This means that more weights 
are given to the more trailing eigenvectors in compensating the missing 

eigenvectors.  Note, however, that the calibration factors 3C  and C4  do not 

depend on the eigenvalues. To test these calibration schemes, we choose the 

smallest number of loops from our experiments, i.e. 30=K . The original OIS 

values without calibration for 1000500500 q    ,    t,u  are displayed in the first column 
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of Fig. 5. Since we are unable to run an ideal case with a very large number of 

loops to assess the effectiveness of different calibration schemes, we assume 

that the “ideal case” to compare with is the one with 116=K , which is shown in 

the last column of Fig. 5.  From the left to the right, columns in Fig. 7 show 

the OIS values from schemes C4   C3,    C2,   ,1C  respectively.  Similar to Fig. 5, 

rows 1 to 3 and rows 4 to 6 in Fig. 7 are the OIS for 6=ndat  and 60=ndat  

respectively.  

    By comparing with the results without calibration (first column of Fig. 5), 

the OIS values from calibration 1C  in first column of Fig. 7 show a very similar 

pattern and magnitude for all the variables. Clearly, the magnitudes are 

generally smaller than those in the “ideal case”.  Further more, the results from 

1C  with 6=ndat  fail to pick up much impact over regions in Europe, Asia and 

Australia as in the “ideal case” (last column of Fig. 5). Scheme 2C  (column 2 of 

Fig. 7) also shows similar impact patterns and magnitudes as scheme 1C .  Both of 

these schemes can not achieve the ideal results we have hoped. 

    The results from scheme 3C  (column 3 of Fig. 7) show somewhat larger maximum 

values than the “ideal case” for all the variables, while the magnitudes of OIS 

from 4C  (column 4 of Fig. 7) are similar to those in the “ideal case”.  However, 

like C2   ,1C , both schemes C4   ,3C  do not seem to pick up the impact patterns 

over regions in Europe, Asia and Australia as well as the “ideal case”. Overall, 

scheme 3C  is probably the best among these given the fact that the “ideal case” 

with 116=K  is far from converging as seen from Fig. 6.  From the results of 

these calibration experiments, one can conclude that none of the schemes tested 

can produce OIS distribution that are as good as the ones from the “ideal case” 

which uses more eigenvectors. There are some regions where the observations are 

less dense. These regions will certainly need more eigenvectors to yield 

reasonable OIS values. Our results indicate that it is hard to use calibration 

factors which only increase the magnitudes of some 30 dominant eigenvectors to 

recover those impact signals. However, two of the calibration schemes do enhance 

the OIS magnitudes in the regions with dense conventional data network coverage, 

which in general can be gravely underestimated due to the missing eigenvectors.  

     

5. Correlations between observations and observation impact signals 

     In order to further assess the impacts from observations in the GSI, we will 

study the OIS distributions at certain model levels and their correlations with 

the observation locations. In the following figures, we will plot the horizontal 

locations of observations which are located between the vertical levels of 

mbp 50−  and mbp 50+ , and compare with the OIS values computed from equation 

(14) at level p . As an example, we choose 100=K  and conventional data set 

only with 6=ndat  in the following.    

    Fig. 8 shows the locations of temperature observations between 500mb-50mb and 

500mb+50mb, and the OIS for temperature at 500mb. It is clear that the region 

with most conventional data is the NA, followed by Europe, Asia and regions near 

Australia. The method indeed produces larger OIS values over these data dense 

areas. However, it is also noticeable that some sparsely distributed observations 

around the tropics did not generate much OIS. It is expected that more 

eigenvectors are needed in these areas to recover some impact from observations.      

    Fig. 9 shows the same as Fig. 8, but for u . Similarly the OIS values are 

generally larger over denser observation areas.  As for t , some observations 
around the tropics do not produce much OIS. In Fig. 10, we display the same as 

Fig. 9, but for surface level (around 1000mb). Around this lower level, there are 

many satellite derived, scatterometer type wind observations (such as from JMA IR 
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and EUMETSAT) in SH and the tropics as shown in Fig. 10.  Our method does produce 

strong OIS in the SH, but not much signal can be seen in the tropics. In 

addition, the method does not produce a distribution that resembles the satellite 

data coverage across the tropics. It is expected that it will take a lot of more 

eigenvectors to cover these satellite data, particularly in the tropics.  

    Fig. 11 is the same as Fig. 10, but for relative humidity 1000q . The 

observations over Europe are equally as dense as over NA. Our method does 

generate some strong OIS impacts over these regions. Similarly, in Asia and 

Australia, the dense observations are correlated well with the strong OIS 

signals. Interestingly, a few sparse observations in the SH oceans are also 

captured by OIS. However, there are also some sparse observations around the 

tropics near Africa and South America (SA) which are missed by the OIS.   

