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Hydrodynamics

1 Derivation of the Model’s Equations

The derivation is based on ECMWEF’s publications. These detailed notes
intend to provide a documentation of what was actually derived and coded into
the existing GFS Eulerian over-structure.

The model equations presented in this document are the equations found in
Office Note 461 but cast in a Semi-Lagrangian “ready” form. Namely:

% (u, v, t, Inp, moisture, tracers) = (RHSU, RHSV, RHST, ...)

Specifically, the momentum equations are not scaled (U, V) = cosf (u,v) ,
and the surface pressure equation is expressed in terms of 3’;5 , not g’;ﬁ . The
thermodynamic equation is included for completeness, and the adiabatic mois-
ture equation simply expresses the vanishing of the moisture’s total time deriva-
tive. The contributions of the physical parameterization are added in a separate
scan of the grid using the splitting method. At its origin, the spectral model
was cast in terms of divergence and vorticity. The transition to a velocity for-
mulation was made in anticipation of a Semi-Lagrange implementation. This
formulation permits the evaluation of total time derivatives in terms of upstream
values in space and time. The specific choice of a time differencing scheme can
be deferred to the final stage of the derivation, namely, after the space discretiza-
tions are completed. This paper will trace the detailed steps required to express
the total time derivatives in terms of spherical harmonics in the horizontal (see
appendix) and finite differences using the hybrid vertical coordinate described
in Office Note 461. The time integration of the final form of the model equa-
tions will be performed in a semi-implicit fashion; the equations will be cast in
a general way such that the actual time discretization could be either two or
three time levels.

Some of the equations contain partial vertical sums which may be delicate
to code. In these cases a detailed exposition is provided for a four level model
so that all terms, especially near boundaries, are accounted for.



Indexing in the defining equations is from the top of the atmosphere to
bottom. Indexing in the spectral model has always been from bottom to top,
and the reader is cautioned to exercise care when switching between notes and
codes. At times, upper case multilettered variables will appear in this document.
These are presented in order to facilitate identification of variables in the code.

We begin with the definition of a hybrid coordinate.

Ay

41
Let n(0,ps) = 0. n(ps,ps) = 1. Mot = p?;z + Bk+% Ps

AH% BH% are scaled to model units, k£ =0 at top of atmosphere,

and po = 101.325 cb. It is noted that the actual values of 1 are only required
for semi-lagrange interpolations, not for the derivation of the model’s equations.
Since the hybrid coordinate vanishes at the top, we set

Al:Bl:O.
2 2

1.1 The Momentum Equation

The momentum equations without diabatic forcing terms are:

du 1 ¢ 0 B

T T oo (a”ﬂvalnp) =0 (1.1.1)
dv 1 /0¢ 0 B
E'i‘fu-i-a <%+RdTv%1np> =0 (1.1.2)

For maintenance of conservation properties (Simmons and Burridge, 1981),
we discretize RyT,VInp as follows:

P L
In < k+3 ) kafé + akvApk‘| (1.1.3)
D1



Pr-1 Pr+1
ap,=1-— 2 ln 2 1.14
Apy, (pk_ (114)

for k>1, and «; =In2. (Another choice could be a =1)

The above choice of « will reduce eq. (1.1.3) to R4(T), VInp when
A, = 0. In this case:

BETp, = Rl { s (prey oy —piy opcy ) |
which is a discrete analog of RdTVa% (plnp) = R4TVInp

We define coding variables as follows. (These terms will appear on the RHS,
hence the negative sign.)

1 9 :
" acosf (ﬁ)k = uphl
—Vor =

£(), -

R el
acoé@ (Tvﬁlnp) = UPRS

RyT,VInp =

Bar, 2P = VPRS

The geopotential ¢ is diagnosed from the hydrostatic equation.