    In conclusion, the method tested in this paper is able to capture some of the 

observation impacts, especially over the regions with dense conventional 

observations. Most satellite observations in the southern oceans can be captured. 

However, to capture the satellite band structures in the tropics, the number of 

eigenvectors we have tested is clearly not enough. All the results shown in this 

section indicate that many of the sparse observations in the tropics can not be 

captured, while the sparse observations in the southern oceans can be reflected 

in our OIS. This is related to the fact that the background error variances (the 

diagonal parts of B ) around the tropics are lower than in the extra-tropics. The 

background error covariance matrix in NCEP GSI is produced by using the “NMC” 

method (Derber et al. 1991; Parrish and Derber 1992; Derber et al. 2003). Since 

the observation errors do not depend on latitude in the GSI, the smaller 

background errors around the tropics reduce the impact of the  observations, and 

pull the analysis closer to the background. As a result, the analysis increment 

is also reduced.  This can also be confirmed by looking at the analysis 

increments in equation (2).  

    Corresponding to the observation locations and the OIS in Figs. 8-11, Figs. 

12a-12d show the analysis increments for 10001000500500 q    ,u    ,    , ut . If we compare 

Figs. 8 and 9 with Figs. 12a and 12b, we can clearly see that there are a 

reasonable number of observations in the tropics, but the increments are very 

small. As explained, this is due to the smaller background error values used in 

the GSI. Thus, the OIS values are also very small around the tropics.  When Figs. 

10 and 11 are compared with Figs. 12a and 12d respectively, we see that areas 

around the tropics which do not show much OIS are also approximately the areas 

where the analysis increments are small.  

 

6. Discussion and conclusions 

      As described in the introduction, analysis error covariance is important 

not only in NWP weather forecasts, but also in building a superior EFS which 

relies on a limited number of effective initial perturbations. An effective set 

of initial perturbations should be constructed from the PDF of the initial state 

which is the analysis field produced by DA system. (Toth and Kalnay 1993, 1997; 

Molteni et al. 1996; Houtekamer et al. 1996, Buizza et al. 2005, Bowler 2006, Wei 

et al. 2006, 2008; McLay et al. 2007, 2008; Reynolds et al. 2008; Leutbecher and 

Palmer 2008; McLay and Reynolds 2009; Bishop et al. 2009). How to use the 

analysis error variance to generate initial perturbations by different techniques 

has been reviewed and compared by Wei et al. (2008). At NCEP, the ETR method, 

which has been implemented since 2006, uses the analysis error variance 

information to generate the initial perturbations.  

     While in ensemble Kalman filter DA systems the analysis error variance is a 

by-product (Bishop et al. 2001; Whitaker and Hamill 2002; Whitaker et al. 2007; 

Kalnay et al. 2007), estimating the analysis error variance from the 3D/4D-Var DA 

systems is not straightforward. Recently, there have been some efforts in 
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estimating the analysis error variance using different analysis data from 

different centers or sources. For example, Swanson and Roebber (2008) used the 

differences between NCEP and ECMWF reanalysis data. Langland et al. (2008) 

analyzed the differences between NCEP and FNMOC analyses. Errico et al. (2007) 

tried to estimate analysis error variance using an observation system simulation 

experiment (OSSE).  Wei et al. (2009) used the analysis data from NCEP, ECMWF, 

UKMO, CMC and FNMOC, and computed the anomaly of each center’s analysis by 

removing the long term mean using a recursive filter. This method has the 

advantage that the typical systematic errors that appear in the spread around the 

center mean (i.e. mean of analyses from different centers) over high altitude 

regions are completely removed. The instantaneous values of spread over average 

anomaly at any cycle for various variables bear a strong resemblance to the 

elusive analysis error variance.  

     This paper represents another effort at NCEP/EMC in estimating the analysis 

error variance, using the Lanczos method proposed by Fisher and Courtier (1995), 

in NCEP global 3D-Var GSI DA system. Fisher and Courtier (1995) tested in a 

simplified case and in the ECMWF 3D-Var system. Pondeca and Manikin (2009) used 

this method for estimating analysis error variances over the CONUS for 2-

dimensional surface variables in the NCEP RTMA system which is based on the 2D-

Var option in the GSI. In this paper, we have applied this method to the global 

3D-Var GSI and studied other different aspects of this method which were not 

exploited in Fisher and Courtier (1995) and Pondeca and Manikin (2009). The 

properties of convergence and different calibration schemes we have found about 

this method have greatly improved our understanding of the method and its 

implications in practical applications in an operational environment.    

     When applying this method to the NCEP global GSI, our focus is on estimating 

the observation impact signals (OIS) which are the square root of the difference 

between the background and analysis error variances. This quantity is a measure 

of the error reduction due to the observations assimilated. The analysis error 

variance in most 3D/4D-Var DA systems depends on the background error covariance 

which is static and pre-computed using the so-called NMC method (Parrish and 

Derber 1992).   

     The OIS values for different variables at typical model levels are computed 

for various numbers of inner loops K  in the GSI with different numbers of 

observation sets. As expected, the smallest eigenvalue of the transformed Hessian 

matrix converges to one as K  increases. However, the rate of convergence 

depends on the number of observations assimilated. Our results show that the 

converging speed is faster when smaller numbers of observations are used. If more 

observations are used, the converging speed is slower and a larger number of 

eigenvectors should be included in order to minimize the loss of information from 

the missing eigenvectors.    

     The top five corresponding normalized eigenvectors are also studied. In 

general, the structures for the top eigenvectors when K  is small show larger 

impacts in the regions where conventional data are dominant. If K  is increased, 

the OIS can pop up in other areas with less observations. For the same number of 

K , the less dominant eigenvectors may convey the impact signals from the less 

dominant observation regions.  

    When the OIS values are computed with different number of data sets, the 

results show that the impact signals in the data rich regions are stronger with 

larger K . At the same time, more signals in the regions with less observations 

start to emerge as the number of inner loops increases. When the number of 

observations is increased, the method can clearly pick up the impact signals from 

the observations. As only a limited number of eigenvectors can be computed due to 

the computational constraint, the error reduction is severely underestimated. To 

estimate to what extent we are losing the information from the missing 
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eigenvectors, we computed the mean OIS values for q    t,,u  at three typical model 

levels (i.e. top, middle and bottom) for different values of K  with two 

different numbers of observation data sets. It is found that the OIS values at 

116  100,  ,60=K  are about  2.2  2.0,  ,5.1 times the value of OIS at 30=K  

respectively. This is roughly 1.5 times the increase of the mean OIS when K  is 

doubled. These ratios are much larger for the relative humidity at the top model 

level. 

    All of our results indicate that without proper calibrations, the observation 

impacts computed using this method are not going to be near the reality. To 

overcome this difficulty, we have proposed and investigated four different 

calibration schemes to compensate for the missing trailing eigenvectors. 

Different schemes give different weights on different number of eigenvectors. Our 

results show that the first two schemes cannot pick up the impact signals over 

the regions with less conventional data in comparison with the “ideal case” which 

has the largest number of inner loops. It is found that scheme 3C  performs 

better than other schemes and can boost the OIS values in the data rich regions 

to the level in the “ideal case”. However, it seems that none of them can pick up 

the impacts in the regions with less observation data as well as the “ideal 

case”. The benefit of calibrations lies in the fact that they do enhance the OIS 

magnitudes in the regions with more traditional data coverage, which would be 

missed without calibrations. 

    We also studied the correlations between the observation locations and the 

OIS distributions for various variables at different levels. It is found that the 

method generally picks up the impact signals over the regions with conventional 

observations, particularly over the data dense areas. It even picks up the 

satellite observation impacts over the southern oceans. However, with the number 

of inner loops we have used, the method cannot show the satellite band structure 

over the tropics. It would probably need a lot more eigenvectors to recover the 

whole satellite observation impacts.  The area where the method is more likely to 

miss is around the tropics. This is found to be due to the fact that the 

background errors produced by the NMC method are generally smaller over the 

tropics than over the extra-tropics, and the observation errors do not change 

with latitude. As a result, the observation impacts over the tropics are reduced.  

This also leads to the smaller analysis increments over the tropics.   

      In conclusion, the method presented in this paper with proper calibration 

is capable and effective in estimating the observation impacts from the 

observations assimilated in the GSI, especially over those regions with more 

conventional data coverage.  Since those gradient vectors can be generated by the 

operational global GSI almost at no cost, the computational expense in estimating 

the dominant eigenvectors is completely manageable with the current NCEP 

computing resources.   

     Another benefit of using this method is that the eigenvectors can be used in 

preconditioning the conjugate gradient algorithm in minimization to speed up the 

convergence. For example, an explicit or implicit preconditioner based on an 

approximation to the Hessian matrix can be chosen (Fisher 1998). In this case, 

the time spent on computing the dominant eigenvectors can be offset by the time 

saved from this preconditioning. Therefore, this method is very suitable for an 

operational 3D/4D-Var system to estimate the observation impacts, and it can be 

used as part of a routine verification package.  
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Figure Captions 

 

     Fig.1. The eigenvalue distribution, (a) ndat=6, K=30, (b)ndat=6, K=60, (c) 

ndat=6, K=100, (d) ndat=6, K=116, (e) ndat=60, K=30, (f) ndat=60, K=60, (g)  

ndat=60, K=100, (h) ndat=60, K=116.   