Ppy1
¢k+§ - (bk—% =—Ry(Ty),In (p:+?>
2

after some manipulation:

lew: P 1
¢k+% =¢s + Zje;}l:—i-l Rq (Tv)j In (P,-+2 )

Since we need ¢y, in layers, we define a4, as in Simmons and Burridge, (1981)

Ok = Ppy1 + uRa (Ty), (1.1.5)



Calculation of (UPRS, VPRS)

For maintenance of conservation properties, the thermodynamic equation
requires that we use eq. (1.1.3) :

Ppo1
Ry (T,Vinp), = R‘Xg’;)’“ [111 <Pi+i> Vp_1 + akVApk}
Since:
VAp, =V (Ak-',-% + Byy1ps — (Ak—% + Bk_%Ps)) = VABips = ABrVps

We may write

(UPRS, VPRS) =

RyT, 7 Inp = Rq(Ty), |:]n (kar% > Bk7%Vp5 + ap ABRVps

Apy Pyl

_ Ra(Tv), |:Bké In <M> + akABk:| psVInps

Apy P_1

in the code  VInp, = (DPDLAM, DPDPHI)

P

let cofb= Aka {Bk_% In (pH% ) + akABk]

Then (UPRS,VPRS) = cofb Ry (T,), ps (DPDLAM, DPDPHI)

for k=1 1n(p—)Vp§, at the top p%:A

p

limpl_,o (hl (z—) Vp%> = 0
2 2

therefore  (UPRS, VPRS),_, = Rg'Z% (DPDLAM, DPDPHI) + a1 AB;

wl= ol

Ioleo

=



Calculation of (uphi, vphi)

(uphi, vphi) = —V¢y

b = ¢k+% +apRy (Tv)k ) ¢k+1 =¢s + ZJLEII:H (Tv)j

,_.
=]
N\
AR
(S P
I+
W= o=
N——

=In2 or (=1), akzl—pH?l (M) E>1.

Apy Pp_l

Eevs pJ 1
then: —V¢p=-V |:¢5 + ZJL k+1 (Tv)j In <p 2 ) + Oéde( )k]
= Vo~ Ra{ X505 (1), Vmi + w3V (T), | + anV (Tu), + (1), Ve }

Pl
where 7; =In —?
2

pj_
_— — — — —
let  (uphi, vphi) = Pz + Pxo + Px3 + Pxy + Pxs  (for coding purposes)
5 =5 evs
Pz =-V¢,, Pxy=—RqY ;575 (T,); Vr;
. .
Prs =—Rq ij)ﬁ-l TV (Tv)j
—_— —_—
P.234 = —Rdakv (Tv)k 5 PJ,‘5 = —Rd (Tv)k VOék

—
Evaluate Paxo

N .
Pzo = —Ry ZJLEZJA (TU)]‘ vV,




B. 1 B _1 B, 1 B _1
= ryp, - ryp, = (2 TR ) ) Ving, (1.1.6)
Pj+} i3 Pivs  Pi-}

e Levs Byl B 1
Pry=—Ra) "1 (1), (pj+§ Ty ) ps (DPDLAM, DPDPHI)
—_———
V In ps
; i+ By 1 1
for a o coordinate A,H%:O =3 2:p—_p_:0
it g i—% s s

—
Pzo =0  (useful for code validation)

—
Evaluate Puxs

Levs Pjrl
P.1?3 = —Rd Zj:kJrl hlp_ i V(Tv)j
iz

2

5 evs Pyl N .

Pxs = —Ry zf:,m In p‘jf (dtdl(j), dtdf(j))

Pra = —RaoyV (T,), = —Raoy (dtdl(k), dtdf(k) )
P

Evaluate Pz

—

PiL‘5 = —Rd (T'U)k Vak

now from eq. (1.1.4) :

Pr_1 Ppyl Pp_1 Ppyl Ppyl Pr_1
Vay =V (1 iy (T)) = Dt {vm (p_kz)}_m (—pk) (vt}




from eq. (1.1.6) evaluate

_ (,,H%) _ VP VP _ (BH% B Bk——)psvlnps
2 T2

1 1 1
Pl Pryl Pp_1

= |l

3
B
+
ol
3

EY
=

also:
Pp_ 1 Bk,l VA
2 2 _ Pk
\ Apr — Apyg Vps pk*% (Apk)z
B, 1 Py_1

Bk—l pk,,
= Apkz Vps— (Apr )z {(BkJrl —B_ )VPS} = < Ap: B’ ABk> psVInps

Pe_1 [ Bryl B_1 P4l B, _1 Pr-1
Vo, = — Ap;f ( ; — pkig ) psVinps—In (pkz Ap,: Bon )2 AB; | psVinps

Pr_1 Pryl Pp_1
Vo= {2dB - By v () (B - Stam) brvs,
2 2

let

cofa(k) = _Aka {pk? Byyi =By i +In (p:ji) (B,%% pg;; ABk>} in code

Vai = cofa(k) psV In p
and finally:

Pz = —Ry(T,),, Vay, = —Rq (T,), cofa(k) p,V Inp,



13—1'5) = —R4 (Ty),, cofa(k)ps (DPDLAM, DPDPHI) in code

for coordinate sigma Ay, 1 =0

Bk,lps Bk+lps
cofa(k) = _Aka {T;pé,Bk+é — Bk*% +1n <Bk ;Pb») <Bké — W) }pSVhlpS

cofa(k) =0 P—xg =0 (useful for code validation)

1.2 The surface pressure equation

Unlike the Eulerian framework, the surface pressure requires an expression
for dps (not aps) .

dat ot

We start with the continuity equation:

gt g—f’ 3 8—1;?/}3 =0  expand and regroup (1.2.1)

d Op Op on —

dop _ Op (., O D=V. 1.2.2

dt on an< Yoy Vv (1.2.2)
now express d % using p=A(n)+B(®n)ps (1.2.3)

dt an
(In principle, we could continue with g—g)

dop 9 9 - _ 0 0
S _29 (A+Bp, .V— (A + Bp. — £ 1.2.4
& on 815877( +Bps)+ V van( + Bps) +1 ; (1.2.4)



_a_Baps 37 0B 8@

_ v, L 1.2.
an 8t+v Vanp +n377377 (1.2.5)
OB (0Ops — . Ops .0 Op
_98 Vpe 2o 1.2,
8n<8t+v Vp +n377>+n377377 (1.2.6)
dodp O0Bdps .0 Op
—_ 2 _ == - = 1.2.
atan oy dat | Tonon (12.7)
From egs. (1.2.2) and (1.2.7),
equate the two expressions for %g—f’ (1.2.8)
OBdp, .0 Op Op on
= — - _Z(p+Z 2.
on dt n(‘)n on an + an (1.2.9)
OBdps Op o (.0p
- _D —_— —_— fr— . .
o at t Pt ar <n8n 0 (1.2.10)
Vertical discretization yields:
dps .319 .8]7
AB AppD — — — =0 1.2.11
D + App Dy + (Uan)kJré (77877 - ( )
for k=1,....K, K = number of levels.

K
Recall that Z AB, =1
k=1

Divide eq. (1.2.11) by ps to get %hlps

10



d Inp, 1
ps 1

AB
dt Ds

.0 .0
App Dy + (na—i) — (na—§> ] =0 (1.2.12)
k+3 k—

The details of the final form of eq. (1.2.12) will be discussed when the time
descretization is presented.

(NI

1.3 The Thermodynamic Equation

Conservation of energy and hydrostatic conditions imply:
dQ =c,dT' —adp, a= % = Baly

If d@=0

Cpar = Yqp

dT _ o dp _ ow _ RaTww a = Bdle
dt cpdt — cp T cpp —p

We also have

¢p = Cpa + (Cpo — Cpa) ¢ = Cpa [1 T (g: B 1) q}

and k= % . We may then write:
pd
dT RT,w KT yw

G {H(%_l)ﬂp: 1+ -1)q)p (13.1)

11



where § =

G — lais: — 1.837
0 —1=0.8375

For T, as history variable: let €= g—; —1=0.6077

To=(1+eq)T, =(1+eq) L +eTq

W= (1 +eq) o + T

(1+(-1)g)p

The thermodynamic equation can therefore be written as:

dT, kTw (1+e€q) dg
= T— 1.3.2
at » 0+0-Dg T (132)
r f
calculated in dynamics calculated in physics

14e€q _ 140.6077¢q

113 M b2
The “correction” term TF0-1g — 15083759

for large ¢ = 123
l+eq
TFo-0g — 0.99

12



The energy conversion term.