     Fig.2. The smallest eigenvalues as a function of the number of loops (a) for 

6=ndat , (b) for 60=ndat . 

     Fig. 3. Top five normalized eigenvectors of the transformed Hessian with 

respect to temperature at 500hPa with ndat=6. From the left to the right on each 

row: top eigenvectors for K=30, 60, 100, 116 respectively. Top to the bottom on 

each column: eigenvectors 1, 2, 3, 4, 5 for each value of K.  

    Fig. 4. The same as Fig. 3, but for u. 

    Fig.5. Observation impact signal (OIS) for 1000500500 q    ,    t,u . From the left to 

the right on each row: 116   ,100    ,60    ,30=K  respectively.  Rows 1 to 3 for 

1000500500 q    ,    t,u  with 6=ndat , and rows 4  to 6  for 60=ndat . 

    Fig.6. The ratio of the mean OIS values using 116   ,100    ,60    ,30=K  to the 

mean OIS value using 30=K  as a function of the number of loops at 1000hPa, 

500hPa and 0.27hPa for. (a) u with ndat=6,  (b) t with ndat=6,  (c) q with 

ndat=6, d) u with ndat=60,  (e) t with ndat=60,  (f) q with ndat=60.    

    Fig. 7.  OIS with four calibration schemes for 1000500500 q    ,    t,u  . From the 

left to the right on each column: OIS values from schemes C4   C3,    C2,   ,1C  

respectively.  Rows 1 to 3 on each column: for 1000500500 q    ,    t,u  with 6=ndat . 

Rows 4  to 6  on each column: the same variables for 60=ndat . 

    Fig.8. Circles represent the locations of temperature observations between 

500mb-50mb and 500mb+50mb, and contour lines the OIS for temperature at 500mb.      

    Fig. 9.  The same as Fig. 8, but for u . 

    Fig. 10. The same as Fig. 9, but for surface level (around 1000mb). 

    Fig. 11. The same as Fig. 10, but for relative humidity q . 

    Fig. 12. The analysis increments of (a) 500t , (b) 500  u , (c) 1000u , (d) 1000q .   
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Fig.1. The eigenvalue distribution, (a) ndat=6, K=30, (b) ndat=6, K=60, (c) 

ndat=6, K=100, (d) ndat=6, K=116, (e) ndat=60, K=30, (f) ndat=60, K=60, (g)  

ndat=60, K=100, (h) ndat=6, K=116.   
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Fig.2. The smallest eigenvalues as a function of the number of loops (a) for 

6=ndat , (b) for 60=ndat . 
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Fig.3. Top five normalized eigenvectors of the transformed Hessian with respect 

to temperature at 500hPa with ndat=6. From the left to the right on each row: 

top eigenvectors for K=30, 60, 100, 116 respectively. Top to the bottom on each 

column: eigenvectors 1, 2, 3, 4, 5 for each value of K. 



 22

 
Fig. 4. The same as Fig. 3, but for u. 
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Fig.5. Observation impact signal (OIS) for 1000500500 q    ,    t,u . From the left to the 

right on each row: 116   ,100    ,60    ,30=K  respectively.  Rows 1 to 3 for 

1000500500 q    ,    t,u  with 6=ndat , and rows 4  to 6  for 60=ndat . 
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Fig. 6.  The ratio of the mean OIS values using 116   ,100    ,60    ,30=K  to the 

mean OIS value using 30=K  as a function of the number of loops at 1000hPa, 

500hPa and 0.27hPa for. (a) u with ndat=6,  (b) t with ndat=6,  (c) q with 

ndat=6, d) u with ndat=60,  (e) t with ndat=60,  (f) q with ndat=60. 
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Fig.7.  OIS with four calibration schemes for 1000500500 q    ,    t,u  . From the left to 

the right on each column: OIS values from schemes C4   C3,    C2,   ,1C  respectively.  

Rows 1 to 3 on each column: for 1000500500 q    ,    t,u  with 6=ndat . Rows 4  to 6  on 

each column: the same variables for 60=ndat . 
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Fig. 8. Circles represent the locations of temperature observations between 

500mb-50mb and 500mb+50mb, and contour lines the OIS for temperature at 500mb. 
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Fig. 9.  The same as Fig. 8, but for u . 
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Fig. 10. The same as Fig. 9, but for surface level (around 1000mb). 
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Fig. 11.  The same as Fig. 10, but for relative humidity q . 

 

 

 



 30

 
 

Fig. 12.  The analysis increments of (a) 500t , (b) 500  u , (c) 1000u , (d) 1000q .   

 