let C,= ﬁ , the ECMWF energy conv. term

(Ritchie, et al, 95 eq. 2.25) is:

Tyw _ 1+eq — 1+eqr
(K P 1+(5—1)(1)k - H(Tv)k 1+(6-1)ak <

Ppyl k— —
—Aka {1n <Pt;z) ijll [D;Ap; + ps (U - Vinps) AB;]

+ o [DeApy + ps (U - VInps) ABk]}

Pryl .
A [ABH v (p}’ff)} (vk-Vlnps)>

where
Cr = Ak-i—%Bk—% - Ak—%Bk-i-%

We now define variables for coding purposes:

"‘(Tv)k . 1+€eqk
Apr  14+(6—1)qk

workay, =

Ppy1 — —
workby, = In (#) S [DiAp; + ps (U - Vinp,) ABj)
+ o [DpApy + ps (U1 - VInps) ABy]

workcy = ps [ABk + Ac—sz In (z:fi )] U - Vnpg

2

Noting that Aka was absorbed in worka; the adiabatic form of
eq. (1.3.2) becomes:

(dTv )k = (H%w 71+1(j5_f(11)q) LT workay, (—workby, + workey,)

13



1.4 Moisture Equation

The moisture specific humidity equation is:

4_g, (1.4.1)

Sq is the sum of sources and sinks.

1.5 Vertical Velocity Equation

w is diagnosed as in the Eulerian frame.

! 9p .
w=— [ V-lvg=|dn+9g-Vp (1.5.1)
0 on

By definition: w=% =2 4 gy .Vp+ 773—2

substitute % in the continuity equation (1.2.1)

— . O o .
8 oS- i) -9 e (1) o
integrate 0 ton (W_UH'VPHSI‘FfOnV'ﬁHg—f]dn:O

if wy=0=0 and (g Vp),_o=0 eq. (1.5.1) follows.

14



1.6 Time Discretization

The momentum equation can be manipulated into the following form:

~ At

u+=uﬁAﬁ:U——?ULﬁAt (1.6.1)
- At

vt = UﬁrAt =V - TVLerAt

where superscript “A” denotes arrival point, and ( )+ denotes values out
t+ At at arrival point.

Here VL = (UL, VL) =YV (AT + RyT, Inps)

is the linear part of the momentum eqs., to be treated in a semi-implicit
fashion. A is a matrix, and 7, is a reference temperature.

Also let
q=Inp,
Then, taking the divergence of eq (1.6.1) we have:

p+— x - B4t

V? (AT" + RyTrq™) (1.6.2)

where X =V-(4,?)

The corresponding vorticity equation is integrated explicitly.

15



The thermodynamic and surface pressure equations are:

B At
TH=THA =Y - — T DA, (1.6.3)

¢" =qlini =2 - ALS- D, (1.6.4)

Equations (1.6.2), (1.6.3), (1.6.4) comprise a coupled system and are solved
for all spectral components.

It is noted that the coupled system of divergence thermodynamic and sur-
face pressure equations contains arrival point variables at ¢+ At , and the terms
U, V, Y and Z. These last terms contain the sum total of all the required
operations in time and in space, namely calculations of departure points, inter-
polation of neighboring values to the departure points, as well as, rotation of
the velocity components to account for the sperical coordinate system. Viewed
in this light, it becomes clear that the center of gravity of the implementation
of the Semi-Lagrange method is in the above details. For this reason, a special
effort has to be made in order to create a useful and focused documentation
which will be presented in a subsequent Office Note.

In the following, all history variables, as well as X, Y, and Z, are the spectral
coefficients in the appropriate expansions.

let Ft=Ffia b=

A
%, T:RdTT

where T, is a reference temperature elaborated on in the detailed documen-
tation of the Semi-Lagrange implementation.
Then:

Dt =X —-bV*[A(Y —br DY) +r(Z—AtS-D1)]

1 ‘A T
where S = oY (Ap] -+ Aplk)

16



regrouping:

[I+bV?(—bAT —rAtS)| Dt = X —bV? (AY +rZ)

expressing the Laplacian explicitly:

1 1
I+ %b(bmwma] Dt =X+ %b (AY +r2)  (16.5)
n(n+1) | [BAL? BAt\? Ry
1 D =1 A ) 2T ApT
et _m + > ( 3 T+ 3 pr D
_ . nm+1) g2 An? Ry .

D m=1+ e 1 AT+ prTT Ap

and T, -AP" is the LEVS x LEVS matrix:
T{ (qu e Apzevs)
T, -AP" = :
TECUS
Equation (1.6.5) can now be solved for D .
1) BA
DYt =D:' |z + %% (AY + R,T,2)

Finally T7 and ¢ can also be isolated.

17



Table 1: Vertical Structure Indexing top to bottom
| k| k+3] aks | bks | pks | op |

0] L |aks(1) | bks(1) | pks(1) (ng—g) _=Dot(1)
1| 11 |ak5(2) | bks(2) | pks(2) (ng—g)ll:Dot@)
2 | 21 | aks(3) | bks(3) | pks(3) (ng—f’l)Ql:Dot(?,)
3| 3L | aks(4) | bk5(4) | pk5(4) (nf’—g) _,—Dot(4)

1.7 Indexing and Looping

consider P—a:; :
N Levs BjJrl Bj,l
Pry(k)=—Rq| Y (T.), [ =22 — =22 || p, (DPDLAM, DPDPHI) = ( px2u, px2v)
j=k+1 Pi+3  Pj-3

Using the notation in Table 1

B. 1 Levs
J+ts3
let fj+%: Iy ; o px(k) = Z (T’U)j (fjJr%—fj,%) k=1, ..., Levs
Itz j=k+1
Let Levs=4 k=1,2 3,4 Px = px2 scalar, in code

—
Pz = (px2u, px2v)

18



k=Levs px (4) = E?:4+1 =

k=Levs-1 | px(3) = E?:3+1 = (Tv)4 (f4+5 - f47%)
3

k=Levs-2 | px(2) = Yo = X = (D) (farg = fomy) + Ty (Firy = ficy)

1
2

k=Levs-3 | px(1) = X1 = X = (T)y (fory — oy ) +0x(2)

1

DO k=24-1 (k=2,3)
k—2 px(2) =px(3) - Ra (B - 28 ) Tz
k=3 (1) =px(2) - Ra (35 - 280 ) Tg(2)

w (n) in the physics.
The vertical velocity w is calculated as in the energy conversion term and is
passed on to the physical parameterization routines.

Indexing is assumed top to bottom

19
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PK5(3)

PK5(4)
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1.8 Schematic Vertical Grid

LEVS = number of model layers
Prtl = pressure at interfaces

Pk = pressure in model layers

el
vl

s
(Ve

PrLEvs—1

Prevs+l

apyy, byyy are defined at interfaces

21



1.9 Notation

A longitude
0 latitude
n hybrid vertical coordinate

Ay By level dependent constants defining 7

t time

a radius of the earth

f coriolis parameter

(u,v) horizontal velocity components

P pressure

Ds surface pressure

Pr reference pressure used in linearization for semi-implicit

time integration

o=t
T temperature

T reference temperature

T, virtual temperature

¢ geopotential

P density

o= % specific volume

q specific humidity

Q energy per unit mass

Rq dry air gas constant

Cp dry air specific heat at constant pressure
Cy dry air specific heat at constant volume
K = Rq/cp

€ = R,/Rs+1

1) Cpv/Cpa

22



Y hydrostatic matrix

Xﬁ;—At X at arrival point and at time ¢ + At

xp X at departure point at time ¢
X t]f At X at mid-point of trajectory and at mid-time
2

23
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2 Appendix: Overview of the Spectral Technique

2.1 Definition of Expansion in Spherical Harmonics

In the following, all prognostic variables as well as the tendencies will be assumed
to possess a spherical harmonic representation of the form

N

J
F(p\)= > Y Fly} (2.1.1)

I=—J n=|l|

where the spherical harmonics Y,! are given by

Y (0, A) = ph, (sing) e (2.1.2)

( pl, computed in subroutine PLN.)

The upper limit of the second sum is left as a general function of /. The
model can be integrated with any resolution, and the specific resolution is de-
termined by a control array, set at the beginning of the integration.

The expansion coefficients F! are functions of time and sigma and the p, are
Legendre polynomials given by

1 n
1 [Cn+1)(n=10)]2 L ghtn (1—a?)
I _ _ 2\ 2
where z = sing and the normalization of the pl, is such that
1
/ Phphdz = O (2.1.4)
-1
The p!, can be generated from the recursion relation
Eln+1pln-|r1 (z) = xpj, () — €ph_y (2) (2.1.5)
where
1
2 _ g2\ 3
. n®—1
=|—— 2.1.
‘n <4n2 — 1) (2.1.6)

When horizontal gradients require north-south derivatives, they can be ob-
tained from

dpl,
D) o4 1) s (1)~ bt (1) = eosp 2 21.7)

25



2.2 Grid to Spectral Transform

Assume that the grid values of a given field are known, and that we require
the field’s expansion coefficients. In practice, the field could represent a history
variable or a tendency.

Let the field be represented by Eq. (2.1.1). Multiplication of this equation
by (Y,i)* and a surface integration over the sphere yields:

1 2T 5 )
F! = o /2 F (o, \) pl, (sin ) e cos pdpd A (2.2.1)
m™Jo -z

The numerical evaluation of the integrals in Eq. (2.2.1) is carried out in two
steps:
Step 1. We define the field’s Fourier coefficients at a given latitude as

1 2m )
Fl(p) = — F(p,\) e "\ (2.2.2)
2T 0
This integral can be evaluated using a discrete Fourier transform, provided
F' is a trigonometric polynomial.
In general, if f(x) is a trigonometric polynomial of degree not exceeding
M-1,

2

M-—1 .
f(x)dz = ZMW z_; f (2%) (2.2.3)

is an exact evaluation of the integral (Krylov, 1962).

Since the model’s variables are assumed to have a spherical harmonic expan-
sion, they are represented in the zonal direction by a trigonometric polynomial
of degree J. Quadratic terms will contain powers of at most 2.J, and the inte-
grand in Eq. (2.2.2) will be of degree not exceeding 3J . For exact integration in
the zonal direction, we therefore require at least 3.J41 points around a latitude
circle.

Step 2. The integration in the meridional direction is performed by Gaussian
Quadrature (Krylov, 1962, p. 108). The Gaussian weights are

0

Wy =2(1-2%)"" [<%)IZJ _ (2.2.4)

where the zj, are the zeros of p{;

N

[ME]

1 K
| v@espdo= [ y@de=Y W@)  @29)

k=1

is an exact integration of the function y, provided y () is a polynomial of degree
not exceeding 2N — 1, and the function y is known at the gaussian points xj
(see Fig. 2.2 and Table 2.1).
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Using this method

1

F. = / Fl(z)pl, (x) da = Z Wi F () Y, (21) (2.2.6)
-1 k=1

For rhomboidal truncation, we must have N > 5"2—+1 while for triangular trunca-

tion, N > 2ZEL. For an arbitrary resolution, the maximum power of F! (z) p!, (z)

must be evaluated, and the condition imposed by the Gaussian quadrature re-

quirement must be applied.

2.3 Spectral to Grid Transform

The computation of grid values from the spectral expansion given by Eq. (2.1.1)
is also carried out in two steps. First, for real F, we take advantage of the
relation

El= (=0 (R (2.3.1)
to derive
J N()
Z Flp) +2Red Y FY} (2.3.2)
=1 n=l

Here, the limit N () is equal to J for triangular truncation, and to J + [ for
rhomboidal truncation. It is assumed that grid values are required at a given
latitude ¢y, (corresponding to zy ). The Legendre polynomials can be computed
at this latitude, and the partial sums

N(1)
Z Upl () (2.3.3)
are evaluated for [ =0, ..., J . Eq. (2.3.2) can, therefore, be written as
J .
F(pr,A) =Y F'(ap)e™ (2.3.4)
1=0

If equally spaced values of F' are required at the latitude ¢y, a discrete
Fourier Transform can be applied to Eq. (2.3.4):

F (oA Z F' (pr) 57" (2.3.5)

with inverse

M-1 ot
F (o1, A e (2.3.6)
Jj=0




2.4 Velocity and Divergence-Vorticity Relations

While the kinematic history variables in the model are divergence and vorticity,
the wind velocity is also required. In order to compute the spectral coefficients
of the scaled velocity, we decompose the velocity vector field into its rotational
and divergent components. We introduce the stream function 1 and velocity
potential x and write

T=Vx+kxVy (2.4.1)
_ b (0x 0%
u= P <8/\ cosgoaso) (2.4.2)
(i
v= Toosp <8/\ +cosga&p> (2.4.3)

Clearly, all the results in terms of ¥ and x can also be expressed in terms of ¢
and D, since

¢(=V%, D=V? (2.4.4)
and
V2Rl = _”("7:1)17}1 (2.4.5)
a

Assume that ¢ and x are expressed by

J o +T
S A
I=—J n=|l|
J o |+J
X=2 DoxYa (2.4.6)
I=—J n=|l|

Substitution into Eqgs. (2.4.2) and (2.3.4) yields

J o U+T J o +T

aU =3 Y XhilYi—cosp >y e dv, (2.4.7)

d
I=—J n=|l| I=—J n=|l| 1
. dp! . S
Now, since cos gp(% can be expressed as a linear combination of p!, ; and pﬁlﬂ
(Eq. 2.1.7), U can also be expressed as a spherical harmonic series. We find,
after some algebra,

a/U’fl =(n-1) Giﬂﬂéfl + 1l Xil —(n+2) €£1+1¢£z+1 (2.4.8)

Similarly,

aV,f =(1-n) eﬁlxikl — 1l 1/)51 +(n+2) eﬁlxﬁlﬂ (2.4.9)
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It should be noted that for each zonal wave number, the meridional derivative
introduces an additional term. Thus, the series of U and V are given by

J [+J+1
u=> > UY!
I=—J n=|l
J o |l+J+1
v=> Y vy (2.4.10)
I=—J n=|l|

We should point out that the above method is not the only way to compute
the velocity from the divergence and vorticity. It is possible, at each Gaussian
latitude, to use the Fourier coefficients of ¢ and x (or ¢ and D) and compute
the Fourier coefficients of U and V directly from Eq. (2.4.7). If we let

[]4J
X= ) xhpl
n=|l|
[U+J
=" yLSh (2.4.11)
n=|l|
where
S! = cos % (2.4.12)
then
J . J 4
aU = Z il X' — Z Plett (2.4.13)
I=—J I=—J
Thus,
1
Ul == (ilx' = ¢! 2.4.14
— (ilx' =) (2.4.14)

are the Fourier coefficients of U at the given latitude. A similar expression can
be found for the V' component. This method is useful when computer memory
is limited and the usual trade off between memory and computations applies.
In this case, the computation of the Fourier coefficients of U or V requires
two summations per latitude, while the method using the spherical harmonic
expansion of U or V requires only one summation.
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2.5 Spectral Form of the Gradient

At this point, it is convenient to discuss the computation of the gradient of a

function F':
1 oF oF
F= — — 2.5.1
v acosgp(&‘)\’coswaw) (25.1)

Since S! is easily computed (Eq. 2.4.12), it is simple to compute

or or
N cosgo&p

Introducing a spherical harmonic series for F', we find

cospVF = é ( (2.5.2)

J o |+J

cosgaVFz% Z ZZZFZ Leith

I=—J n=|l|

J o |U+J

> ) FlShe™ (2.5.3)

l=—J n=|l|

where, once again, the meridional derivative introduces for each [ an extra term
in the expansion.
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and the full thermodynamic equation can now be presented as used by
ECMWEF:

Ttﬁ-At*TtD _ (ﬁva(l-‘req)

— BNy (D)
— tt \T
At 1+(6—1)q >t+% 2 k

The matrix 7 is defined by:

P 1 _
(D), = KT, <Aka In (pzm ) Zlel D;Ap§ + o/,;Dk)

_1
2

Ay has the semi-lagrangian appropriate definition, presented in the deriva-
tion of the details concerning the geometric and kinematic details. D is the
transpose of the divergence column.

D= (D;y ... Dpeys)
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